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Abstract: Minimum entropy control has been proven to be an effective method in control of non-

Gaussian stochastic systems. In this case, the entropy is proposed as a generalization of the variance 

measure to characterize the randomness of the process. Minimum entropy corresponds to small 

uncertainty (or derivation), but it cannot guarantee the tracking error approaching to zero. Therefore, 

mean square error also should be added in the criterion. In this paper, by using a simple example, the 

method of generating a representative approximation of the Pareto optimal control set is investigated in 

both analytical and numerical ways. And simulation results show the feasibility of the proposed double-

objective optimal control method. 
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1. INTRODUCTION 

With the increasing quality requirements for industrial 

dynamic processes, more than one design objective should be 

satisfied and consequently multi-objective optimal control 

problems has received considerable attention for a long time 

(Scherer et al., 1997; Heo et al., 2006; Kumar et al., 2010). 

Generally, we can distinguish two main approaches to solve 

multi-objective optimal control problems: 1) dynamical 

programming techniques (Scherer et al., 1997); and 2) 

evolutionary algorithms (Heo et al., 2006; Kumar et al., 

2010). On the other hand, practical processes are inevitably 

subject to non-Gaussian random disturbances and 

nonlinearities, which make the multi-objective optimal 

control even more complicated (Yue and Wang 2003; Zhang 

et al., 2009, 2012). 

Traditionally, based upon the generalized minimum entropy 

criterion, the multi-objective stochastic control problem 

could be transformed into a single-objective dynamic 

optimization, where the weights denote the different relative 

importance of different objectives (Yue and Wang 2003; 

Zhang et al., 2009, 2012). This method is easy to understand, 

but the value of the weights usually could be only decided by 

try-and-error method, based on engineering experiences, 

repeating simulations and other information. And another 

important disadvantage is that only one optimal control signal 

can be obtained by using this method, which cannot meet the 

requirements of decision maker from different angles. 

Although we could get different Pareto solution by 

parametrically varying the weights in the combined single 

objective function (Jaimes et al., 2011), the non-convexity 

and previous required information make it difficult to solve 

or even cannot be solvable. These complexities call for 

alternative approaches, evolutionary algorithms, to deal with 

certain types of multi-objective optimal problems (Jaimes et 

al., 2011). In Afshar et al., 2010, 2011a, differential evolution 

method was adopted to investigate the multi-objective 

minimum entropy control problems for nonlinear and non-

Gaussian stochastic systems. A data-based local 

multiobjective steepest descent algorithm was used to deal 

with the energy efficiency problem in papermaking (Afshar 

et al., 2011b). 

In this paper, two-objective optimal controller is designed for 

a simple nonlinear stochastic system with non-Gaussian 

disturbances. By using   constrained method (Eichfelder, 

2009) and estimation of distribution algorithm (Hauschild 

and Pelikan, 2011; Zhang et al., 2008), analytical and 

numerical Pareto optimal control set are obtained, 

respectively. Another important purpose of this paper is to 

illustrate that establishing analytical expression of optimal 

control set is much more difficult than generating numerical 

ones. 
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2. A GENERAL PROBLEM FORMULATION 

Consider the following SISO nonlinear stochastic system: 

1
( , , , , , , )

k k k n k k m k
y f y y u u 

  
                                   (1) 

where
1

k
y    is the measured output from the system, 

1

k
u    (

maxk
u U ) is the control input to the system, ( )f   

is the nonlinear functional dynamics of the system,
1

k
   is 

the bounded random input which has an assumed known PDF 

denoted by )( x


 .                   

Denote the set point as 
k

r . The objective is to determine 
k

u  

such that the system output approaches the set point as 

closely as possible with a small randomness. The mean 

squarer error is expressed as 
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where ( , )
ky k

u x  is the probability density function (PDF) of 

output 
k

y .
y

a  and 
y

b  are the lower and upper bounds of 
k

y  

respectively. 

Since the system output is non-Gaussian, Renyi’s entropy is 

used to characterize the randomness of the output, and it can 

be formulated as 

 
2

2
log ( , )

y

k
y

b

k y k
a

J u u x dx                                                (3) 

Therefore, the task of controller design is to find optimal 

control input *

k
u  to minimize the above two objectives 

simultaneously, i.e. 

      1 2
arg min ,

k

k k k
u

J u J u J u                                        (4) 

This is a multi-objective optimal control problem. In general, 

a weighted expression between these two performance 

indexes is formulated and minimized in an analytical way in 

order to obtain the control sequences (Zhang et al., 2012; Yue 

et al., 2003). This would involve the formulation of output 

probability density function of the system (1) using the 

system structure function ( )f   and the knowledge on the 

probability density function of the noise. However, true 

optimization is still a problem.   

In this paper we will consider a simple example and use both 

analytical and numerical approaches to compare the features 

of the optimization procedure. The example is given as 
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The set point is 1
k

r  . The probability density function of 

the noise is expressed as 

 
 23
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x x
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                                 (5b) 

3. OPTIMAL CONTROL ALGORITHM 

3.1   constrained method 

In order to calculate the performance index  k
J u , we will 

firstly give the PDF of output ( , )
ky k

u  . 

From (5a), we have 

 
2

1 1
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k k k
y y ux

 
                                             (6) 

where   and x  are any possible values of 
k

  and 
k

y , 

respectively. Combined with Eq. (5b), the PDF of output can 

be obtained as 
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where 
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Then, according to Eq. (2), we have 

    
2

1

2

2 1 0

k k k

k k

J u r E y

a u a u a

 

  

                                                       (8) 

where it has been denoted that 
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Similarly, the second performance index presented in Eq. (3) 

can be formulated as 

 
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m ax

m ax

4 3

2

2

4 3 2 1 0

2

log ( , )

log

k

y

k

k

y k

k k

y

k

J u u x dx

b b bu bu ubu




 

   


                                   (9) 

where it has been formulated that 
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Using the   constrained method, the optimal problem (4) 

can be rewritten as 

2

1 max

( )

( ) ,

k

k k

minimize J u

subject to J u u U 
                                        (10) 

Here, it is assumed that the constrained optimal problem (10) 

is the convex programming. Then, the K-T conditions can be 

used to solve this problem. 

From (8) and (9), the first and second derivatives of 
2
( )

k
J u  

and 
1

( ) ( )
k k

g u J u    are formulated as follows: 
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Then, the K-T conditions formula can be given as 
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1) When 0  , we have 

  4 3 2 1
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2 1 0
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i.e. 3 2

4 3 2 1
4 3 2 0

k k k
b b bu ubu    . 

According to the intermediate value theorem, The above 

cubic equation (13) with real coefficients has at least one 

solution 
k

u among the real numbers, which can be formulated 

as: 

( ) ( ) 0

3 ( )

4

1

12
3

n n

k n
u b x C

b x C

 
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 
,    1, 2, 3n              (14) 

where 
(1)

1x  , 
( 2 ) 1 3

2

i
x

 
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(3 ) 1 3

2

i
x

 
   and 

2 3

1 1 03
4

2
C

    
  with 2

0 3 2 4
9 24b b b   , 

3 2

1 3 2 3 4 1 4
54 216 432b b b b b b     and 2 3 2

1 0 4
4 432b      . 

If 1n

k
u    and ( )

max

n

k
u U , then, it is the optimal solution. 

Otherwise, there is no solution for equation (11). 

2) When 0  , we have 

2

2 1 0
( ) 0

k k k
g u a u a u a                                               (15) 

Then, we have 

 
2

1 1 2 0

2

4

2
k

a a a a
u

a

   
                                            (16) 

For given  , we will get the solutions. Substitute (16) into 

(12), and if 1n

k
u   , 

maxk
u U  and 0  , the obtained 

solution is the optimal one. 

According to Eichfelder, 2009, we choose the parameter   

as follows: 

1

2

2

:

( ( ))
1

l l

l

k

l

J u


 






 

 
  

 

                                      (17) 

where 0   is a desired distance between approximation 

points and satisfies 

     1

2 2

l l

k k
J u J u  


                                       (18) 

For different  , we can obtain different Pareto optimal 

control inputs. 

Remark 1. Analytical method proposed in subsection 3.1 has 

two main contributions: 

1) It provides a general formula of Pareto optimal control 

inputs solutions for a certain class of control problem. 
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Anyone can obtain their own wanted result according to the 

general solution formula without consider other factors.   

2)The PDF of tracking error obtained from Eq. (7) forms the 

relationship among the PDF of system output, randomness 

and control input, it clearly reveals the PDF evolution of the 

output. It is the basis to analyze the stability of the closed 

loop stochastic systems. 

Remark 2. The above analytical solution is dependent on the 

convexity of the problem, and when the problem is complex, 

it is difficult to have the exact analytical solution. Therefore, 

in the next subsection, the numerical method will be used to 

solve the problem proposed in Section 2. 

3.2 Estimation of distribution algorithm (EDA) 

Estimation of distribution algorithms (EDAs) are stochastic 

optimization methods that search for the space of potential 

solutions. Different from GA(Genetic Algorithm),  there is no 

crossover or mutation in EDAs. Instead, they build and 

sample explicit probability distribution model of promising 

solutions. In the following, details of how to use EDA 

optimization techniques to solve the multi-objective optimal 

control problem (4) will be presented. 

Denote 
1k k k

u u u


   , the EDA method is used to find the 

optimal 
k

u  by minimizing 
1

J  and 
2

J  simultaneously. The 

algorithm consists of four main stages: initialization, 

modelling, reproduction, and selection, which are briefly 

presented as follows.  

Generate initial population randomly in the decision space 

(  max 1 max 1k k k
U u u U u

 
      ) according to the uniform 

distribution: 

 1

0 , 0 , 0
, ,

M

G k G k G
P u u

  
                                                 (19) 

where M  is the total number of populations. Generate N  

random noises based on PDF (2):  1

, 0 , 0
, ,

N

k k G k G
  

 
 . 

For every
, 0

( 1, 2, , )
i

k G
u i M


  in 

0G
P


, we can obtain N  

output  1

, 0 , 0
, ,

N

k k G k G
y y y

 
 according to (1). Then, use the 

following equations to obtain the mean value and entropy of 

output: 

  , 0

1

1 N

i

k k G

i

E y y
N





                                                           (20) 

 
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1 1

1
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N N

i j

k k G k G

i j

Entropy y y y
N

 
 

 

          (21) 

where  
2

2

2

1
, exp

22

x
x 

 

 
  

 

 is the Gaussian kernel 

function, 
2

  represents typical symmetric variance. 

Eventually, the objectives can be obtained according to 

equation (3) and (4): 

      

    

1 1

, 0 1 , 0 2 , 0

1 , 0 2 , 0

,

,

k G k G k G

T
M M

k G k G

J u J u J u

J u J u
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 







                           (22) 

By using the non-domination sorting selection method, the 

Pareto optimal solutions can be obtained. Choose the PDF of 

these solutions as the probability model of the EDA. 

Generate a new set  '1 ' 2 '

, , ,
, , ,

M

k G t k G t k G t
u u uQ

  
    with 

M random members according to the established model. 

Select M  optimal individuals from 
G t

Q P


 to create 
1G t

P
 

 

based on the following principle: 

1) Use the fast non-dominated sorting approach to establish 

the partial ordering relation of population 

( )Q Pop t :
1 2 l

J J J . Denote ( 1)Pop t    , 

and ( 1) ( 1)
n

Pop t Pop t J   , 1, 2, ,n l  until 

 ( 1)Pop t M  .  

2) If  ( 1)Pop t M  , for all members in ( 1)
n

Pop t J  , 

compute their crowding distances using the following 

equation: 

1 1

, 1 1 , 1 1 , 1

1 1

2 , 1 2 , 1

i i i

k G t k G t k G t

i i

k G t k G t

d u J u J u

J u J u

 

     

 

   

         
     

      
   

                  (23) 

Remove the element in ( 1)
n

Pop t J   with the smallest 

crowding distance from ( 1)Pop t  . In the case when there are 

more than one member with the smallest crowding distance, 

randomly choose one and remove it. 

The EDA for problem (5) at k  instant can be summarized as 

follows: 

Step 1 Initialization: Set : 0t  . Generate an initial 

population  1

0 , 0 , 0
, ,

M

G k G k G
P u u

  
    and compute the J -

value of each individual solution  in 
0G

P


. 

Step 2 Modelling: Build the probability model of the Pareto 

optimal solutions in generation 
G t

P


. 

Step 3 Reproduction: Generate a new solution set
G t

P


from 

the model established in Step 2. Evaluate the J -value of 

each solution in Q . 

Step 4 Selection: Select M individuals from
G t

Q P


 to 

create
1G t

P
 

. 

Step 5 Set 1t t  and go to Step 1. 

3.3 Comparison of the two approaches 

Analytical and numerical Pareto control sets for the simple 

example (1) have been obtained in the previous subsections. 
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Both approaches have advantages and disadvantages, which 

can be presented as follows. 

The analytical expression of Pareto optimal control law, 

obtained by   constrained method, gives a general formula 

of two-objective optimal control problem for example (1). 

However, it can be seen that it is so troublesome to solve 

nonlinear equations for such a simple example. When the 

considered system is more complex, the corresponding 

nonlinear programming may not be solvable. Moreover, the 

feasibility of this method depends on the convexity of the two 

objectives. Even those problems are conquered, the following 

limitations still exist: 

1) We need to run many times the analytical control 

algorithm to find several elements of the Pareto optimal 

control set. 

2) It requires domain knowledge about the problems to be 

solved, such as the initial value of upper bound   in (10). 

For the evolution method, estimation of distribution 

algorithm presented in subsection 3.2, the problems exist in 

the analytical approach can be ignored. It can generate the 

whole Pareto control set at one time. Nevertheless, the 

biggest problem, but a crucial step, for this method is that it is 

difficult to establish an adequate probabilistic model and in 

some cases it is possible to create problems that render some 

model building algorithms ineffective. 

4. SIMULATION RESULTS 

Based on the method in Section 3, MOEDA finds members 

of the new generation belonging to the Pareto front at each 

instant (considered time horizon in this simulation is [0s, 

30s]). The best member (the point where both objectives are 

minimized) is found at the end of 20 generations. The 

simulation results are shown in Figs. 1-6.  

The variation of the control input is shown in Fig.1, which is 

composed by the most preferred solution choosing from the 

Pareto front at each instant. The selection criterion is that find 

a compromise between two performance indexes. The 

corresponding response of the closed loop system under the 

proposed multi-objective control strategy is presented in 

Fig.2. It can be seen that the system output can track the set 

point well. In Fig.3 and Fig.4, the Pareto optimal control set 

and Pareto front found by MODEA in the last generation at 

instant 30k  are presented, respectively. The empty zone 

between 
1

0.007J   to 0.018 in Fig. 4 shows that the Pareto 

front is uneven distributed, which may be caused by the 

improper probability model or the small size of population. 

We will focus this problem in the future research. In Figure 5, 

both the range and PDF of tracking error at instant 30k   

are given, it can be seen that the shape of PDF of the tracking 

error becomes narrower and sharper along with the increasing 

generation, which illustrates the dispersions of tracking error 

can be reduced. In order to clarify the improvements, the 

PDFs in initial and final generations are shown in Figure 6. It 

can be shown from Figures 5 and 6 that the proposed 

MOEDA can decrease the uncertainties of the tracking error 

and drive the tracking error approaching to zero. 

5. CONCLUSIONS 

In this paper, the double-objective optimal control problem is 

investigated for a given simple nonlinear and non-Gaussian 

stochastic system. Different from the previous minimum 

entropy control strategy, two criteria, entropy and mean 

square error, are minimized simultaneously instead of 

combining them into a single objective connected by weights. 

In order to solve this problem, both analytical and numerical 

approaches are adopted in this paper. The paper has 

completed the following two tasks: 1) establish the multi-

objective stochastic control algorithm in analytical and 

numerical ways in the entropy framework; 2) illustrate the 

difficulty of formulating the analytical Pareto optimal control 

set. In the future work, the same problem for multivariable 

stochastic systems will be investigated. 
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Fig. 1. Control input.  
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Fig. 2. System response. 
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Fig. 3. Pareto optimal control inputs at instant 30k  . 
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Fig. 4. Pareto front at instant 30k  . 
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Fig. 5. PDF of tracking error at instant 30k  . 

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

e
k

 e
k

 

 

initial

final

 

Fig. 6. PDFs of initial and final generations at instant 30k  . 
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