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Abstract: Optimal process operation is not always guaranteed due to the presence of significant 
uncertainty about the plant models that are used to make decisions, for example in Real time 
optimization, and also due to the differences between control architecture layers which operate on 
different time-scales and use different kind of models. Modifier adaptation is a methodology that 
achieves optimality despite the presence of uncertainty by using plant measurements. This paper presents 
the Nested modifier-adaptation methodology applied to the operation of distillation columns and the 
results obtained are compared with the previous modifier adaptation methodology using dual control 
optimization. 
Keywords: Real Time Optimization, modifier-adaptation, uncertainty, distillation columns, optimization 
problems 

 
1. INTRODUCTION 

 
The management of large scale systems, such as 
petrochemical industry, consists of making decisions that 
have to satisfy process specifications and constraints on many 
variables. In addition, these decisions should be optimal with 
respect to efficiency, economy, environment, etc. This 
problem requires the use of large models and optimization 
methods. 

In modern refineries, optimal operation is typically addressed 
by a hierarchical structure as shown in Fig.1. The upper layer 
is Real-Time Optimization (RTO), at this level, medium-term 
decisions are made on a time scale of hours to a few days by 
considering economical objectives explicitly. The optimum 
operating point obtained by RTO layer is passed to lower-
level controllers that include basic control and multivariable 
predictive control (MPC).  

 
Fig. 1. Hierarchical control structure. 

This structure is required for the management of large and 
complex plants, but optimal operation is not guaranteed since 
process models are inaccurate, so the optimum of the process 
could not be the same as the optimum of the model. In 
addition, layers of control structure use different models for 

making decisions, RTO typically involves nonlinear first-
principles models that describe the steady-state behaviour of 
the plant whereas MPC is based on dynamic linear models. It 
might produce inconsistences between them that affect the 
final result.  

To cope with the uncertainty already mentioned and to drive 
the process to its real optimum point, there have been several 
developments in RTO. The first approach emerged in the late 
1970s as an iterative two-stage algorithm; a parameter 
estimation step (to update uncertain model parameters) 
followed by an economic optimization that is solved to obtain 
new decision variables (Chen and Joseph, 1987). This 
formulation works well only if there is a little structural 
plant-model mismatch and the changing operating conditions 
provide sufficient excitation to estimate the uncertain 
parameters (Yip and Marlin, 2004). Such conditions are 
rarely met in practice, for this reason, the classical approach 
of RTO will not satisfy the necessary conditions of optimality 
(NCO) and the real optimum will not be reached using this 
method. 

Later, Roberts incorporated information regarding plant 
gradients adding an additional modifier to the economic 
optimization stage that results from the difference between 
the gradient of the real cost and the model one (Roberts, 
1979), this method was called “integrated system 
optimization and parameter estimation” (ISOPE). 

In 2002, Tatjewski proved that the convergence to the 
optimum point does not depend on parameter estimation but 
on the equality between the output of the process and the 
model in each RTO iteration (Tatjewski, 2002), for this 
reason, he introduced a new modifier that takes into account 
the difference between these outputs. New modifiers were 
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also defined by Gao and Engell for process dependent 
constraints (Gao and Engell, 2005).   

From these ideas, several methods have emerged; most of 
them require the calculation of experimental gradients, which 
is a difficult task.  

One of these methods is called Dual modifier-adaptation 
(Marchetti et al., 2010) which estimates experimental 
gradients based on the past operating points generated by the 
previous RTO iterations by using the definition of directional 
derivative. To ensure that gradients are obtained accurately a 
new constraint is added to the optimization problem. This 
constraint represents the dual characteristic of the method: 
while the rest of the optimization tries to converge to the 
optimum of the modified model (primal objective), the dual 
constraint ensures that in the next RTO iteration the system 
will have enough energy to estimate the process gradient 
again (dual objective). 

To avoid the calculation of experimental gradients, a recent 
formulation of modifier-adaptation as a nested optimization 
problem has been developed (Navia et al., 2013). This 
method uses a gradient-free algorithm, for example, the 
Nelder-Mead algorithm, to update the modifiers, iterating 
with them over the modified optimization until the optimum 
of the process is found, in this way, gradient estimation and 
the modifier calculus steps are replaced by any other method 
that takes into account the minimization of the cost function 
measured directly from the process.  
The Nelder-Mead algorithm has been chosen because it 
requires less function evaluations per iteration, typically only 
one or two evaluations of the cost function, than other direct 
search methods. This property is very important considering 
that each evaluation implies changing the operation point of 
the real process. 

 
Fig.2. Dual Modifier and Nested Modifier adaptation 
methodology 
 
In this paper, modifier-adaptation methodology has been 
applied to a distillation column simulation using a gradient 
based method Dual modifier-adaptation (DMA) and a 
gradient free method, Nested Modifier-Adaptation (NMA) to 
solve the problem that results from the uncertainty presents in 
RTO of distillation columns. In this example, uncertainties 
are due to the modelling mismatch between the stationary and 
the dynamic model of the process and also in the MPC layer 
that is based on linear dynamic models identified around a 
certain identification point and could be incorrect if the 
process is operated away this point. The simulated distillation 

column is composed by 129 differential equations and 197 
algebraic which supposes a realistic simulation. 
 
The paper is organized as follows. Section two presents the 
description of the case study. Section three shows the use of 
the stationary and dynamic models of the process. The next 
section presents formulation of RTO problem. Section five 
presents the results of the implementation of modifier-
adaptation methodology in two scenarios, under noise-free 
and noisy conditions. Finally, section six gives some 
conclusions. 
 

2. CASE STUDY 

2.1 Process description 

The oil refining process involves several distillation units; 
one of them is the separation of propane in a depropanizer 
column. A depropanizer is a distillation column that is used 
to isolate propane from a mixture containing butane and other 
heavy components.  

Continuous distillation columns use variation of temperature 
and pressure conditions along the height of the column to get 
more volatile component at the top of the column, propane in 
this case, and less volatile component at the bottom of the 
column, that is, butane.  

The control objective for the distillation column is to 
maintain the composition of propane in distillate and bottom 
streams at their desired specifications by controlling head and 
bottom temperatures. These temperatures are obtained by the 
economic optimization carried out in the RTO layer which 
sends the set-points to the Model Predictive Control (DMC) 
layer which is responsible to keep the process under control 
at this target manipulating the reflux to the column and the 

vapour boil up flow rate which are the set points of PID 
controllers. This control structure is shown in Fig.3. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 3. Control structure of a depropanizer distillation column 
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The considered depropanizer is an industrial example located 
in  Repsol YPF Tarragona Refinery (Spain), it has a total 
condenser, a partial reboiler, 37 equilibrium stages, and 
operates at 1.57 106 Pa. The feed mixture enters the 
depropanizer at stage 19 at a flow rate of 468 kmol/h and 
330.42 K. The composition of the feed is 45.55 mol% 
propane, 44.67 mol% butane, and 9.77 mol% ethane. The 
main equations of the dynamic model are presented in the 
next section. 

2.1.1Material balances 
 
The column mass balances in each tray are given by 
equations (1)-(6), where dmol/dt is the variation of the molar 
flow (kmol/h), n is the number of tray, l, v, f are liquid, 
vapour and feed molar flow respectively (kmol/h), lref is the 
molar reflux flow (kmol/h) and B and D are the molar flow of 
bottom and distillate streams. (1) presents the overall mass 
balance around the nth tray, whereas (2), (3), (4) and (5) show 
the mass balances in the feed tray, the top of the column (tray 
k), the bottom (tray 1)and the top accumulator where lacum is 
the flow that comes from the condenser and loverflow is the 
excess liquid that overflows from the accumulator: 

nnnn
n vlvl

dt
dmol

−−+= −+ 11             (1) 

feed_nfeed_n1feed_n1feed_n
feed_n vlvlf

dt
dmol

−−++= −+
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Component mass balances are expressed by (6) - (8) where 
xj,n and yj,n are the composition of component j (butane, 
propane and ethane) in the liquid and vapour streams through 
nth tray (º/1mol): 
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2.1.2 Energy balances  

Energy balances around the nth tray have been modelled as 
steady-state model and are expressed by (9) - (14), where Hv 
is the vapour enthalpy (kJ/kg), hl is the liquid enthalpy 
(kJ/kg) and hj is the specific enthalpy of each component 
(kJ/kg) that depends on the tray temperature Tn (K): 
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2.1.3 Vapour-liquid equilibrium: 

The concentration of vapour in contact with liquid at 
equilibrium yeq j,n in each tray is often expressed by the 
Raoult’s law (15) where the equilibrium constant Kj,n is given 
by the ratio between component j vapour pressure Psat,j  (Pa) 
and the total pressure in the nth tray Pn (Pa): 

njnjeq xKy
nj ,,,

=                         (15) 

n

jsat
nj P

P
K ,

, =            (16) 

4. USE OF THE MODELS 
 

The nonlinear dynamic model described before has been used 
to simulate the distillation process in the system modelling 
and simulation software called EcosimPro. It is composed by 
2056 equations (129 differential equations, 1927 algebraic 
equations) and 2152 variables (1887 explicit, 129 derivative, 
40 algebraic and 96 boundary variables). It is also used to 
identify the prediction model of the DMC controller, a step 
response model. 
 
A nonlinear stationary model of the process is developed 
from the dynamic one and it is used by the RTO layer to 
make decisions. It is formed by 1076 equations and 1076 
variables (928 explicit, 148 algebraic and 7 boundaries). 
 
The uncertainty presents in this process has two sources. One, 
is the modelling mismatch that appears between the 
stationary and the dynamic model. There are parameters that 
have been changed in the stationary model to cause this type 
of uncertainty, such as, equilibrium constants (-2%) , tray 
efficiency (+15%) and the pressure of the reboiler (+80%). 
On the other hand, the DMC controller is based in a linear 
dynamic model of the process which has been identified 
around a certain operating point of head and bottom 
temperatures (Thead = 322.65 K, Tbottom= 366.15 K) and steam 
and distillate mass flows of (S = 5254.32 kg/h, D = 8735.38 
kg/h), far away from this point this model could not be 
correct, it implies more uncertainty as long as decision 
variables are moved from the identification point. 
   

5. RTO PROBLEM FORMULATION 
 

The economic objective of RTO is to maximize the profit 
obtained from producing distillate D (kg/h) with a purity 
specification minimizing the steam consumption S (kg/h). 
Prices PD and PS have been fixed for both streams, 80 €/ton 
for the distillate obtained and 50 €/ton for the steam 
consumed. The objective function is represented by the value 
of J (€/h) calculated by (17) and the constraints over the 
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composition of propane in distillate and bottoms g1 and g2 are 
expressed by (18): 

}{
SPDPJmax sD

T,T bottomshead

−=           (17) 

s.t 

processtheofelmodStationary

025.0)HC(xg
80.0)HC(xg

83B2

83D1
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≥=

        (18) 

 
The number of modifiers required to adapt the RTO problem 
nK is given by (19) where nu is the number of decision 
variables, head and bottom temperatures (Thead, Tbottom), and ng 
is the number of constraints (distillate and bottoms 
composition) so, in our problem nk = 8. 

)1( ++= gugk nnnn           (19) 
The modified problem is expressed by (20) and (21). The 
superscript “_” indicates that the variable is measured from 
the process and the subscript “k-1” is the measurement taken 
in the steady state before: 
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Modifiers λ, γ and ε are given by (22) - (24) and represent the 
difference between experimental and model gradients: 
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The NMA algorithm starts from a given value of the 
modifiers, obtained with any of the methods available to 
calculate the process gradients. After the next steady state is 
reached, modifiers are updated using an unconstrained 
gradient free algorithm, for example the Nelder Mead 
algorithm, that takes modifiers as their decision variables and 
uses the cost function measured from the process as their 
objective function.  
 
However, DMA calculates the experimental gradients by 
using the definition of directional derivative and adding a 
constraint in the grade of excitation of the process to ensure 
sufficient information in the measurements and guarantee 
gradient accuracy. 

4. RESULTS 
 

A performance comparison of DMA and NMA methods in a 
noise-free and noisy scenario has been made. All cases start 
from the same operating conditions, the model optimum 
which corresponds to the optimum reached by the process if 
the RTO problem is not adapted. 

4.1 Noise- free scenario 
 
Fig.4 shows the evolution of the objective function applying 
the previously mentioned algorithms for noise-free scenario. 

Fig.4. Evolution of the objective function for noise-free 
scenario  
 
The above figure shows that the NMA method (blue 
diamonds) converges to the real optimum of the process after 
four iterations; similarly, the DMA (green triangles and red 
squares) reaches the same point by using four with a δ equal 
to 0.1 and three when δ is equal to 0.2. However, the solution 
of the NMA algorithm approximates faster to the optimal 
zone by only using one iteration.  
 
In DMA methods is needed to take into account the grade of 
excitation of the process to ensure sufficient information in 
the measurements and guarantee gradient accuracy. This is 
equivalent to choose the parameter δ, which is very sensitive 
to the evolution to the real optimum of the process as can be 
noted from Fig.4. A bigger value of δ implies an increase in 
the excitation of the system. Table 1 presents a quantitative 
analysis of the performance of the different methods. Values 
in parentheses show the percentage of deviation respect to the 
real optimum. 

Table 1. Comparison of results for noise-free scenario 
 Real 

Optimum 
Model 

Optimum NMA DMA     
(δ= 0.1) 

DMA    
(δ = 0.2) 

Steam 
mass flow 

(kg/h) 
5477.77 5633.14 

(2.84) 
5399.96 
(-1.42) 

5444.82 
(-0.60) 

5475.09 
(-0.05) 

Reflux 
mass 

flow(kg/h) 
8976.44 9840.60 

(9.63) 
8710.32 
(-2.96) 

8833.67 
(-1.59) 

8934.05 
(-0.47) 

Distillate 
mass flow 

(kg/h) 
11197.08 10861.10 

(-3.00) 
11162.01 
(-0.31) 

11208.63 
(0.10) 

11246.07 
(0.44) 

Distillate 
composition 

(º/1) 
0.80 0.82 

(2.25) 
0.80 

(0.00) 
0.80 

(0.00) 
0.80 

(0.00) 

Head 
Temperature 

(K) 
325.66 319.03 

(-2.04) 
325.53 
(-0.04) 

325.87 
(0.06) 

326.37 
(0.22) 

Bottom 
Temperature 

(K) 
374.74 375.70 

(0.26) 
374.46 
(-0.07) 

375.39 
(0.17) 

375.92 
(0.32) 

Cost 
function (€/h) 786.21 756.22 

(-3.81) 
784.51 
(-0.22) 

785.77 
(-0.06) 

785.71 
(-0.06) 
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As can be seen in Table 1, there is an important improvement 
in the cost function from using RTO without modifiers to use 
RTO modified, saving approximately 30 €/h.  
 
The evolution of the composition of the distillate for DMA 
with δ = 0.1 and NMA is shown in Fig 5.  The founded 
solution using any of these methods is always situated in this 
active constraint, XD ≥ 0.80, as expected. 

 
Fig.5. Evolution of the composition of propane in the 
distillate stream. 
 
To reach this composition the temperatures has changed 
according to the references given by the RTO layer following 
the path shown in Fig.6. 

 
Fig.6. Variation of head and bottom temperatures in the 
distillation column. 
 
The steam and reflux flows have been manipulated as Fig.7. 
shows: 

 
Fig.7. Variation of steam and reflux flow rates. 
 

In both methods the number of iterations is not the same than 
the number of RTOs solved or steady states reached. In the 
case of DMA method the total of steady states that is 
necessary to reach the optimal solution is equal to the number 
of iterations plus nu+1 previous states to calculate the 
gradients iterations by using the definition of directional 
derivative. For the NMA algorithm, the amount of steady 
states reached is higher because the construction of initial 
simplex requires nK +1 steady states previous. In addition, 
each iteration of the Nelder Mead Algorithm could require 
several steady state evaluations. This is a disadvantage of this 
type of methods since processes can reach a steady state after 
several hours so, they take a long time before starting to 
work. In this example, steady states are reached every five 
hours when NMA is applied and six hours for DMA because 
the changes in temperature references are more drastic using 
this method.  
 
4.2 Noisy scenario 
 
The described algorithms have been checked under more 
realistic conditions by adding a white noise error in the 
measurements of distillate and bottoms composition of 
propane. The maximum amplitude was a 1% of the total 
range of the mole fraction so the measurement composition 
can be represented as Xi ± 0.005. The random noise has been 
filtered using the average value of the last twenty 
measurements measured every fifteen seconds. 
 
Fig.8 shows the evolution of the objective function applying 
the previously mentioned algorithms under noisy conditions. 

 
Fig.8. Evolution of the objective function under noisy 
conditions 
 
The evolution of the gradient-free based method is quite 
similar to the previous case without noise. However, the 
evolution of the cost function using DMA is different under 
noisy conditions observing that the objective function jumps 
sharply from one iteration to another. This jump is bigger 
with a δ = 0.20 since the bigger this parameter the greater the 
excitation of the system and also, it drives the process to the 
optimum following a less optimal path. 
 
With higher amplitude of noise the resulting operating point 
may be suboptimal or even infeasible; in this case, the NMA 
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method seems to be more robust since it does not require the 
calculation of process gradients (Navia, D. 2013). 
 
Fig.9 shows the evolution of the propane composition 
including the noise error in the distillate applying DMA with 
a parameter δ equal to 0.20 and NMA. Both methods reach 
the active constraint XD ≥ 0.80. 
 

 
Fig.9. Variation of the composition of propane in the 
distillate stream under noisy conditions 
 
Table 2 presents the results obtained with the different 
methods. Values in parentheses show the percentage of 
deviation respect to the real optimum. 

Table 2. Comparison of results for noisy scenario 
 Real 

Optimum 
Model 

Optimum NMA DMA     
(δ= 0.1) 

DMA    
(δ = 0.2) 

Steam 
mass flow 

(kg/h) 
5477.77 5633.14 

(2.84) 
5402.99 
(-1.37) 

5444.27 
(-0.61) 

5475.20 
(-0.05) 

Reflux 
mass 

flow(kg/h) 
8976.44 9840.60 

(9.63) 
8726.91 
(-2.78) 

8808.38 
(-1.87) 

8966.54 
(-0.11) 

Distillate 
mass flow 

(kg/h) 
11197.08 10861.10 

(-3.00) 
11155.80 

(-0.37) 
11240.08 

(0.38) 
11195.80 

(-0.01) 

Distillate 
composition 

(º/1) 
0.80 0.82 

(2.25) 
0.80±0.005 

(0.00) 
0.80±0.005 

 (0.00) 
0.80±0.005 

(0.00) 

Head 
Temperature 

(K) 
325.66 319.03 

(-2.04) 
325.90 
(0.07) 

326.30 
(0.20) 

325.65 
(0.00) 

Bottom 
Temperature 

(K) 
374.74 375.70 

(0.26) 
374.20 
(-0.14) 

375.56 
(0.22) 

375.70 
(0.26) 

Cost 
function (€/h) 786.21 756.22 

(-3.81) 
785.70±2 

(-0.17) 
785.64±8 

(-0.07) 
786.16±3 

(-0.01) 
 
The results presented in Table 2 show that the applied 
methods reach an operation point near to the real optimum 
being the final cost function better in the case of DMA, 
however, it is observed that its variability is higher than using 
NMA. 

 
5. CONCLUSIONS 

 
In this paper, two types of modifier-adaptation methodology 
in the context of RTO have been considered, gradient-free 
and gradient-based algorithms. These methods have been 
implemented in a realistic example as a depropanizer 
distillation column with a hierarchical control structure that is 

part of the refining process in all refineries (RTO, DMC and 
PID layers).  
 
Both approaches are able to reach an operating point close to 
the real optimum starting from the same situation that is the 
model optimum, which is equivalent to solve RTO without 
modifiers. This ability does not change under noisy 
conditions, so both methods seem to be robust enough for this 
situation. However, NMA is less sensitive to noise during the 
evolution to optimal steady state since it does not require the 
calculation of experimental gradients.  
 
To conclude, it has been proved that modifier-adaptation 
methodology work well with few decision variables but, the 
difficulty of these methods increase with the number of 
inputs because of the estimation of experimental gradients 
and the increase in the number of modifiers that are needed. 
The application of these methods in reality is also unpractical 
due to the necessity of reaching a steady state in each 
iteration and the no guarantee of satisfying constraints during 
the transient states , so trying to use dynamical optimization 
to avoid these problems is an issue that should be considered 
in future work. 
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