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Abstract: In model-based real-time optimization, plant-model mismatch can be handled by applying 
gradient- and bias-corrections to the cost and constraint functions in an iterative optimization procedure. 
One of the major challenges in practice is the estimation of the plant gradients from noisy measurement 
data, in particular for the case of several optimization variables. In this paper we compare four modifier 
adaptation schemes which were proposed to handle noisy data, iterative gradient-modification 
optimization, dual modifier adaptation, nested modifier adaptation and modifier adaptation with quadratic 
approximation. Simulation studies for the optimization of the Otto-Williams reactor with plant-model 
mismatch are used to illustrate the performance of the different schemes.  
Keywords: Real-time optimization, Model mismatch, Gradient estimation, Modifier adaptation. 

 

1. INTRODUCTION 

With increasing global competition, companies in the process 
industries face intense pressure to improve production 
efficiency, product quality and process safety. As a result, 
real-time optimization (RTO) is attracting considerable 
industrial interest. RTO is a model based upper-level 
optimization system that is operated iteratively in closed loop 
and provides set-points to the lower-level regulatory control 
system in order to maintain the process operation as close as 
possible to the economic optimum. As for any model and 
optimization based scheme, the success of RTO depends on 
the quality of the model which is used in the optimization. 
The effort required for building and maintaining the model is 
the bottleneck in the deployment of RTO solutions, and even 
when sophisticated models are used, they will never exactly 
represent the real process. It is therefore highly desirable to 
combine the use of models and of the data which is collected 
during the operation of the plant in order to obtain a real-time 
optimization scheme that drives the plant to its optimal 
operation without having to represent each and every 
phenomenon in the plant accurately in the model. 

Modifier adaptation can handle considerable plant-model 
mismatch by applying empirical gradient- and bias- 
corrections to the objective and constraint functions in an 
iterative optimization procedure (Chachuat et al., 2009). One 
of the major challenges in practice is the estimation of the 
process gradients from noisy measurement data, in particular 
for the case of several optimization variables. Finite-
difference based approaches suffer from the problem of 
choosing the right step-size, using a large step-size may 
decrease the effect of noisy data on the one hand, on the other 
hand it leads to considerable approximation errors. Different 
schemes have been developed for handling noisy data in 
modifier adaptation, iterative gradient-modification 
optimization (Gao and Engell, 2005), dual modifier 
adaptation (Marchetti et al., 2010), nested modifier 
adaptation (Navia, 2012) and modifier adaptation with 
quadratic approximation (Gao et al., 2015). All schemes are 

targeted to acquire reliable and accurate gradient modifiers 
for modifier adaptation in the presence of noisy. This 
motivated us to analyse the characteristics of each scheme 
and make comparisons of their performance.  

The rest of this paper is organized as following. First 
modifier adaptation is reviewed together with the calculation 
of empirical gradients from data. The four modifier schemes 
are then described by flow diagrams. Simulation results for 
the optimization of the Otto-Williams reactor are presented to 
compare the performance of each scheme. 

2. MODIFIER ADAPTATION OPTIMIZATION AND 
GRADIENT ESTIMATION 

The general model-based set-point optimization problem can 
be stated as 
min ( )

 s. t. ( ) ,
m

m

J

≤
u

u

C u 0
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where 𝐮𝐮 is a vector of manipulated variables to be optimized, 
𝐽𝐽𝑚𝑚(𝐮𝐮)  and 𝐂𝐂𝑚𝑚(𝐮𝐮)  are the objective and the vector of 
constraint functions, assumed to be twice differentiable with 
respect to 𝐮𝐮 . The plant objective and constraints are 
represented by 𝐽𝐽𝑝𝑝(𝐮𝐮)  and 𝐂𝐂𝑝𝑝(𝐮𝐮)  and their values are only 
available via plant evaluations. To handle plant-model 
mismatch, the optimization problem (1) is iteratively adapted 
as 
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where the superscript (𝑘𝑘) represents the iteration index. The 
adaption modifiers are defined by 

( ) ( ) ( )k k k
J p mJ Jε −=  (3) 

( )( ) ( ) ( ) Tk k k
J p mJ J− ∇= ∇λ  (4) 
( ) ( ) ( )k k k
C p m−=ε C C  (5) 

( )( ) ( ) ( ) ,
Tk k k

C p m− ∇= ∇λ C C  (6) 
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where �𝐮𝐮(𝑘𝑘)� is replaced by the superscript (𝑘𝑘) for simplicity. 
Note that the bias modifier 𝜀𝜀𝐽𝐽

(𝑘𝑘)  does not influence the 
optimum and it is used to correct the objective values which 
are displayed to users during an optimization run. Let ( )ˆ ku  
denote the solution of (2), the next set-point is updated as 

( )( 1) ( ) ( ) ( )ˆ ˆ ,k k k k+ = + −u Ku u u  (7) 

where 𝐊𝐊 is a diagonal matrix of the damping factors that are 
within interval [0,1).  

Modifier adaptation was originally derived from iterative 
system optimization and parameter estimation (ISOPE) 
(Roberts, 1979; Brdys and Tatjewski, 2005). Gao and Engell 
(2005) extended ISOPE to handle process-dependent 
constraints and proposed a strategy for gradient estimation. 
This was called iterative gradient-modification optimization 
(IGMO). Marchetti et al. (2009) studied IGMO both 
theoretically and experimentally and coined the name 
“Modifier Adaptation”.  

The use of the 1st-order modifiers requires the computation of 
the process gradients at the current set-point. In order to 
decrease the effort for perturbations of the process, the 
collected data at the previous set-points can be used to 
estimate the gradients by a finite difference approximation 
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where 𝑛𝑛𝑢𝑢 is the number of dimensions of 𝐮𝐮, and the matrix 
𝐒𝐒(𝑘𝑘) is defined as 

( ) ( )( ) ( )( ) ( 1) ( )... .u
T

k k nk k k −−=  − − S u u u u  (9) 

3. DIFFERENT MODIFIER ADAPTATION SCHEMES 

The flow diagrams of four modifier adaptation schemes are 
compared in Fig. 1, where the circles marked by different 
letters are used to represent different functional blocks and 
the lines represent the information flow. The common blocks 
are listed as follows: 

“A”: Adapted optimization (2) 
“B”: Plant evaluation 
“C”: Collected data, (𝐮𝐮(𝑖𝑖), 𝐽𝐽𝑝𝑝

(𝑖𝑖),𝐂𝐂𝑝𝑝
(𝑖𝑖)), i=0…k 

“D”: Finite difference approximation (8) 
“E”: Modifier evaluation (3 - 6) 
“𝑘𝑘 ← 𝑘𝑘 + 1”: Run delay. 

All the other blocks will be defined when they appear for the 
first time. 

3.1 Iterative Gradient-Modification Optimization 

Iterative gradient-modification optimization (Fig. 1a) was 
proposed by Gao and Engell (2005) for set-point optimization 
of batch chromatographic separation. In this scheme, the 
plant gradients are calculated by the finite difference 
approximation (block “D”) from the collected information at  
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(a) Iterative gradient-modification optimization. 
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(b) Dual modifier adaptation. 
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 (d) Modifier adaptation with quadratic approximation. 

Fig. 1. Illustration of modifier adaptation schemes. 

the previous (𝑛𝑛𝑢𝑢 + 1)  set-points. In order to decrease the 
influence of measurement noise on the gradient calculation, 
the conditioning of the set-point change matrix 𝐒𝐒(𝑘𝑘)  is 
monitored by the block “F” as 

( )( )-1 .k
condδκ ≥S  (10) 

An additional set-point is required when (10) cannot be 
satisfied. The additional perturbation is optimized (block “G”) 
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by maximizing the inverse of the condition number of 𝐒𝐒𝑎𝑎(𝑘𝑘) 
subject to the adapted process constraints: 
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where  

( ) ( )( ) ( 1)( ) ( ) ( )... .u
T

a k k nk addi k − +=  − − S u u u u  (12) 

3.2 Dual Modifier Adaptation 

Dual modifier adaptation (Fig. 1b) was proposed by 
Marchetti et al. (2010) to pay attention to the accuracy of the 
gradients which are calculated with the next set-point move. 
The adapted optimization problem (2) is augmented by 
explicitly upper bounding the norm of the gradient estimation 
error (block “H”) that consists of the truncation error and the 
measurement noise errors  

( )1 ,
2

Tmax noise
upper

min

diag
l

σ δ ε− ⋅ ⋅ + ≤S S S  (13) 

where the first term on the left side of (13) is the truncation 
error (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 is the upper bound on the spectral radius of the 
Hessian matrix of the process mapping), and the second term 
is the error due to the measurement noise (𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  is the shortest 
distance between all possible pairs of complement affine 
subspaces that can be generated from the set-point set for the 
gradient estimation, and 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the interval of the 
measurement noise). For simplicity the superscript of the 
iteration index was dropped here. (13) leads to a dual control 
choice of the next set-point that balances the convergence to 
the optimum with the gradient calculation. Since (13) is non-
convex, an additional constraint is required to ensure convex 
feasibility regions: 
 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ), ,

Tk k k k k k kb bρ ρ∉ − +n u n n  (14) 

where 𝐧𝐧(𝑘𝑘) is the vector normal to the hyperplane generated 
by the 𝑛𝑛𝑢𝑢  most recent set-points, and the hyperplane is 
defined by �𝐧𝐧(𝑘𝑘)�𝑇𝑇𝐮𝐮 = 𝑏𝑏(𝑘𝑘), with𝑏𝑏(𝑘𝑘) = �𝐧𝐧(𝑘𝑘)�𝑇𝑇𝐮𝐮(𝑘𝑘). 𝜌𝜌(𝑘𝑘)  is 
the minimal point-to-hyperplane distance used to remove the 
non-convex part of the regions generated by (13). All 
variables are taken from (Marchetti et al., 2010).  

3.3 Nested Modifier Adaptation  

Nested modifier adaptation (Fig. 1c) was proposed by Navia 
(2012) to avoid the explicit calculation of plant gradients with 
noisy data. It directly optimizes the gradient modifiers (block 
“I”) using the Nelder-Mead simplex algorithm with the 
information collected at the previous (𝑛𝑛𝑢𝑢 + 1)  set-points. 
Note that the previous information should be provided with 
the gradient modifiers as the input variables. Nested modifier 
adaptation transforms the optimization problem from the set-
point space to the gradient-modifier space and applies the 
simplex algorithm to solve it. Its optimality is based on the 
assumption that the optimum of the gradient modifier 
adaptation corresponds to the optimum of the set-point. 

3.4 Modifier Adaptation with Quadratic Approximation 

Modifier adaptation with quadratic approximation (Fig. 1d) 
was recently proposed by Gao et al. (2015) to combine the 

robustness of derivative-free optimization to noisy data with 
the convergence to the true optimum of modifier adaptation 
using empirical gradients. Different from the other schemes, 
which only rely on the latest (𝑛𝑛𝑢𝑢 + 1)  set-points, all the 
previous data is involved in this scheme. The data is first 
selected by a screening algorithm (block “K”), which takes 
distribution, age and distance to the current set-point into 
consideration, to formulate a suitable regression set 𝒰𝒰(𝑘𝑘) . 
Based on the regression set, the plant mapping is 
approximated by a quadratic function and the gradients at the 
current set-point are then evaluated analytically from the 
quadratic approximation (block “J”). A trust region ℬ(𝑘𝑘) for 
the next move is also determined by a covariance analysis of 
the regression set (“L”) and will be applied in the adapted 
optimization “A”. 

4. SIMULATION STUDIES 

The Otto-Williams reactor (Williams and Otto, 1960) has 
been used as a benchmark problem to evaluate RTO schemes 
in Marchetti et al. (2010), Navia (2012), Gao et al. (2015), 
and Roberts (1979). The real plant is described by three 
irreversible reactions: 

𝐴𝐴 + 𝐵𝐵 
𝑘𝑘1→  𝐶𝐶 (15) 

C + B 
k2→  P + E (16) 

P + C 
k3→  G, (17) 

where 𝑘𝑘1 , 𝑘𝑘2  and 𝑘𝑘3  are the reaction constants. The 
mismatched model is based on only two reactions: 

𝐴𝐴 + 2𝐵𝐵 
𝑘𝑘�1→  𝑃𝑃 + 𝐸𝐸 (18) 

A + B + P 
k�2→  G + E. (19) 

The ignorance of the reactions with C leads to a structural 
plant-model mismatch which cannot be handled by model 
parameter adaptation. The optimization objective is the 
steady-state profit  
𝐽𝐽 = (𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵)(𝑃𝑃𝑃𝑃𝑥𝑥𝑃𝑃 + 𝑃𝑃𝐸𝐸𝑥𝑥𝐸𝐸) − 𝐶𝐶𝐴𝐴𝐹𝐹𝐴𝐴 − 𝐶𝐶𝐵𝐵𝐹𝐹𝐵𝐵. (20) 
The optimization variables are the flow rate 𝐹𝐹𝐵𝐵  and the 
reaction temperature ϑ.  The variable definitions and 
parameter values are taken from (Marchetti et al., 2010). In 
order to test how the new scheme behaves in the presence of 
noisy data, random noise (Gaussian normal distribution, 
standard deviation: 0.5) is added to all plant evaluations. The 
optimization variables are normalized by their operating 
intervals. The optimization results of four modifier adaptation 
schemes are presented in Figs. 2 - 6. No damping is applied. 
All optimizations start from the left-bottom corner (3.0, 70) 
of the operating region and are run for up to 40 plant 
evaluations after the starting point. Two initial perturbations 
are used to estimate the gradients for the starting point by the 
finite difference approximation (8).  

In IGMO, the conditioning threshold 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.1 was used. 
At each iteration, a bound 𝐮𝐮 ∈ �𝐮𝐮(𝑘𝑘) − 0.2,𝐮𝐮(𝑘𝑘) + 0.2�  is 
applied to limit the search range for the next set-point. The 
termination criterion is �𝐮𝐮(𝑘𝑘+1) − 𝐮𝐮(𝑘𝑘)� ≤ 0.01. The noise-
free optimization (Fig. 2a) terminates after 16 plant 
evaluations, including 3 additional perturbations (4th, 7th and 
11th). The inset shows the set-point trajectory on the objective 
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contours. It stays in the vicinity of the optimum after the 9th 
evaluation. The optimization for one realization of the noise 
(Fig. 2b) does not terminate after 40 plant evaluations. The 
“star” symbols represent the noisy data, and the “circle” 
symbols represent the “clean” data. The dashed lines mark 
the ±3𝜎𝜎  noise interval centered at the maximal profit. 
Compared to the noise-free optimization, there is only slight 
difference during the first 9 evaluations. The noise does not 
lead to considerable gradient estimation error with large set-
point moves. When entering the vicinity of the optimum, the 
moves are small and lead to large gradient errors. As a result, 
irregular zig-zag moves appear. Since the gradient error is 
dominated by the effect of the small step size, the increase of 
the conditioning threshold  𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  will not decrease the 
influence of the noise. The results of 100 realizations of the 
noise (Fig. 2c) show that this scheme is sensitive to the noise, 
where the “crossed-circle” symbols mark the termination set-
points. More than 60% of the runs do not satisfy the 
termination criterion within 20 plant evaluations, and around  
 

 
(a) Noise free. 

 
(b) Single run with noise. 

 
(c) Multiple runs with 100 realizations of the noise. 

Fig. 2. Iterative gradient-modification optimization.  

20% runs do not terminate after 40 plant evaluations. The set-
point distribution of all the runs after 40 plant evaluations 
(Inset) shows that most set-points are within the 190 ($/s) 
contour. 

In dual modifier adaptation the upper error norm 𝜀𝜀𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
111.2 , which was used in (Marchetti et al., 2010), is 
considered first. For the noise interval 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 3.0, the step 
size should be greater than 0.054 in order to satisfy (13). The 
termination criterion �𝐮𝐮(𝑘𝑘+1) − 𝐮𝐮(𝑘𝑘)� ≤ 0.01 cannot be 
applied and the optimizations are run for 40 plant evaluations. 
The noise-free optimization (Fig. 3a) takes 14 plant 
evaluations to reach the vicinity of the optimum (8 taken by 
IGMO). The zig-zag trajectory around the optimum is due to 
the lower limit on the step size. The optimization of one 
realization of the noise (Fig. 3b) shows an enlarged zig-
zaging (compared to the noise-free situation) when 
approaching the optimum. This can be clearly observed from 
the change of the objective values. The oscillation interval of  
 

 
(a) Noise free. 

 
(b) Single run with noise. 

 
(c) Multiple runs with 100 realizations of the noise. 

Fig. 3. Dual modifier adaptation, εupper = 111.2.  
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multiple runs (Fig. 3c) is much narrower than for IGMO 
(Fig. 2c). This is attributed to the upper bounding of the 
gradient error norm, which limits the minimal step size 
allowed. The maximal step size, on the other hand, is also 
limited by (13) and it leads to a slow rate of convergence to 
the optimum. Note that five runs terminated unsuccessfully 
because MATLAB optimizer FMINCON with SQP 
algorithm cannot find a feasible point. The unsuccessful runs 
are assumed to be caused by the implementation of numerical 
optimization under the tight upper error norm. 

Next the upper error norm was relaxed to 200, hence the 
interval of the admitted step size is enlarged. The minimal 
step size is 0.03 in order to satisfy (13). Since this is still 
greater than the termination criterion, the optimizations are 
again run for 40 plant evaluations. Because large steps are 
allowed, the noise-free optimization (Fig. 4a) takes only 6 
plant evaluations to reach the vicinity of the optimum, less 
than half of the case with 111.2. The optimization of one 
realization of the noise (Fig. 4b) shows large zig-zags, as the 
result of smaller step-sizes used there. The multiple runs  
 

 
(a) Noise free. 

 
(b) Single run with noise. 

 
(c) Multiple runs with 100 realizations of the noise. 

Fig. 4. Dual modifier adaptation, εupper = 200.  

(Fig. 4c) and the final distribution of set-points show that 
dual modifier adaptation is more sensitive to the noise now.  

Nested modifier adaptation transforms the optimization 
problem from the set-point space to the gradient-modifier 
space. Four plant evaluations are required to initialize the 
scheme, of which three are used to calculate the initial values 
of the gradient modifiers, and the 4th corresponds to the plant 
evaluation at the initial gradient modifiers. The noise-free 
optimization (Fig. 5a) shows a slow and irregular rate of 
convergence to the optimum. It takes 25 plant evaluations to 
reach the vicinity of the optimum. The optimization for one 
realization of the noise (Fig. 5b) shows that the nested 
modifier adaptation does not converge to the optimum. 
Similar results can be observed from the multiple runs 
(Fig. 5c) and the final distribution of set-points. Although the 
optimum of the gradient modifiers corresponds to the optimal 
set-point, there is no guarantee that the convexity of the 
optimization problem in the set-point space is inherited in the 
gradient-modifier space. 

 

 
(a) Noise free. 

 
(b) Single run with noise. 

 
(c) Multiple runs with 100 realizations of the noise. 

Fig. 5. Nested modifier adaptation optimization. 
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(a) Noise free. 

 
(b) Single run with noise. 

 
(c) Multiple runs with 100 realizations of the noise. 

Fig. 6. Modifier adaptation with quadratic approximation.  
Fig. 6 shows the optimization results of modifier adaptation 
with quadratic approximation. The parameters are taken from 
(Gao et al., 2015) and no termination criterion is applied. 
Before enough points (in this case 6) are acquired for the 
quadratic approximation, IGMO is run. After the 6th plant 
evaluation, the quadratic approximation starts to provide 
gradient estimates. The noise-free optimization (Fig. 6a) 
reaches the vicinity of the optimum after 7 plant evaluations, 
and 9 evaluations are performed by the optimization of one 
realization of the noise (Fig. 6b). Note that the 8th and 9th 
plant evaluations are on each sides of the centre contour 
(inset of Fig. 6b). They are generated by the optimization 
scheme to provide curvature information along the 
perpendicular direction to the previous set-point trajectory. 
Similar plant evaluations, but with smaller step sizes, can be 
observed in the noise-free run. These phenomena illustrate 
the characteristics of the modifier adaptation with quadratic 
approximation: it makes full use of the previous information 
and make only additional probes when necessary. All 
optimization runs of the 100 realizations of the noise (Fig. 6c) 
converge to the optimum accurately after 14 plant evaluations. 

The inset shows the final distribution of the set-points and a 
considerable improvement of the spread of the solutions can 
be observed.  

6. CONCLUSIONS 

This paper provided a comparison of four different modifier 
adaptation schemes. All schemes can converge to the plant 
optimum when noise-free data is used to calculate the 
gradient modifiers. In the presence of noise, iterative 
gradient-modification optimization can efficiently improve 
the set-point when far away from the optimum. In the vicinity 
of the optimum, the decrease of step-size leads to 
considerable gradient errors and therefore irregular zig-zag 
moves. Dual modifier adaptation suffers from the problem of 
choosing the upper error norm, in which using a small value 
decreases the rate of convergence considerably, and using a 
large value leads to oscillations near the optimum. Nested 
modifier adaptation cannot guarantee optimality and is also 
characterized by a slow rate of convergence. To nest modifier 
adaptation with a derivative-free optimization approach may 
lead to non-convexity of the optimization problem. The best 
performance, in terms of efficiency and reliability, is attained 
by modifier adaptation with quadratic approximation. This 
scheme combines the quadratic approximation of derivative-
free optimization with the iterative gradient-modification 
approach and integrates recent advances in both areas. The 
simulation results for the optimization of the Otto-Williams 
reactor demonstrate an impressive performance compared to 
the other schemes. Further studies with more degrees of 
freedom, process-depended constraints, and varying 
disturbances will be performed to investigate the limitations 
of this scheme. 
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