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Abstract: Maintaining uniformly satisfactory control performance of an MPC scheme in the
face of changing operating conditions is a di¢ cult task. An adaptive MPC scheme that directs the
output towards a reference and simultaneously injects a probing signal to get more information
about the system for better model identi�cation appears to be ideally suited for achieving
this goal. In this work, taking motivation from the dual control problem originally developed
by Feldbaum [1960], a MIMO adaptive dual MPC (adaptive DMPC) formulation has been
proposed, which does not require external probing signals to improve the model parameter
estimates. The objective function of the MPC is modi�ed to include terms that ensure that
su¢ cient excitation is injected into the system while performing the control tasks. The e¢ cacy
of the proposed adaptive DMPC formulation is evaluated by conducting experimental studies on
the benchmark heater mixer system. The experimental results demonstrate that the proposed
formulation is able to inject probing inputs of small magnitude while meeting the desired servo
and regulatory control objectives.
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1. INTRODUCTION

Over the last three decades, model predictive control
(MPC) has emerged as the most e¤ective multivariable
control scheme and has been used to control a wide variety
of processes (Qin and Badgwell [2003]). The quality of the
model has a large e¤ect on the closed loop performance of
a linear MPC scheme. Maintaining a high quality model
so as to achieve good control performance in the face of
changing operating conditions poses a di¢ cult challenge
in the process industry. This problem has been dealt with
mainly by (a) incorporating robustness in the controller
design (b) employing multiple model-based controller de-
signs and (c) updating the parameters of the linear predic-
tion model either intermittently or on-line (Morari and Lee
[1999]). While (c) appears to be an attractive option, due
to various constraints, such as the time required for model
identi�cation and the cost associated with the model
identi�cation exercise, the model updates are carried out
infrequently. If it is desired to update model parameters
online, then a variety of recursive least square algorithms
are available in the system identi�cation literature (Soder-
strom and Stoica [2001], Åström and Wittenmark [2008]).
These approaches, though extensively studied in the sys-
tem identi�cation and adaptive control literature, have
not received the attention they deserve in the industrial
applications of MPC. Qin and Badgwell [2003], in their
review of industrial MPC, noticed that only two adaptive

MPC algorithms had reached the marketplace by 2003
despite strong market incentive for self-tuning MPC.

The observed lack of interest in employing these AMPC
formulations on industrial systems can be attributed to the
reliability of on-line parameter estimation schemes, which
are at the heart of any AMPC strategy. Ydstie [1997]
has indicated that instability of the parameter estimator
or the parameter drift is an important issue that needs
to be addressed while developing an adaptive control
scheme. This drift can be avoided by adding deliberate
perturbations to the manipulated inputs.

In the present work we focus on maintaining high qual-
ity parameter estimates by deliberately letting manipu-
lated inputs perturb the plant. The persistent excitation
guarantees the convergence of the parameter estimates.
However, in practice, the perturbation signal are often
chosen through some heuristic means and this can lead
to excessive excitation. Ideally, an optimal controller must
direct the output towards a reference and simultaneously
inject a probing signal to get more information about the
system for improved model identi�cation, so that bet-
ter control can be achieved in the future. This type of
controller is referred to as a dual controller. In the dual
control formulation, external persistent excitation is not
required because the controller itself optimally excites the
process when needed. The concept of dual control was �rst
introduced by Feldbaum [1960] as a result of an attempt
to formulate optimal control problems which would give
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an adaptive control law. This dual character of the control
law refers to the two tasks of directing the output towards
speci�ed values and investigating the plant for learning.
That is, the controller �nds a balance between control
and excitation. A dual controller optimally probes the
system when the model is poor, which generates su¢ cient
excitation to improve the model and, in turn, the closed
loop performance.

Larsson et al. [2013] developed an MPC that experiments
with the plant for identi�cation processes while simulta-
neously controlling the plant. The excitation is introduced
through a constraint on the predicted information ma-
trix. A similar MPC with dual features was developed by
Mara�oti et al. [2013]. The excitation is here guaranteed
by requiring that the �rst element of the open-loop opti-
mal input sequence be persistently exciting. µZáµceková et
al. [2013] suggested an approach where a standard MPC
problem is solved �rst, followed by a procedure for �nding
an optimal perturbation to the nominally optimal input so
that the resulting control increases the minimal eigenvalue
of the information matrix.

Adaptive MPC with dual control features has emerged
as an attractive approach to the problem of control loop
performance degradation due to model plant mismatch.
Recently, Heirung et al. [2012, 2013] developed a dual
control formulation based on certainty-equivalence adap-
tive MPC. In their most recent approach the �rst stage
cost is reformulated from a stochastic expression into a
deterministic one. The same expression is used for the
next stage cost in order to ensure that excitation is re-
warded by the controller. The result is a level of excitation
that excites the process enough to improve the quality
of the parameter estimates and thereby improves closed
loop performance. However, they considered only single-
input single-output (SISO) systems subjected to zero-
mean white disturbances; an extension to the more general
MIMO case is not obvious. Since the ability to handle
multivariable systems are among the main advantages of
MPC in industrial applications, we here extend the for-
mulation proposed by Heirung et al. [2013] to deal with
multiple input multiple output (MIMO) systems subjected
to colored unmeasured disturbances. Our proposed exten-
sion is based on multiple MISO ARMAX models, which
are better suited for colored disturbances. The e¢ cacy
of the proposed adaptive dual MPC is evaluated through
experimental studies on a heater-mixer system (Thornhill
et al. [2008]).

This paper is organized into four sections. In the next
section, development of the proposed AMPC formulation
motivated by the dual control approach is presented. The
analysis of the experimental results is presented in Section
3. The major conclusions reached from the analysis are
summarized in Section 4.

2. A DUAL CONTROL APPROACH TO ADAPTIVE
MPC

In this section we extend the MPC-based approach to dual
control proposed by Heirung et al. [2013] to handle MIMO
systems subjected to unmeasured stochastic disturbances.
Heirung et al. [2013] used an ARX model to formulate
an algorithm for adaptive dual MPC for SISO systems.

The proposed extension can in principle be carried out
using MISO or MIMO versions of the ARX model, but the
conventional ARX models have certain limitations when
the system under consideration is subjected to colored
unmeasured disturbances (Soderstrom and Stoica [2001]).
For example, consider a system governed by a SISO
ARMAX model of the form

y(k) =
B(q�1)

A(q�1)
u(k) +

C(q�1)

A(q�1)
e(k)

where e(k) is a zero mean white noise sequence and C(q�1)
has all roots inside the unit circle. An equivalent ARX
model for this system can be obtained by rearranging the
ARMAX model as

y(k) =
B(q�1)=C(q�1)

A(q�1)=C(q�1)
u(k) +

1

A(q�1)=C(q�1)
e(k)

and by truncating eA(q�1) = A(q�1)=C(q�1) and eB(q�1) =
B(q�1)=C(q�1) after the coe¢ cients of eA(q�1) and eB(q�1)
become insigni�cant. The truncation order depends on the
locations of the roots of C(q�1): If C(q�1) has root(s)
close to the unit circle, then an ARX model of high or-
der is needed to adequately capture the noise dynamics.
Thus, even for a SISO system, it may be necessary to
estimate a relatively large number of model parameters
to adequately capture the system dynamics when an ARX
structure is used to model a system subjected to colored
noise. This di¢ culty is further compounded for a MIMO
system. A model with a large number of parameters can
lead to di¢ culties with on-line parameter estimation as
a large data set is needed to keep the variance errors
small (Muddu et al. [2009]). In other words, the plant
needs to be perturbed for a longer time to estimate the
parameters accurately. From the viewpoint of parsimony
of model parameters, a better option is to employ MISO
models with either ARMAX or Box-Jenkins (BJ) structure
(ref. Ljung [1999]). In this work we propose to capture
the system dynamics using an ARMAX model structure
to keep the development simple.

2.1 ARMAX Models and On-line Parameter Estimation

Consider a MIMO system with r outputs and m manipu-
lated inputs. The system under consideration is assumed
to have a local linear approximation in the neighborhood
of a desired operating point such that the approximate
linear model is stably invertible. We propose to model the
system as r MISO ARMAX models of the form

Ai(q
�1)yi(k) =

mX
j=1

Bij(q
�1)uj(k) + Ci(q

�1)ei(k) (1)

where i = 1; :::; r: Here, Ai(q�1) , Bij(q�1) and Ci(q�1)
are polynomials in the backward shift operator q�1 and
{ei(k)} represents a zero mean white noise sequence. To
simplify the notation, the index i is dropped in this
subsection and the i�th MISO model is represented as

A(q�1)y(k) =
mX
j=1

Bj(q
�1)uj(k) + C(q

�1)e(k) (2)

For the purpose of online parameter estimation, this model
can be expressed as

y(k) = �T (k � 1)�(k � 1) + e(k) (3)
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where
� = [a1; :::; an; b11; :::; b1n; :::; bm1; ::; bmn; c1; :::; cn]

T (4)
is a vector containing the MISO model parameters and
�(k � 1) = [�y(k � 1); :::;�y(k � n); u1(k � 1);

:::; um(k � n); e(k � 1); :::; e(k � n)]T (5)
represents the regressor vector, which consists of inputs,
outputs, and noise inputs from the past.
Remark 1. For the sake of simplifying the notation we
assume that the orders of A(q�1); Bj(q�1), and C(q�1)
are equal (cf. equation (4)). However, the orders of the
Bj(q

�1) and C(q�1) polynomials may in general di¤er,
and they can be of any (positive) order less than or equal
to the order of A(q�1).

A di¢ culty in using (5) for recursive parameter estima-
tion is that the noise sequence {e(k)} is unknown. This
di¢ culty can be alleviated if we employ the extended
least square (ELS) approach (also known as pseudo-linear
regression or approximate ML method) for the model para-
meter estimation (Soderstrom and Stoica [2001], Åström
and Wittenmark [2008]). In this approach, e(k) is replaced
by the estimated prediction error. Thus, the regressor
vector is in the ELS approach modi�ed to
'(k � 1) = [�y(k � 1); :::;�y(k � n); u1(k � 1);

:::; um(k � n); "(k � 1); :::; "(k � n)]T (6)
where e(k � i) has been replaced by "(k � i), which is the
past innovations. Here, the innovation "(k) at instant k is

"(k) = y(k)�'T (k � 1)�̂(k � 1) (7)

where �̂(k�1) represents the parameter estimate obtained
at instant (k�1) using the ELS method. The ELS method
can be summarized as

�̂(k) = �̂(k � 1) + L(k)"(k) (8a)
L(k) = P(k � 1)'(k � 1)

(�+'T (k � 1)P(k � 1)'(k � 1))�1 (8b)

P(k) = (I � L(k)'T (k � 1))P(k � 1)=� (8c)
where L(k) represents the Kalman gain matrix, P(k)
represents a matrix that is proportional to the covariance
of the estimated parameters (referred to as the covariance
matrix in the rest of the text) and � with 0 < � � 1
represents the forgetting factor.

To carry out model identi�cation, r MISO estimators are

used in parallel. Thus, we obtain the estimates �̂
(i)
(k)

and the corresponding covariance matrices P(i)(k) for
i = 1; 2; :::; r, which are then used in the proposed adaptive
dual MPC (DMPC) formulation. Let Y(k) denote the set
of inputs and outputs recorded up to time instant k; i.e.,

Y(k) � fu(k);u(k � 1); :::;y(k);y(k � 1); :::g
Based on the ELS parameter estimates, let the one step
ahead prediction for the model be

byi(k + 1) = E fyi(k + 1)jY(k)g = h'(i)(k)iT �̂(i)(k)
Here, E (�) represents the expectation operator. To facili-
tate the development of the dual controller we further as-
sume that the ELS algorithm asymptotically generates un-
biased (or consistent) estimates of the model parameters.
A su¢ cient condition for the convergence of the pseudo-

linear regression type methods for an ARMAX model (un-
der the ideal conditions) can be found in Soderstrom and
Stoica [2001]. The convergence of the ELS estimates to
the true parameters implies that the innovation sequence
{"(k)} asymptotically converges to {e(k)}. In practice,
however, the model error may approach a very small value
if the model order is chosen appropriately.

2.2 An Objective Function for Dual MPC

The objective for MPC-based dual control can be stated
as �nding the control sequence fu(k);u(k + 1); :::g that
minimizes

J1 = E

(
1P

j=k+1

�
rP
i=1

wiEi(j)
2 +

rP
i=1

�iui(j � 1)2
�
jY(k)

)
(9)

given data obtained up to time k; where
Ei(j) = ri(j)� yi(j) (10)

Here, wi > 0 and �i � 0 are weighting parameters and r(j)
represents the output reference or the setpoint vector at
the future time instant j. Since we assume that the system
is stably invertible we can set �i = 0 for all i and work
with the control objective

J1 = E

(
1P

j=k+1

�
rP
i=1

wiEi(j)
2

�
jY(k)

)
(11)

The main di¢ culty in using this objective function is
the lack of a model that can accurately predict future
outputs y(k + j): Thus, the objective function needs to
be reformulated for simultaneous probing and control. To
achieve this we �rst rewrite the objective function as

J1 =E

(
k+2P
j=k+1

�
rP
i=1

wiEi(j)
2

�
jY(k)

)
+

E

(
1P

j=k+3

�
rP
i=1

wiEi(j)
2

�
jY(k)

)
(12)

Now, consider the �rst term, J1 =
Pr

i=1 wiJ1i where

J1i = E
�
Ei(k + 1)

2jY(k)
	

(13)
By adding and subtracting the model byi(k + 1); we can
rewrite equation (13) as

J1i = E
n
(ri(k + 1)� byi(k + 1) + �yi(k + 1))2 jY(k)o

(14)
�yi(k + 1) = byi(k + 1)� yi(k + 1) (15)

Dropping the conditional expectation notation for the sake
of simplicity and using the assumption that "i(k)! ei(k)
asymptotically, the term J1i can be expressed as

J1i = E
�
(ri(k + 1)� byi(k + 1))2 + (�yi(k + 1))2
�2 (ri(k + 1)� byi(k + 1)) (�yi(k + 1))

�
(16)

where

�yi(k + 1) =
h
'(i)(k)

iT
��(i)(k)� "i(k + 1)

and ��(i)(k) = �̂
(i)
(k)��(i)(k): The �rst term is determin-

istic and the third term is zero since the ELS algorithm is
assumed to be an asymptotically unbiased estimator; i.e.,

E
h
��(i)(k)

i
= 0 and E ["i(k + 1)] = 0
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Since ��(i)(k) and "i(k + 1) are independent, using

cov
h
��(i)(k)

i
= P(i)(k) and cov ["i(k)] = �2i

we can write

J1i =

�
ri(k + 1)�

h
'(i)(k)

iT
�̂
(i)
(k)

�2
+
h
'(i)(k)

iT
P(i)(k)'(i)(k) + �2i

given Y(k): Note that �i is not a known quantity, but since
it appears as a constant term in the objective function
its value does not matter and can be treated as zero. To
achieve the probing e¤ect, the same reformulation that is
used to approximate the cost function is used in the second
stage; i.e.,

J2i '
�
ri(k + 2)�

h
'(i)(k + 1)

iT
�(i)(k + 1)

�2
+
h
'(i)(k + 1)

iT
P(i)(k + 1)'(i)(k + 1) + �2i

We can further simplify J1 by truncating the in�nite hori-
zon to some �nite number N . The modi�ed approximate
cost function can be expressed as

JN '
k+1P
j=k

rP
i=1

�
wi

�
ri(j + 1)�

h
'(i)(j)

iT
�(i)(j)

�2
+wi

�h
'(i)(j)

iT
P(i)(j)'(i)(j) + �2i

��
+E

(
k+NP
j=k+2

�
rP
i=1

wi (Ei(j + 1))
2

�
jY(k)

)
Since we intend to use MPC, we further approximate the
last term in JN using the model predictions instead of
expected values of the outputs, which yields a cost function

VN =
k+1P
j=k

rP
i=1

�
wi

�
ri(j + 1)�

h
'(i)(j)

iT
�(i)(j)

�2
+ wi

�h
'(i)(j)

iT
P(i)(j)'(i)(j) + �2i

��
+

(
k+NP
j=k+2

�
rP
i=1

wi (ri(j + 1)� byi(j + 1jk))2�) (17)

Note that the covariance matrices {P(i)(k+1) : i = 1; :::; r}
and future regressor vectors {'(i)(k + 1) : i = 1; :::; rg
are functions of u(k). As a consequence, the modi�ed
optimization objective rewards inputs that reduce the
future covariance P(i)(k+1): In other words, the controller
injects inputs that improve the quality of the parameter
estimates and thereby reduce the parameter uncertainty.

2.3 Output Prediction

In the proposed adaptive MPC formulation, the identi�ed
models are used for predicting future outputs. Consider a
scenario at the k�th sampling instant, when given the N
future inputs

Uk � fu(kjk);u(k + 1jk); ::::u(k +N � 1jk)g
we want to predict outputs over time window [k+1; k+N ]:
Since the future parameter vectors and future innovations

are unavailable at time k we have to make further sim-
plifying assumptions to carry out predictions using the
proposed model.

� Given the information at time k, the expected value of
the unknown parameters in model i is �̂

(i)
(k). Hence,

the model outputs are predicted with

�̂
(i)
(k + jjk) = �̂(i)(k) for j > 0 and for all i (18)

� Consistent with conventional MPC formulations, we
assume the following for the future innovations for
output prediction:

"i(k + j + 1) = "i(k + j) for i = 1; 2; :::; r (19)

where j = 0; 1; :::; N � 1: However, a di¢ culty with
this approach is that the sequence {"i(k)} contains
high frequency noise, which can lead to noisy pre-
dictions. Thus, to eliminate the e¤ect of the high
frequency noise on the predictions and limit the fre-
quency range of the model plant mismatch, we use
a unity gain innovation �lter for each innovation se-
quence (Muddu et al. [2009]):

"f;i(k) = �i"f;i(k � 1) + (1� �i)"i(k) (20)

for i = 1; :::; r and with 0 < �i < 1 being tuning
parameters. Thus, the future innovation terms in
'(i)(k + j) are estimated as

"i(k + jjk) = "f;i(k) for j > 0 (21)

With the above simplifying assumptions, the predicted
output for the i�th MISO ARMAX model at time k + j
can be expressed

byi(k + j + 1jk) = h'(i)(k + jjk)iT b�(i)(k) (22)

where the predicted regressor vector isb'(i)(k + jjk) = [�byi(k + jjk):::� byi(k + 1jk) � yi(k):::
� yi(k + j � n+ 1) u1(k + jjk)::
:::um(k + jjk):::::um(k + j � n)
"i(k + jjk):::"i(k + j � n)]T (23)

for j = 0; 1; :::; N �1 and i = 1; 2; :::; r. Note that "i(k+ j)
for j � 0 are available at instant k and are directly used
in formulating '(i)(k + jjk):

2.4 Adaptive DMPC Formulation

Based on the modi�ed cost function (17) and the proposed
prediction model (22), an adaptive MPC scheme is pro-
posed as follows

min
Uk
VN (k) =

k+NX
j=k+1

E(j)TWEE(j)

+
k+1X
j=k

rX
i=1

wi

h
'(i)(jjk)

iT
P(i)(j)'(i)(jjk)

+
k+NX
j=k+3

�uT (j)W�u�u(j) (24)

where �u(j) = u(j)� u(j � 1); E(j) = r(j)� by(jjk) and
ŷi(jjk) =

h
'(i)(j � 1jk)

iT
�̂
(i)
(k)
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for i = 1; :::; r, subject to the following constraints

P(i)(k + 1) =
h
I� Li(k + 1)'(i)(k))

i
P(i)(k)

Li(k + 1) = P
(i)(k)'(i)(k)�h

1 +'(i)(k)TP(i)(k)'(i)(k)
i�1

for i = 1; 2; :::; r

�umin � �u(j) � �umax
�u(j) = 0; for j = k +Nc; ::; k +N � 1

Here, Nc is the control horizon andWE = diag[w1; :::; wr]
is the tracking error weighting matrix. Note that we in-
troduced an input-move suppression term with a corre-
sponding tuning matrix W�u � 0, and that this can be
used to adjust the intensity of the probing e¤ect. That
is, the weighting matrix W�u can be used to counteract
excessively large input changes that can otherwise occur
whenP(i)(k) is large. Also note that the proposed adaptive
DMPC formulation results in a constrained non-convex op-
timization problem that has to be solved with a nonlinear
programming (NLP) solver.

3. EXPERIMENTAL EVALUATION

We now demonstrate an experimental evaluation of the
proposed adaptive DMPC algorithm carried out using
the benchmark Continuous Stirred Tank Heater (CSTH)
system (Thornhill et al. [2008]) at the Automation Lab in
the Chemical Engineering Department at I.I.T. Bombay.

3.1 Plant Description

The CSTH setup consists of two tanks in series as shown
in Fig. 1. The cold water �ow (F1) from the reservoir
is heated using a 4 kWH heating coil in Tank 1. The
water level in Tank 1 remains constant and the hot water
over�ows to Tank 2 where it is mixed with cold water �ow
F2. The water in Tank 2 can be heated using another 3.5
kHW heating coil. To make the system more complex and
interactive, a recycle �ow (FR) is set up from the bottom
of Tank 2 to Tank 1 using a metering pump. Cold water
in�ows to both the tanks can be manipulated using pneu-
matic control valves CV-1 and CV-2. Also, the heat input
to both heaters can be manipulated using two thyristor
power controller (TPC) systems, which are driven by 4-20
mA current inputs. From a control viewpoint the CSTH
is a MIMO system with three manipulated inputs (4 to
20 mA current inputs to TPC 1 (u4), TPC 2 (u5), and
to CV-2 (u2)), and three controlled outputs (temperature
in Tank 1 (T1), temperature in Tank 2 (T2) and water
level in Tank 2 (h2)). The current input to CV-1, which
can be used to manipulate the cold water �ow to Tank 1,
and the temperature of the cold water in�ows both act as
unmeasured disturbances. This setup is controlled with a
PC (with an Intel core i5 processor and 8 GB RAM) using
a combination of LabView version 2012 and MATLAB.
A sampling interval of 5 seconds is used in this work for
carrying out identi�cation and control studies.

In the experimental study, the level in the second tank (h2)
is maintained at 50 % (i.e., 20 cm) using a PI controller
(kc = 1:723; � I = 2 min), which manipulates current
input to control valve (CV-2). The inputs to CV-1 and

Fig. 1. Schematic diagram of CSTH.

the recycle �ow metering pump are kept constant at 50 %
levels. Thus, for the evaluation of the adaptive DMPC, the
system is reduced to a 2� 2 con�guration with u4 and u5
as manipulated inputs and the tank temperatures (T1 and
T2) as the controlled outputs.

3.2 Closed Loop Studies

Before implementing the proposed adaptive DMPC it is
necessary to decide a suitable ARMAX model structure.
We perturbed the CSTH system in open loop by simulta-
neously introducing low frequency pseudorandom binary
sequences (PRBS) in the heating inputs to the tanks. We
used the resulting data to identify an ARMAXmodel using
the System Identi�cation Toolbox in MATLAB. Using �rst
order MISO ARMAX models were su¢ cient for ensuring
that the innovation sequences {ei(k)} are white noise for
each output. However, a minimum of 9�th and 12�th order
MISO ARX models were needed to obtain white noise
innovation sequences for T1 and T2, respectively. This
may be attributed to fact that the C polynomials in the
identi�ed MISO ARMAX models have a pole close to 0.88.

We developed and implemented the adaptive DMPC on
the CSTH system using two MISO second order ARMAX
models. Each of these ARMAX models is of the form

(1 +

2X
i=1

aiq
�i)y(k) =

2X
j=1

 
2X
i=1

bjiq
�i

!
uj(k)

+(1 +
2X
i=1

ciq
�i)e(k) (26)

The tuning parameters used for the adaptive DMPC
formulation are set to N = 60; Nc = 6; �i = 0:9 for all
i;WE = I andW�U = diag [ 2 1 ] and

umin = [4 4]
T
; umax [20 20]

T

The initial model identi�ed from the open loop data was
used to initialize the parameter estimators and the initial
covariance matrices were selected as P(1)(0) = P(2)(0) =
104I: We deliberately set the initial covariances to high
numbers and the adaptive DMPC was started when the
parameter estimates stabilized and the covariances re-
duced signi�cantly. The system was controlled using the
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Fig. 2. CSTH Experiment : Setpoint Tracking.
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Fig. 3. CSTH Experiment : Manipulated Inputs.

conventional (non-adaptive) MPC that the initial model
employed for predictions prior to starting the adaptive
DMPC. The adaptive DMPC was implemented using the
constrained NLP solver �fmincon� from the MATLAB Op-
timization Toolbox. Average computation time for the
adaptive DMPC computations at each sampling instant
was found to be 0.5482 seconds.

The closed loop experiments consist of (a) a sequence
of positive and negative setpoint changes in both tank
temperatures (a servo problem) and (b) a large magnitude
step change in the cold water in�ow to Tank 1 (a regulatory
problem). Performance of the adaptive DMPC for the
servo problem is presented in Fig.2 and the corresponding
pro�les of the manipulated inputs are presented in Fig.3.
As shown in Fig.2, the controller is able to achieve quick
transitions to the desired setpoint and settle the reference
temperatures without any o¤set. The probing e¤ect of the
proposed adaptive DMPC formulation is visible in Fig.3,
where time-varying low-amplitude perturbations are intro-
duced after switching to adaptive DMPC from conven-
tional MPC. These perturbations of varying intensity are
continuously introduced throughout the experiment with
adaptive DMPC. Since the high-frequency excitation may
increase actuator wear, an operator may consider turning
o¤ the dual feature if it is deemed unnecessary based
on some performance criterion. Since the high-frequency
excitation may increase actuator wear, an operator may
consider turning o¤ the dual feature if it is deemed unnec-
essary based on some performance criterion. Note that the
manipulated input pro�les generated by the conventional
MPC are smoother and without any such excitation.

4. CONCLUSION

In this work, we develop a MIMO adaptive DMPC using
ARMAX models. The e¢ cacy of the proposed control
scheme is evaluated by conducting experimental studies on
the benchmark heater-mixer setup. We show that despite
the complexity of the algorithm, we are able to implement
the controller for real-time control with a fairly standard

implementation and achieve fast control input computa-
tion. Analysis of the experimental results reveals that if
the tuning parameters are selected carefully, the proposed
adaptive DMPC is able to inject input perturbations that
are su¢ cient for maintaining the health of the on-line
parameter estimators. When the system is operating at
a �xed setpoint, these �uctuations are found to be of
variable and low amplitudes, thereby introducing minimal
disturbance in the plant operation. Though initial experi-
mental studies have shown promising results, a number of
issues remain to be resolved. The ARMAX structure leads
to nonlinear parameter models and the ELS algorithm is
a nonlinear estimator. Thus, alternate model structures
that are parsimonious in parameters are currently being
examined for cases in which the system is subjected to
correlated unmeasured disturbances.
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