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Abstract: In most chemical processes, variables are sampled at different rates which brings great 

challenges to traditional process monitoring methods that are built upon single sampling rate. In this 

paper, a multi-rate partial least squares algorithm is proposed. Compared to the traditional PLS method, 

the proposed algorithm takes use of the incomplete data samples through a modification of both of the 

covariance matrix of the input dataset and the covariance matrix between the input and output datasets. 

Iteration is used in the model training step to avoid the calculation of same parameters which requires 

complete training datasets. Then the fault detection and online prediction strategy is proposed based on 

this algorithm. A case study on TE process shows that the proposed method had an enhanced 

performance on both monitoring and online prediction, compared to the traditional PLS method. 
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1. INTRODUCTION 

In modern industry, process monitoring has become a key 

technology for performance improvement of process 

facilities. In most industrial processes, variables are sampled 

at different sampling rates, making both process monitoring 

and control more complex. For example, the values of quality 

relevant variables which are obtained from laboratory 

analysis are sampled at a low rate while process variables 

which are easy to measure are sampled at a fast rate. Those 

processes with various sampling rates for different variables 

are known as multi-rate processes (Li, W. et al, 2008). 

Generally, variables of multi-rate processes have three 

characteristics: (I) Incomplete. The slow sampling rate 

variables could not be achievable all the time, which leads to 

the incompleteness of the process data. (II) Regularly 

structured. Multi-rate process variables could be divided 

according to their sampling rates into regular data blocks. 

Under each data block, the data have the same number of 

samples. (III) Information asymmetry. Quality relevant 

variables only constitute a small part of the whole data while 

other process variables constitute most data samples. 

In early works, multi-rate system identification has been 

widely investigated. For example, a dual-rate system which 

has only two sampling rates: the fast-rate and the slow-rate 

was studied (Lu, W. et al, 1988, 1989). A commonly used 

method called lifting technique was proposed by Li, D. et al 

(2001). When it comes to the multi-rate system identification 

problem, the fastest sampling rate is regarded as the base 

sampling rate and the unavailable data points in the slow 

sampling rate variables are usually treated as missing data 

(Raghavan, H. et al, 2006). Ding, F. et al (2004) proposed a 

FIR model on the multi-rate system to predict the 

unmeasured data points and then carried out identification 

between the fast-rate inputs and the predicted outputs. 

Multivariate statistical process monitoring (MSPC) methods 

have also been widely researched since large amount of 

process data are available(Ge, Z. et al, 2013). Up-sampling 

methods and down-sampling methods are two typical way to 

build multi-rate models (Lu, N. et al, 2004). Shao, X. et al. 

(2011) proposed a Bayesian method for soft sensor model 

calibration. They proposed a soft sensor model using 

Bayesian method for the un-sampled data prediction as well 

as the model calibration. Wu, Y. et al (2010) proposed a 

Kalman filter based data rectification method using two 

different Kalman filters to estimate the quality property. Lu, 

N. et al. (2004) proposed multi-rate dynamic inferential 

modelling method for multi-rate dynamic system monitoring.  

However, it is a common limitation that most of proposed 

models perform on dual-rate systems, which means that they 

might not be easily applied to three or more sample rates 

systems. Particularly, for down-sampling methods, the down-

sampled data might contain a large part of fast-rate data 

points in which the slow-rate data points might be drown. In 

other words, down-sampling methods might ignore some 

variable autocorrelations due to the high dimension of the 

down-sampled data. Another limitation of down-sampling 

methods is that it might encounter some difficulties when 

applying for online monitoring, because down-sampling 

substantially reduce the sample rate to a low level while the 

practical process is still sampled as a fast rate. On the other 

hand, up-sampling methods use estimated data points to build 

model, it might lead to a poor performance in online 

monitoring. Sometimes, the un-sampled data points could 

also be regarded as missing data. Walczak, B. et al (2001) 

proposed iterative PCA and PLS models for missing data 

processing, which made a compromise between the score 

matrix and the complete data matrix. Nelson, P.R. et al 

(1996) proposed score calculation method with incomplete 

observations in PCA and PLS models. Kim, D.S. et al. (2005) 

proposed a process monitoring method based on Factor 
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Analysis to deal with incomplete data. However, most 

missing-data methods assumed that the missing data are 

randomly dispersed and only consist of a small percentage of 

the whole data. But in multi-rate systems, the un-sampled 

data points only exist in slow-rate variables, and the missing 

percentage is always larger than 50%.  

In this paper, a new multi-rate modelling method is 

developed for process monitoring, which is built on the basic 

PLS algorithm. In this method, a different way to calculate 

the covariance matrix is provided. In case that the model 

training datasets are not complete, an iteration is taken to 

avoid the calculation of parameters which demands the 

presence of the full-sampled model training datasets. The rest 

of paper is organized as follows. In section 2, a short review 

on PLS algorithm is given. Then the Multi-rate PLS model is 

proposed in section 3, followed by a case study on TE 

benchmark process. Finally, conclusions are made. 

2. PARTIAL LEAST SQUARES 

Partial least squares, also known as projection of latent 

structure is a dimensionality reduction technique that could 

extract the latent variables from two different blocks of 

variables. By extracting the projection directions that could 

maximize the variation as well as the correlation between the 

process variables X  and the quality variables Y , PLS could 

predict the unmeasured quality variables with measured 

process variables. Given the input data matrix X  with n  

process variables and N  samples, and the output data matrix 

Y  with m  quality-relevant variables and M  samples, they 

could be decomposed as: 
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where  1 2

T

N
T t t t  is the score matrix for both 

input and output data matrix while 

 1 2 a
P p p p  is the loading matrix of X  and 

 1 2 a
Q q q q  is the loading matrix of Y . 

Every score vector 
i

t  is the linear combination of input 

variables. They could be calculated with the following 

equation: 
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where 
i

ω is the eigenvector of covariance matrix 
i


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between input matrix 
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X  and output matrix 
i
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3. MULTI-RATE PARTIAL LEAST SQUARES (MRPLS) 

Suppose we encounter a process with input data matrix X  

which has   sampling rates and output data matrix Y  

which has   sampling rates. The modelling data matrix 

could be represented as follows 

1 2
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r r r
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    (6) 

Those sub-matrices might have different sizes from each 

other, and every two sub-matrices have some sample points 

at the same interval, as is shown in Fig. 1. We introduce 
ij

X  

to represent these sub-matrices in X , i  represents the sub-

matrix which the variables belong to and j  represents the 

sub-matrix which is also sampled at these intervals. Parts of  

ij
X  are shown in Fig. 1. 

Then, 
( )

ij

Y
X  and 

( )

ij

X
Y  are introduced to represent these sub-

matrices from X  and Y as shown in Fig. 2, in which i  

represents the sub-matrix which the variables belong to and 

j  represents the sub-matrix which is also sampled at these 

intervals. The details are illustrated in Fig. 2.  

Generally, multi-rate PLS involves two main steps, model 

training step and online prediction step. 
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Fig. 1. Sub-matrixes with different sampling rates in the input 

data matrix. 
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Fig. 2. Sub-matrixes with different sampling rates between 

the input data matrix and the output data matrix. 

2.1  Model Training Step 

Suppose the training data contain   sampling rates in the 

input data matrix X  and   sampling rates in the output 

data matrix Y . In MRPLS, the modelling step aims to 

acquire loading matrix P  and Q . The first step is to 

centralize the model training matrix. After the centralization, 

the covariance matrix of the input data matrix X  and output 

data matrix Y  can be calculated by: 
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Each of the items in the correlation matrix can be calculated 

by: 
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The covariance matrix of the input data matrix X  can be 

calculated as: 
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And each sub-matrix in the covariance matrix can be 

calculated by: 

1

1

T

ij ij ji

ij
N

 

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where 
ij

N  represents the sample number of 
ij

X which is 

also the sample number of 
ji

X , as shown in Fig. 1.  

Suppose the first iteration is done. Before we move on to the 

next iteration of PLS, we shall remove the calculated score 

variation information from the original matrix, according to 

the procedure of the PLS algorithm.  
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where:  
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With the two formulas we could move on to next iteration. 

For the 
th

i  iteration, we first calculate the eigenvector 
i

ω : 

  2
T

i i

i i i
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With the eigenvector 
i

ω  we can get the loading vector 
i

p  

and 
i

q : 
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Before we move on to the next iteration, we must pre-process 

the covariance matrix 
1i


XY

 and the covariance matrix 
1i


XX

: 
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and: 

2 T i

i i i
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XX
ω ω      (20) 

Then we repeat the iteration until the residual information in 

Y  could be ignored. The loading matrix P  and Q  could 

also be available by combining the loading vectors: 

 1 2 a
P p p p     (21) 

 1 2 a
Q q q q     (22) 

where a  is the number of latent variables selected in the 

MRPLS model. 

2.2   Online Prediction and Monitoring Step 

When an online input sample 
new

x  comes, the variables 

included in this sample are first recognized. Then, all the data 

corresponding to those variables are selected as the training 

input matrix, and all the historical output samples are selected 

as the training output matrix. Then the MRPLS model is 

build based on these historical data. The prediction of the 

new data sample 
new

x  is calculated by: 
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For process monitoring, the traditional 
2
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can be calculated by: 
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where n  is the number of variables in the input data matrix, 

a  is the number of latent variables,
2

T  and Q  statistics 

follow F-distribution and
2

  distribution. The whole 

algorithm is given as follows. 

 

 

Model training: 

Step 1: according to the sampled vector 
new

x , choose the 

variables of the model. Selecting all the historical data 

samples of these variables as the modelling data set X  and 

Y ; 

Step 2: centre the training data X  and Y  to zero mean and 

scale it to unit variance; 

Step 3: calculate the covariance matrix 
1


XX

 and 
1


XY

, set 

1i  ; 

Step 4: calculate 
i

ω  by run singular value decomposition on 
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 and 
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Step 6: if the singular value of the covariance matrix is too 

small then go to step 7, else return to step 3; 

Step 7: get the loading matrix P  and Q  

by
 

 

1 2

1 2

a

a

 




P p p p

Q q q q
; 

Online prediction: 

Step 8: calculate the prediction of the output vector y  by 

 
1

T T

new



y Q P P P x ; 

Online monitoring: 

Step 9: centre the sampled vector ,
new new

x y  and scale it to 

unit variance, calculate 
2

T  statistics and Q  statistics by 

equation (24) and (25); 

Step 10: compare the online sample’s statistics with the 

limits and report the process condition. 

4. CASE STUDY OF TE PROCESS 

The Tennessee Eastman Benchmark process was created by 

the Eastman Chemical Company to provide a realistic 

industrial process for evaluating process control and 

monitoring methods. (Downs, J.J. et al, 1993) This process is 

based on a simulation of an actual industrial process where 

the components, kinetics, and operating conditions have been 

modified for proprietary reasons. The process consists of five 

major units: a reactor, condenser, compressor, separator, and 

stripper; and, it contains eight components: A, B, C, D, E, F, 
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G and H. The gaseous reactants A, C, D, and E and the inert 

B are fed to the reactor where the liquid products G and H are 

formed (Chiang, L.H. et al, 2001). The process contains 41 

measured and 21 manipulated variables. 22 measured 

variables are sampled every 3 minutes. 13 component 

measurements taken from Stream 6 and Stream 9 are sampled 

every 6 minutes. 5 component measurements taken from 

Stream 11 are sampled every 15 minutes. Every 30 minutes 

there will be a full sampled data points with all variables 

sampled at the same time. In this process, 21 fault cases can 

be simulated. 

For MRPLS modelling, 22 measurement variables and 14 

component variables from Stream 6 and Stream 9 are selected 

as the input data, and 5 component variables from Stream 11 

are selected as the output data. A total of 4110 normal 

samples have been collected from this process, in which the 

first 3000 normal samples are denoted as training and the rest 

1110 samples are used for cross-validation. The number of 

latent variables is determined as 6 according to the cross-

validation method, the results of which are shown in Fig. 4. 

Here, only the full sampled data samples are used for the 

comparison between MRPLS and PLS. Therefore, 96 

samples out of 960 multi-rate samples from the first fault 

case are chosen to test both of the two models. The results of 

the monitoring and predicting are shown in Fig. 3 and Fig. 4, 

respectively. It is shown that the result of MRPLS performs 

almost the same as PLS. MRPLS changes the covariance 

matrix in the model training step which makes use of more 

fast-rate sampled data points to describe the correlation 

between them. However, the PLS model is built on 300 full-

sampled samples which could lead to a quite satisfactory 

linear model. As a result, the model built on MRPLS 

algorithm has little distinction from PLS. However, it is 

reasonable to assume that MRPLS could preserve the same 

performance while PLS could not perform well when the 

number of available data samples decreases. 

In Fig. 4, it is apparently that the sum of RMSE (Residual 

Mean Squared Error) of 5 output variables in MRPLS is 

smaller than that in PLS on each latent variable number. 

When the latent variable number is 6, both PLS and MRPLS 

have achieved the smallest RMSE values. Fig. 5 provides the 

detection rate of T2 statistic for both MRPLS and PLS with 

different amounts of training data, which are between 200 

and 2200 with an increasing step as 20. In this figure, it is 

obvious that MRPLS achieves higher detection rates than 

PLS when the number of training data points is small. 

5. CONCLUSIONS 

In this paper, the MRPLS model is developed for monitoring 

and quality prediction of multi-rate sampling systems. 

Compared to the traditional PLS model, the MRPLS model 

can make full use of the process data under different 

sampling rates. For online monitoring and quality prediction, 

process data with various sampling rates can be monitored 

continuously by the MRPLS model, while the traditional PLS 

model is only valid when the process variables have been 

fully sampled. The performance of the proposed MRPLS 

model has been evaluated through the TE benchmark process. 
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Fig. 3. Online monitoring of the first fault case in TE. 
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Fig. 4. RMSE of different number of latent variables. 
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Fig. 5. Detection rate with different amounts of training data. 
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Appendix A. COVARIANCE MATRIX ITERATION 

PROOF 

From Equation (11), Equation (18) and Equation (19), it is 

easy to get: 
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