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Abstract: A recursive probabilistic principal component analysis (PPCA) based data-driven
fault identification method is proposed to handle the missing data samples and the mode tran-
sition in multi-mode process. This model is recursively obtained by using the increasing number
of normal observations with partly missing data. First, based on the singular value of historic
data matrix, the whole process is divided into different steady modes and mode transitions.
For steady modes, the conventional PPCA is used to obtain the principal components, and to
impute the missing data. When the mode is a mode transition, the proposed recursive PPCA is
applied, which can actually reveal the between-mode dynamics for process monitoring and fault
detection. After that, in order to identify the faults, a contribution analysis method is developed
and used to identify the variables which make the major contributions to the occurrence of faults.
The effectiveness of the proposed approach is demonstrated by the Tennessee Eastman chemical
process. The results show that the presented approach can accurately detect abnormal events,
identify the faults, and it is also robust to mode transitions.

Keywords: Multi-mode, mode transition, missing data, recursive probabilistic PCA, Fault
detection and identification.

1. INTRODUCTION

Since 1990s, multivariate statistical methods, such as prin-
cipal component analysis (PCA), avoid of directly mod-
elling of complex systems, have been successfully applied
to the monitoring and fault diagnosis in many industrial
processes (Chiang et al. (2001)). However, often caused by
a sudden mechanical breakdown, sensor failure or malfunc-
tion occurred in data acquisition system, partly missing
data or irregularly sampled data is a common phenomenon
in industrial practice. Up to now, the missing data sample
problem is being a major challenge of most of existing
monitoring approaches. The process monitoring and fault
detection techniques with partly missing measurements
have not been well studied.

Based on a Gaussian latent variable model, probabilis-
tic principal component analysis (PPCA) method, whose
parameters can be determined by the eigenvalue decom-
position of the measurement sample covariance matrix or
the expectation-maximization (EM) algorithm (Kim and
Lee (2003)), has been regarded as an efficient method
for handling missing data and forming a mixture model.
However, PPCA often follows the unimodal distribution
assumption of the operating data, which is similar to PCA.
In practice, mode transition often takes place in some
of industrial processes because of different manufactur-
ing strategies, various product specifications, and so on.
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Therefore, PPCA is not adaptive to multi-mode process
in general, since it can lead to the frequent false alarms
in the case of the operation mode is transiting from one
mode to another.

Recently, there are many literature reported on the condi-
tional monitoring for multi-mode process which consider
the case of changing setting parameters. In (Hwang and
Han (1999)), a multi-level clustering PCA method was
proposed to solve the multi-mode problem in Tennessee
Eastman (TE) process. A Gaussian mixture model and
PCA method have been combined together, which can
improve the efficiency of modeling the whole process (Xu
et al. (2010)). After that, Xu also proposed a mixture
PCA model to capture normal distribution of production
process (Xu et al. (2011)). These methods did not con-
sider the mode transition in multi-mode process. To solve
this problem, Zhao has proposed a PCA-based modeling
and monitoring strategy for multi-mode processes with
between-mode transitions. A mode-common subspace for
all modes data is separated at first. Then, the operating
data for each mode is projected to the mode-common
subspace and a mode-special remaining subspace. A mode
transition identification algorithm was designed to detect
the abnormal behaviors (Zhao et al. (2010)). Wang iden-
tified the stable modes, mode transitions, and noise at
first. Then, according to the data distribution, a proper
multivariate statistical algorithm was chosen to detect the
fault for each mode (Wang et al. (2012)). Zhang proposed a
recursive PCA to separate the multi-modes by taking into
account of the cross-mode correlations and extracting the
common information between the different modes(Zhang
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et al. (2012)). And then, to improve the monitoring per-
formance of the between-mode, Zhang extracted the com-
mon subspace form the different modes and between-mode
transition which was been applied to conditional monitor-
ing for the electro-fused magnesia furnace(Zhang and Li
(2013)). And then, this method has also been generalized
to detect the fault of non-gaussian processes (Zhang et al.
(2013)).

It should be noted that all of aforementioned methods
are the improvements of PCA approaches, which implies
that the performance and efficiency of those approaches
are still susceptible to the influence of commonly occurred
interference factors such as stochastic noise and missing
data (Wang and Li (2012); Xia et al. (2013); Elshenawy
et al. (2009)). To overcome monitoring problems both on
data missing and mode transition in multi-mode process,
this paper proposed a recursive PPCA method within a
probabilistic framework. The historical data are divided
into serval operation modes and the mode transitions be-
tween them based on the singular value recognition. Than,
the PPCA method is used to model the steady modes and
the recursive PPCA method is used to model the mode
transition. The missing data can also be estimated in a
probabilistic framework. After that, a Mahalanobis con-
tribution analysis based on the recursive PPCA method is
proposed for fault detection and diagnosis. The efficiency
of our approach is illustrated through the TE chemical
process, and the result shows that the presented approach
can accurately detect abnormal events and identify the
faults in the multi-mode system.

2. MODELING OF MULTI-MODE SYSTEM

2.1 PPCA and Recursive PPCA Algorithm

Assume that the latent variable model relates a d-
dimensional observed variable y to a q-dimensional score
vector of latent variable x , which implies:

y = Wx+ µ+ ε (1)

where W ∈ Rd×q a linear transformation matrix which is
composed of the eigenvectors of sample covariance matrix
corresponding to the q(q < d) largest eigenvalues, µ is
the mean of the data y, and ε is the noise term which
is assumed to be Gaussian and isotropic, ε ∼ G(0, σ2I).
Then, the conditional probability distribution y|x is also
Gaussian, which is follow

y|x ∼ G(Wx+ µ, σ2I) (2)

Furthermore, by adopting a Gaussian prior distribution
for the scores variables x, x ∼ G(0, I), then, the marginal
distribution of y is Gaussian in the form of y ∼ G(µ,C)
, where the covariance matrix is C = WWT + σ2I.
Therefore, the PPCA method provides a way to constrain
the model complexity via the selection of q, and the model
parameters can be estimated by the maximum likelihood
algorithm (Qu et al. (2009); Li et al. (2013)).

When the process transit from one mode to another, the
recursive PPCA method can update the model parameters
in a recursive way. Suppose that the historical output
data can be denoted as Yk = [y1, y2, ..., yk]

T , where yi ∈

Rd, (i = 1, ..., k). If a new observation yk+1 is available,
then the mean value is changed to

µk+1 =
k

k + 1
µk +

1

k + 1
yk+1 (3)

Define a variable as

∆µk+1 = µk+1 − µk (4)

then, the covariance matrix Sk+1 can be calculated recur-
sively as

Sk+1 =
1

k

k+1∑
i=1

(yi − µk+1)
T (yi − µk+1) (5)

Notice that Sk = 1
k−1

∑k
i=1(yi − µk)

T (yi − µk), (5) can
be reformulated as

Sk+1 =
k − 1

k
Sk +∆µk+1∆µT

k+1

+
1

k
(yk+1 − µk −∆µk+1)(yk+1 − µk −∆µk+1)

T
(6)

Equation (6) indicates that Sk+1 is two rank-one modifica-
tions from Sk. Consequently, the above update procedure
has to be performed twice to estimate the eigenvalues
and eigenvectors matrix for the current covariance matrix.
After that, the parameters of the proposed PPCA model
can be estimated by the observations and the updated
values.

Following the prior distribution assumptions, we obtain

E(xi) = (WTW + σ2I)−1WT (yi − µ) (7)

and

E(xix
T
i ) = σ2(WTW + σ2I)−1 + E(xi)E(xi)

T (8)

where E(·) is the expectation operator, i = 1...k. Then,
the corresponding log-likelihood of observed data under
this model is defined as

lk =

k∑
i=1

log p(yi, xi) (9)

where the joint probability density p(yi, xi) is given by

p(yi, xi) = (2πσ2)−d/2 × exp{−‖xi‖2

2
}

×exp{−‖yi −Wxi − µ‖2

2σ2
}(2π)−q/2

(10)

Take the conditional expectation with respect to the
distribution in Equation (10), we obtain

E(lk) = −
k∑

i=1

{d
2
log σ2

k +
1

2
tr(E(xix

T
i ))

+
1

2σ2
k

‖yi − µk‖2 −
1

σ2
k

E(xi)
TWT

k (yi − µk)

+
1

2σ2
k

tr(WT
k WkE(xix

T
i ))}

(11)

Maximize the conditional expectation of(11) with respect
to Wk and σ2

k, then the parameters are updated as

Wk =

[
k∑

i=1

(yi − µk)E(xi)
T

][
k∑

i=1

E(xix
T
i )

]
(12)
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σ2
k =

1

kd

k∑
i=1

{‖yi − µk‖2 − 2E(xi)
TWT

k (yi − µk)

+tr
(
E(xix

T
i )W

T
k Wk

)
}

(13)

Let the window width of original data is L, namely, the
sample yk−L+1 will be replaced by the new observation
yk+1 at k + 1 instant. Thus, we can update model with
new parameters of W and σ2.

2.2 Missing data Imputation Approach

For an incomplete measurement yk, it can be divided
into the observable part yk,o and the missing part yk,u.
Therefore, (9) is rewritten as

lk =

k∑
i=1

log p(yi,o, yi,u, xi) (14)

Similar to the Maximum Likelihood Estimation in prior
subsection, we obtain the estimation of yk

ỹk(n) = θkWk[Nk
−1Wk

T (yk − µk)] + µk (15)

whereNk = Wk
TWk+σ2

kI. The value of θk can be obtained
by minimizing ‖ỹk,o − yk,o‖2.
Based on above results, at k + 1 time instant, an EM
algorithm for PPCA modeling can be summarized as
follows:

Let µk+1(0) = µk,Wk+1(0) = Wk,σk+1(0) = σk,Nk+1(0) =
Wk+1(0)

TWk+1(0) + σ2
k+1(0)I, then repeat the following

steps:

ỹk+1(n+ 1) = θk+1(n+ 1)Wk+1(n)[Nk+1(n)
−1

Wk+1(n)
T (yk+1(n)− µk+1(n))] + µk+1(n)

min
θk+1(n+1)

{‖ỹk+1,o(n+ 1)− yk+1,o‖2}

µk+1(n+ 1) =
k

k + 1
µk +

1

k + 1
ỹk+1

∆µk+1(n+ 1) = µk+1(n+ 1)− µk

Sk+1(n+ 1) =
1

k

k∑
i=1

(ỹi(n)− µ)(ỹi(n)− µ)
T

Wk+1(n+ 1) = Sk+1(n)Wk+1(n)(σk+1(n)
2I)

+Nk+1(n)
TSk+1(n)Wk+1(n))

−1

σk+1(n+ 1)2 =
1

p
tr(Sk+1(n)

− Sk+1(n)Wk+1(n)Nk+1(n)
−1Wk+1(n+ 1)T )

(16)

where the n is the number of iterations. Above setps are
repeated iteratively until convergence and then the process
of parameters learning is finished.

3. ONLINE MONITORING AND FAULT DIAGNOSIS

For simplification of the expression, we assume that the
whole process has two stationary modes and a between-
mode, which is shown in Fig.1. Than, Mode 1 and Mode
2 are steady modes built with regular PPCA, while the
between-mode transition will be modelled by the proposed
recursive PPCA method.

Global

mode

Mode 1 Mode 2 
between-mode 

trasition
 

Fig. 1. Global mode structure

3.1 Mode Detection and Process Modeling

It is noted that the singular values of process data can
be changed with the increasing samples in between-mode
(Wang and Li (2012)). Let Y = UΣV H , where Σ =
diag(τ1, τ2, ..., τp, ), and define τ2 =

∑p
i=1 τ

2
i = ‖Y ‖F ,

then the mode detection index at k time instant can be
defined as

Tk(j) =
1

L

k∑
i=k−L+1

Σi(j, j) (17)

which presents the average of parameter τ at k time
instant, where Σk(j, j) is the jth diagonal values of Σk

, and Σk means the matrix Σ at k time instant as well.
Then, at k + 1 time instant, we have

Tk+1(j) =
1

L

k+1∑
i=k−L+2

Σi(j, j) (18)

Therefore, mode transition time can be recognized by the
range ability of τ2, as:

Tk+1(j)− Tk(j)

Tk(j)
> γj (19)

where γj is a predefined parameter in dynamic process,
which is related to mode transitions and determined by
human experience (Wang and Li (2012)).

3.2 Confidence Bound and Fault Diagnosis

Based on probability theory, the β% confidence bound can
be defined as (Chen and Sun (2009)):∫

y:p(y)>h

p(y)dy = β (20)

where p(y) is the probability distribution of y, and the
squared Mahalanobis distance based equivalent confidence
bound, which can be used for fault detection and diagnosis,
is shown as follow:

M2
k = (yk − µk)

TS−1
k (yk − µk) > χ2

d(β) (21)

where β is the fractile of the χ2 distribution with the
degree of freedom d, and the value can be updated as

M2
k+1 = (yk+1 − µk+1)

TS−1
k+1(yk+1 − µk+1) > χ2

d(β) (22)

Therefore, the recalculated monitoring statistic is given by

E(M2
k+1) = tr(S−1

k+1{(z − µk+1)(z − µk+1)
T +Q}) (23)

where z and Q are related as y|y0 ∼ N(z,Q), whose details
can be found in Chen and Sun (2009) and He et al. (22).
Finally, we can calculate ‖M2

k+1 − E
[
M2

k+1

]
‖ for fault
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diagnosis with 99% confidence bound, and the confidence
limit is M2

k+1−χ2
d(β) (Chen and Sun (2009)). As a result,

the process behaviour is considered faulty if the statistic
of a new observation exceeds the control limit.

3.3 Modeling and Monitoring for Multi-mode Process

In this part, the step-by-step procedure of recursive PPCA
model based multi-mode monitoring approach is given
below, and the flowchart of this method on fault detection
and diagnosis is shown in Fig. 3. Firstly, the procedure of
model development is given, as:

(1) Acquire normal operating data and normalize the
data using the mean and standard deviation of each
variable.

(2) Calculate parameters of µ, W and σ2.
(3) Calculate squared Mahalanobis distance M2 and its

confidence limits.
(4) Calculate E

[
M2

]
and ‖M2 − E

[
M2

]
‖ to estimate

contribution of each variable.
(5) Calculate the upper confidence limits for contribu-

tions.

In addition, the online fault diagnosis of recursive PPCA
approach is also given below:

(1) Obtain new observation data, and then make model
detection in multi-mode process.

(2) Recalculate new parameters of µk+1, Wk+1 and σ2
k+1

.
(3) Recalculate new squared Mahalanobis distance M2

k+1
and its confidence limits.

(4) If any statistic exceeds its corresponding confidence
limit, calculate the contributions of each variable after
fault detection.

(5) Monitor the contribution of each variable and make
fault diagnosis.

4. SIMULATION STUDY

In this section, the TE process is used to evaluate the effec-
tiveness of the proposed fault detection and identification
approach based on recursive PPCA in multi-mode system.
The TE process is an open-lop unstable plant-wide process
control problem considered as a benchmark simulation
for various process monitoring techniques. This process
produces two products (G and H) from four reactants
(A, C, D and E), and F is a byproduct. In addition,
an inert component B also presents in C stream and in
trace amount in the A feed stream. The process consists
of five major units, which include an exothermic two-phase
reactor, a flash separator, a recycle compressor, a reboiled
stripper, and a product condenser(Liu and Chen (2010);
Yin et al. (2012)). The TE process has total 11 input
variables (without agitator speed) and 41 measurement
variables. And the process measurements are sampled with
an interval of 3 min. For simplicity, only 22 continuous
measurements, listed in Table 1, are selected in this simu-
lation.

Since it is difficult to produce products consistently in
industrial scale, the quality control in industry relies
significantly on the consistency of process conditions.
Because of process changing, the operating conditions

Model development
On-line fault diagnosis

of recursive PPCA

Acquire normal 

samples Y(k)

Calculate  

2,,  W

Calculate 

       and its 

confidence limits

2M

Calculate 

contributions of

each variable

Calculate the 

upper confidence 

limits for 

contributions

End

Input new 

samples Y(k+1)

Calculate  

2

new ,, newnewW 

Calculate 

       and its 

confidence limits

2

newM

Beyond the 

confidence

limits?

Rcalculate

Exceed 

confidence 

limits?

Get the faulty 

variables

            Yes       

No

No

           Y(k)



                                       Fault detection

 

Fig. 2. Procedures of recursive PPCA method

have to be adjusted to meet the production specifications,
which can cause various operation modes. Some of them
are steady state modes, while others are between-mode
transitions. In the simulation, we suppose that the whole
process is divided into two modes and a between-mode,
which are listed on Table 2. Mode transition is introduced

Table 1. Continuously Measured Variables

Variable’s ID Description

1 A feed (stream 1)
2 D feed (stream 2)
3 E feed (stream 3)
4 A and C feed (stream 4)
5 Recycle flow (stream 8)
6 Reactor feed rate (stream 6)
7 Reactor pressure
8 Reactor level
9 Reactor temperature
10 Purge rate (stream 9)
11 Product separator temperature
12 Product separator level
13 Product separator pressure
14 Product separator underflow (stream 10)
15 Stripper level
16 Stripper pressure
17 Stripper underflow (stream 11)
18 Stripper temperature
19 Stripper stream flow
20 Compressor work
21 Reactor cooling water outlet temperature
22 Condenser cooling water outlet temperature
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by decreasing the value of reactor temperature from 120
to 110. To test the ability of proposed method, we define
mode 1, mode 2 and the mode transition between as
normal operating modes, and let failures occur in mode 2.
Both methods are performed on the 10% randomly missing
data and the number of principal components is set to 5
based on the results of a 10-fold cross validation.

Table 2. Operating Modes of Simulated Te
Process

Modes Samples

Normal Operating Mode 1 1st 300th
Between-mode transition 301st 600th
Normal Operating Mode 2 601st 700th
Faulty Operating Mode 701st 900th

The fault detection result with missing data of the pro-
posed method is shown in Fig. 3. The M2 calculated from
the recursively updated PPCA model as well as the 99%
confidence. This figure shows the values of statistics is
sharply increasing from 702th time instant,and it is outside
the M2 limit at 703th time instant, which implies that
fault has been detected in mode 2 for the time of the 703th
sample. For all other time instants from 1 to 700, statistics
are within their confidence limits, which means the false
alarm rate is significantly eliminated.
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Fig. 3. Monitoring results by recursive PPCA

Based on the measurements of mode 1, the simulation
results of PPCA with a 10% randomly missing rate is
shown in Fig. 4. In the plot, the regular PPCA based cal-
culated M2 frequently exceed their respective confidence
limits in the mode transition and the steady part of mode
2 where the process is operating normally. The similar
results can be obtained if only the measurements of mode
2 are used for regular PPCA. Clearly, both regular PPCA
and recursive PPCA can detect the fault correctly at the
703th sample. This may be explained by the fact that
mode 2 is a stationary process which is modeling by regular
PPCA method in multi-mode system, and only transition
process is modeling by recursive PPCA. However, the false
alarm rate of conventional PPCA is much higher than the
false alarm rate of the proposed method, which means the
recursive PPCA method is more effective to multi-mode
system.
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Fig. 4. Monitoring results by conventional PPCA

Furthermore, the diagnosis results are shown in Fig. 5
and Fig. 6, which indicate that the recursive PPCA based
and the conventional PPCA based multi-mode monitoring
and fault diagnosis have different contribution results. It
can be seen that the contributions of the 2nd and 3rd
variable are much higher than those of other variables in
Fig. 5, which means that the proposed method can isolate
fault variables efficiently. However, it is very difficult to
determine which variables are the dominant sources of
fault in Fig. 6, since 7 variables have exceeded control
limits. As a result, the contribution plots shows that the
proposed method is capable of isolating variables as few as
possible, but not essential, faulty variables to further fault
diagnosis.
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Fig. 5. Recursive PPCA based contribution plots

5. CONCLUSION

In this study, a recursive PPCA model based process mon-
itoring and fault identification approach is developed for
the multi-mode processes with randomly missing data. Dif-
ferent from the conventional PPCA, the proposed method
recursively obtain the estimation of the missing measure-
ment data and update model parameters. Based on the
model detection index, a global mode with steady-state
modes and between-mode transitions is thus developed.
The illustration results demonstrate that the proposed
approach can effectively detect and identify fault with
missing data for multi-mode process, and it will not trigger
false alarms in between-mode transition.
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Fig. 6. Conventional PPCA based contribution plots
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