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Abstract: A novel data-driven control performance assessment (CPA) method is proposed
for batch processes controlled by iterative learning control (ILC) based on two-dimensional
linear quadratic Gaussian (LQG) benchmark. Previous studies on CPA for ILC are based on an
assumption that the model of the controlled batch process is known, whereas this study proposes
a model-free CPA method. Based on the two-dimensional system theory, the closed-loop batch
process under ILC can be converted into a two-dimensional Roesser model. This study proposes
a novel closed-loop two-dimensional subspace identification method for the converted parameters
unknown two-dimensional Roesser model. Using the identified model, the two-dimensional LQG
tradeoff performance assessment surface can be obtained. The proposed method is verified by
performing some simulations.

Keywords: batch process, iterative learning control (ILC), control performance assessment
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1. INTRODUCTION

As batch processes are widely applied in industrial pro-
cesses, iterative learning control (ILC) has been developed
rapidly and has been proved to be an effective control
strategy for batch processes since it was first presented
(Uchiyama (1978), Arimoto et al. (1984a)). With the im-
provement of ILC, various learning laws have been devel-
oped and the control performance has been improved e.g.,
P-, PI-, PD-, PID-type ILC (Saab (1994), Arimoto et al.
(1984b), Wang et al. (2013), Madady (2013), Wang et al.
(2009)). In recent years, it has been combined with other
control algorithms to improve control performance, such as
AILC (Tayebi (2004)) and L-MPC (Wang et al. (2010)).
Batch processes under ILC inherently have two dynamic
update directions, the iterative axis and the time axis,
which shows that ILC systems have a two-dimensional (2-
D) structure. Since 1990s, some scholars begun analyzing
and designing the ILC based on 2-D system theory (Geng
and Jamshidi (1990)); many similar studies have been
conducted since then (Shi et al. (2005), Dabkowski et al.
(2013)).

To ensure high efficiency of control systems, performance
assessment techniques are applied to monitor performance
degradation and identify potential improvements. To as-
sess the performance of a control system, first, a bench-
mark should be chosen as a reference. There are many
studies on control performance assessment based on dif-
ferent types of benchmarks, such as the minimum vari-
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ance control (MVC) benchmark (Harris (1989)), linear
quadratic Gaussian (LQG) benchmark (Huang and Shah
(1999)) and other benchmarks (Yuan et al. (2009)). How-
ever, only a few studies have reported concerning CPA
for ILC. Chen and Kong (Chen and Kong (2009)) used
the MVC-based optimal ILC as the benchmark to assess
the control performance of batch processes. This method
estimated the minimum variance bounds and achievable
bounds under the assumption that each ILC controller
influenced either stochastic or deterministic control per-
formance. Also based on the MVC law, Farasat and Huang
(Farasat and Huang (2013)) suggested a new method
for assessing the control performance. This method in-
troduced a tradeoff between deterministic and stochastic
control performance, as described by a tradeoff curve.
However, because MVC is characterized by inordinate con-
trol moves and has poor robustness, the MVC benchmark
is not desirable or achievable in many practical applica-
tions. Wei and Wang (Wei and Wang (2014)) proposed
a method to assess the ILC performance based on a 2-D
model transferred from an ILC-controlled batch process
and designed a 2-D LQG benchmark for the transferred 2-
D system, which extended the conventional performance
assessment tradeoff curve to a novel tradeoff surface. All
previous studies are based on the known model, but in
practice, the process model is usually unknown. If the
model of the batch process is unknown, a system iden-
tification algorithm should be used first for CPA.

Recently, identification of 2-D systems has attracted in-
creasing interests.Due to the coupled structure of the two
direction states in 2-D systems (Kaczorek (1985)), the
research of 2-D systems is much more complex than that of
1-D systems, even the adaptability of standard identifica-
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tion methods from 1-D extension to 2-D systems has been
very limited. In order to analysis conveniently and solve
the general 2-D state-space system identification problem,
a special format, the causal, recursive, and separable-in-
denominator (CRSD) system in the Roesser form has been
increasingly explored in the past decade. Fortunately, the
ILC controlled batch process model can be converted into
a CRSD Roesser form. It is Ramos (Ramos (1994)) who
first applied the subspace identification approach to the
problem of 2-D CRSD system identification directly from
given 2-D input-output data. Four standard subspace-
based system identification algorithms which utilize the
two-dimensional data have been developed for the open-
loop 2-D CRSD model by J.A. Ramos et al. (Ramos et al.
(2011), Ramos and dos Santos (2011)).

The field of closed-loop 2-D CRSD system identification
continues to require feedback control, and efficiently identi-
fying a closed-loop 2-D CRSD model remains a challenging
problem on its own. Contrary to the standard open-loop
subspace-based algorithms (e.g., N4SID, MOESP, and
CVA) (Qin (2006)) available in the literature until now,
the fundamental assumption (Van Overschee and Moor
(1996)) that there is no correlation between the unknown
noise and the input no longer holds under the closed-loop
condition. That is to say, the existing subspace methods
yield biased solutions in closed-loop 2-D CRSD system
identification, which requires special treatment.

This study proposed a novel data-driven CPA method
for the ILC controlled batch processes. When the process
model parameters are unknown, a novel closed-loop two-
dimensional subspace identification method is proposed.
Based on the identified model, a 2-D LQG benchmark can
be used and a tradeoff surface can be obtained to assess
the control performance of ILC controlled batch processes.

The remainder of this paper is arranged as follows. Section
2 describes the transferred model unknown 2-D ILC sys-
tem. Section 3 introduces the modified subspace identifi-
cation scheme. Section 4 discusses performance assessment
of the model unknown ILC system. Sections 5 and 6
present the simulation results and the concluding remarks,
respectively.

2. SYSTEM DESCRIPTION

Consider the following batch process described as a time-
invariant state space model, which is unknown:

xr,s+1 = A0xr,s +B0ur,s + wr,s,
yr,s = C0xr,s + vr,s,

(1)

where s = 0, 1, 2, ..., T , r = 0, 1, 2, ...; xr,s ∈ Rn is the state
vector, ur,s ∈ Rm is the input vector, and yr,s ∈ Rp is
the output vector; A0, B0, and C0 are real matrixes with
unknown elements and appropriate dimensions. wr,s and
vr,s are Gaussian white noise.

A general ILC updating law can be given as follows:

ur,s = ur−1,s + ϕr,s. (2)

Define the tracking error:

er,s
∧
= yrefs − yr,s, (3)

and the notation:

δRξr,s
∧
= ξr,s − ξr−1,s, (ξ = x, u, y). (4)

Based on (1)-(4), one can get the following equations:

δRxr,s+1 = A0δRxr,s +B0ϕr,s + δRwr,s, (5)

er,s+1 = er−1,s+1 − C0A0δRxr,s − C0B0ϕr,s

−C0δRwr,s − δRvr,s. (6)

Combining (5) and (6), a transferred 2-D system can be
derived:[

er,s+1

δRxr,s+1

]
=

[
I −C0A0

0 A0

] [
er−1,s+1

δRxr,s

]
+

[
−C0B0

B0

]
ϕr,s +

[
−C0

I

]
δRwr,s +

[
−I
0

]
δRvr,s+1.

(7)

The output equation can be described as follows:

y2dr,s =

[
C0 0
0 I

] [
δRxr,s
er−1,s+1

]
+

[
I
0

]
δRvr−1,s. (8)

By introducing the following notations:

xhr,s
∧
= er−1,s+1, xvr,s

∧
= δRxr,s, (9)

then (7) can be represented as a Roesser model.[
xhr+1,s

xvr,s+1

]
= A

[
xhr,s
xvr,s

]
+Bϕr,s

+WδRwr,s +HδRvr,s+1.
(10)

Notice that the lower left part of the matrix A is zero, a no-
table feature of the transferred model. In the 2-D Roesser
system (10), designing the input signal ϕr,s is equivalent
to designing the updating law for the original ILC system,
and performance assessment of the ILC system is trans-
ferred to assess the performance of the transferred 2-D
system (10). Because the original ILC model parameters
are unknown, the transferred 2-D model is unknown as
well. Therefore, it should be identified before performance
assessment.

3. CLOSED-LOOP SUBSPACE IDENTIFICATION
FOR 2-D CRSD SYSTEM

3.1 Problem formulation and subspace equations

If the 2-D CRSD system is observable, one can turn the
2-D CRSD Roesser model to its process form described as
following equivalent innovation representation:[

xhr+1,s

xvr,s+1

]
=

[
A1 A2

0 A4

] [
xhr,s
xvr,s

]
+

[
B1

B2

]
ur,s

+

[
K1

K2

]
θr,s,

(11)

yr,s = [C1 C2 ]

[
xhr,s
xvr,s

]
+Dur,s + θr,s. (12)

The white noise vectors θr,s is the innovation sequence of
the Kalman filter, and K1 and K2 are, respectively, the
horizontal and vertical Kalman gains.

Referring to Ramos et al. (2011), one can derive the basic
2-D CRSD subspace matrix equations through the itera-
tive substitution procedures of (11) and (12) as follows:

Yf = Γh
iX

h
f +Hh

i Uf +Kh
i Ef (13)
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Yp = Γh
iX

h
p +Hh

i Up +Kh
i Ep (14)

Xh
f = Ai

1X
h
p + ∆h

i Up +∇h
i Ep, (15)

where p and f denote the past and future. h and v denote
the horizontal and the vertical. The future and past output
block-Hankel matrices are arranged as follows:

Yf (k) =


yi,k yi+1,k · · · yi+j−1,k
yi+1,k yi+2,k · · · yi+j,k

· · · · · ·
. . . · · ·

y2i−1,k y2i,k · · · y2i+j−2,k

 ∈ Rli×j ,

Yf =
[
Yf (0) Yf (1) · · · Yf (M)

]
∈ Rli×j(M+1),

Yp (k) =


y0,k y1,k · · · yj−1,k
y1,k y2,k · · · yj,k

· · · · · ·
. . . · · ·

yi−1,k yi,k · · · yi+j−2,k

 ∈ Rli×j ,

Yp =
[
Yp (0) Yp (1) · · · Yp (M)

]
∈ Rli×j(M+1),

where i and j are the tunable, user-defined parameters.
It is worth noting that the row dimension of Yf can be
different with that of Yp. The future and past deterministic
input block-Hankel matrices are defined as follows:

Uf (k) =


ui,k ui+1,k · · · ui+j−1,k
ui+1,k ui+2,k · · · ui+j,k

· · · · · ·
. . . · · ·

u2i−1,k u2i,k · · · u2i+j−2,k

 ∈ Rmi×j ,

Up (k) =


u0,k u1,k · · · uj−1,k
u1,k u2,k · · · uj,k

· · · · · ·
. . . · · ·

ui−1,k ui,k · · · ui+j−2,k

 ∈ Rmi×j ,

Uf =


Uf (0) Uf (1) · · · Uf (M)

0 Uf (0) · · · Uf (M − 1)

· · · · · ·
. . . · · ·

0 0 · · · Uf (0)

 ∈ Rm(M+1)i×j(M+1),

Up =


Up (0) Up (1) · · · Up (M)

0 Up (0) · · · Up (M − 1)

· · · · · ·
. . . · · ·

0 0 · · · Up (0)

 ∈ Rm(M+1)i×j(M+1).

The future and past innovation block-Hankel matrices Ef

and Ep are defined conformably with Uf and Up. The
horizontal state sequences Xh

f and Xh
p are defined as

follows:

Xh
f (k) =

[
xhi,k x

h
i+1,k · · · xhi+j−1,k

]
∈ Rnh×j ,

Xh
f =

[
Xh

f (0) Xh
f (1) · · · Xh

f (M)
]
∈ Rnh×j(M+1),

Xh
p (k) =

[
xh0,k x

h
1,k · · · xhj−1,k

]
∈ Rnh×j ,

Xh
p =

[
Xh

p (0) Xh
p (1) · · · Xh

p (M)
]
∈ Rnh×j(M+1).

In (13) and (14), the extended horizontal observability
matrix Γh

i and the related information matrices Hh
i and

Kh
i are given by

Γh
i =

 C1

C1A1

· · ·
C1A

i−1
1

 ∈ Rli×nh ,

Hh
i =

[
Hh

T Ghv
T Cv

]
,Kh

i =
[
Kh

T Ghv
T Kv

]
,

where the lower block triangular Toeplitz matrices Hh
T ,

Ghv
T ,Kh

T and extended vertical controllability-like matrices
Cv and Kv are defined as follows:

Hh
T =


D 0 · · · 0

C1B1 D · · · 0

· · · · · ·
. . . · · ·

C1A
i−2
1 B1 C1A

i−3
1 B1 · · · D

 ∈ Rli×mi,

Ghv
T =


C2 0 · · · 0
C1A2 C2 · · · 0

· · · · · ·
. . . · · ·

C1A
i−2
1 A2 C1A

i−3
1 A2 · · · C2

 ∈ Rli×nvi,

Kh
T =


I 0 · · · 0

C1K1 I · · · 0

· · · · · ·
. . . · · ·

C1A
i−2
1 K1 C1A

i−3
1 B1 · · · I

 ∈ Rli×li,

Cv =
[

(Ii ⊗B2) (Ii ⊗A4B2) · · ·
(
Ii ⊗AM−1

4 B2

) ]
∈ Rnvi×mMi ,

Kv =
[

(Ii ⊗K2) (Ii ⊗A4K2) · · ·
(
Ii ⊗AM−1

4 K2

) ]
∈ Rnvi×lMi ,

where Ii denotes an (i× i) identity matrix and ⊗ denotes
the Kronecker matrix product.

3.2 2-D closed-loop identification with SIMPCA

The main idea of the subspace identification model via
PCA (SIMPCA) relies on the parity space (Wang and Qin
(2006)). The instrument SIMPCA for a closed-loop 2-D
CRSD Roesser system shows its advantages, as well as its
consistent model estimations under the EIV situation.

Moving the term containing Uf from right to the left side
of (13), the structure that both input and output variables
are in the same side can be achieved. To calculate the
related information matrices, the unknown term Ef should
be eliminated. Because Ef is independent of the past input

Up and output Yp, the past data combination Wp =

[
Yp
Up

]
can be used as the orthogonal projection instrumental
variable. Orthogonally projecting (13) onto Wp yields:[

I −Hh
i

]
Wf/Wp = Γh

iX
h
f /Wp +Kh

i Ef/Wp, (16)

where Wf =

[
Yf
Uf

]
∈ R(li+m(M+1)i)×j(M+1) is the future

data combination. The last term of (16) is zero. Consider-
ing this, (16) can be simplified to[

I −Hh
i

]
Wf/Wp = Γh

iX
h
f /Wp. (17)

By pre-multiplying
(

Γh
i
⊥
)T

, the transpose of the orthog-

onal complement of Γh
i , (17) can be transformed to(

Γh
i

⊥)T [
I −Hh

i

]
Wf/Wp = 0. (18)
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Define Z = Wf/Wp and perform singular value decompo-
sition of Z as follows:

Z = [U1 U2 ]

[
S1

0

] [
V T
1

V T
2

]
.

The column space of
(

Γh
i
⊥
)T [

I −Hh
i

]
is equal to the

orthogonal column space of Z.((
Γh
i

⊥)T [
I −Hh

i

])T

= U2M, (19)

where M ∈ R(li−nh)×(li−nh) is any constant nonsingular

matrix and U2M can be partitioned into

[
P1

P2

]
. Therefore,

(19) can be formulated as follows:[
Γh
i
⊥

−
(
Hh

i

)T
Γh
i
⊥

]
=

[
P1

P2

]
. (20)

The 2-D subspace identification method proposed by
Ramos cannot deal with the noise. However, the SIMPCA
can deal with the noise in a 1-D structure. Consequently,
combining the two methods, one can estimate the associ-
ated system matrices A1, A2, A4, B1, B2, C1, C2, D with
a similarity transformation from Γh

i and Hh
i . Readers are

referred to Ramos et al. (2011), Ramos and dos Santos
(2011) for details on the realization procedures.

4. PERFORMANCE ASSESSMENT

After obtaining the identified model, the mentioned per-
formance assessment methods for ILC can be conducted.
For convenience, the following notations are introduced:

X(i+ 1)
∧
=

[
xhr+1,s

xvr,s+1

]
, X(i)

∧
=

[
xhr,s
xvr,s

]
. (21)

The identified 2-D system can be described as follows:

X(i+ 1) = AX(i) +Bϕ(i)
+WδRwr,s +HδRvr,s+1,

(22)

and the 2-D LQG cost function can be presented as follows:

JLQG = E

{
M∑
i=1

XT (i) QX(i) +

M∑
i=1

rT (i)r(i)

}
(23)

where Q =

[
λ1In×n 0

0 λ2I1×1

]
. Solve the 2-D LQG prob-

lem to obtain the optimal state feedback control law as
follows:

ϕ(i) = −KX(i), (24)

where

K = (BTPB + I)−1BTPA. (25)

Which presents the state feedback gain matrix. Matrix P
can be obtained by solving the following Riccati equation:

P = ATPA−ATPB(BTPB + I)−1BTPA+Q. (26)

Then the identified 2-D system can be expressed as follows:[
xhr+1,s

xvr,s+1

]
= (A−BK)

[
xhr,s
xvr,s

]
+WδRwr,s

+HδRvr,s+1.
(27)

The cost function describes a tradeoff between state vari-
ance and input variance when minimizing the cost func-
tion. A 2-D surface can be used to describe the tradeoff.
Before obtaining the 2-D surface, let us define:

ϕlqg = trace {V ar[ϕr,s]} ,
xhlqg = trace

{
V ar[xhr,s]

}
,

xvlqg = trace
{
V ar[xvr,s]

}
.

(28)

By varying λ1, λ2 and obtaining the values of xhlqg, xvlqg,
and ϕlqg, a plot of xhlqg, xvlqg and ϕlqg describes the
optimal 2-D LQG benchmark surface (Fig. 1), which can
be used to assess the performance of the identified 2-D
system.
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Var(xh)

Var(xv)

V
ar

(φ
)

Fig. 1. 2-D performance assessment surface

The x-axis, V ar(xh), presents the variance of the horizon-
tal state. V ar(xh) also refers to the variance of states in
the original ILC system. Therefore, if the system converges
faster, V ar(xh) becomes smaller. The y-axis, V ar(xv),
presents the variance of the vertical state. It also refers
to the variance of the tracking error in the original ILC
system. As the tracking performance becomes better,
V ar(xv) becomes smaller. The z-axis, V ar(ϕ), presents
the variance of the input signal in the 2-D system. V ar(ϕ)
also means the variance of the updating law in the orig-
inal ILC system. If the system costs less energy, V ar(ϕ)
becomes smaller.

5. SIMULATIONS

5.1 Identification results

Here a linear batch process described as a time invariant
state space model is considered

xr,s+1 = A0xr,s +B0ur,s + wr,s,
yr,s = C0xr,s + vr,s,

(29)

where A0 =

[
−0.8 −0.22

1 0

]
, B0 =

[
1
0

]
, C0 = [ 1 0 ].

Then, the corresponding 2-D CRSD Roesser system in its
innovation representation can be formulated as follows:[

xhr+1,s

xvr,s+1

]
=

[
I1×1 −C0A0

02×1 A0

] [
xhr,s
xvr,s

]
+

[
−C0B0

B0

]
ϕr,s

+

[
K1

K2

]
θr,s
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yr,s =

[
I1×1 01×2
01×1 C0

] [
xhr,s
xvr,s

]
+ θr,s

Thus, the 2-D CRSD model in this example is given by
(11) and (12) with the following numerical values

A1 = I1×1 = [1] , A2 = −C0A0 = [ 0.8 0.22 ] ,

A4 = A0 =

[
−0.8 −0.22

1 0

]
,

A =

[
A1 A2

0 A4

]
=

[
1 0.8 0.22
0 −0.8 −0.22
0 1 0

]
,

B1 = −C0B0 = [−1] , B2 = B0 =

[
1
0

]
,

B =

[
B1

B2

]
=

[−1
1
0

]
,

C1 =

[
01×1
I1×1

]
=

[
0
1

]
, C2 =

[
C0

01×2

]
=

[
1 0
0 0

]
,

C = [C1 C2 ] =

[
0 1 0
1 0 0

]
, D =

[
0
0

]
.

To test the proposed data-driven method, the above-
mentioned matrices are assumed to be unknown and are
not used in the sequel. To verify the consistency and
efficiency of the proposed methods for closed-loop 2-D
CRSD system identification, a series of simulation tests
were conducted. For illustration, 30 groups of Monte-Carlo
tests were performed with a set of 2-D input-output data
signals {ϕr,s, yr,s} for r ∈ [ 0 30 ] and s ∈ [ 0 100 ] taken
in each test for implementation. User-defined parameters
i = 5 and j = 32 were selected in these experiments.
Finally, the identified 2-D CRSD system matrices were as
follows:

Ā =

[
1 0.0916 1.3618
0 −0.0114 0.6529
0 −0.3232 −0.7886

]
, B̄ =

[
1.7321
0.8163
−1.0724

]

C̄ =

[
−0.5774 0.0000 0.0000

0 0.9656 −0.1975

]
D̄ = 1.0e− 014 ∗

[
0.1888
0.2284

]
Table 1. Eigenvalues of A and Ā along with

performance index of mean square error

True model Identified model

α1 1.0000 1.0000
α2 -0.4000 + 0.2449i -0.4000 + 0.2449i
α3 -0.4000 - 0.2449i -0.4000 - 0.2449i

MSE – 0.1058

The mean value of the 2-D CRSD plant eigenvalues and
mean square error (MSE) averaged from 30 runs are
presented in Table 1. From previous results, it can be seen
that consistent estimation and good accuracy are achieved
by the proposed SIMPCA for the closed-loop 2-D CRSD
models. Moreover, the tuning parameters i and j can be
adjusted to improve the efficiency of the proposed closed-
loop subspace identification method.

5.2 Performance assessment cases

After obtaining the identified 2-D model, the performance
assessment surface can be obtained. Defining Q and R

first, Q =

[
λ1 0 0
0 λ1 0
0 0 λ2

]
, R = 1, and varying λ1, λ2, we

solve the LQG problem to obtain different optimal state
feedback gain matrix K. For the different K, there exists
an optimal performance point. Based on these points, the
performance assessment surface can be obtained. With the
process input and output data, the current performance
point of the original ILC system can be calculated. Then,
the possibility of whether system performance can be im-
proved is determined by using the performance assessment
surface and the result is shown in Fig. 2.
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Fig. 2. Performance assessment for the original ILC system

Fig. 2. shows that the current performance point is lo-
cated at the right top part above the surface, and there
is considerable distance between the point and surface,
which means the system will perform better by retun-
ing parameter. Next for the sake of comparison, we use
particle swarm optimization (PSO) algorithm to optimize
the PID parameters of ILC controller. After retuning the
parameters, the performance point can be obtained. The
performance assessment result is shown in Fig. 3.
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Fig. 3. Performance assessment of enhanced system. The
black square point (0.0272, 0.0520, 0.0512) is the PSO
enhanced ILC system performance point, and the red
circle point is (0.1401, 0.0543, 0.0833).
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Clearly, the PSO-enhanced ILC system performs better
because its performance point is located closer to the
surface. Along the V ar(xh) axis, the retuned performance
point is smaller than the original performance point, which
means that the retuned system converges faster. Along
the V ar(ϕ) axis, the retuned system costs less energy
than the original system. Along the V ar(xv) axis, the
retuned performance point is bigger than the original
performance point, which means the retuned system has
worse tracking performance because of the tradeoff among
tracking performance, system convergence performance
and the input energy.

6. CONCLUSION

This study proposed a novel 2-D LQG benchmark based
data-driven control performance assessment method for
batch processes under ILC. As the process model param-
eters are unknown, this work converted the general ILC
model into a two-dimensional Roesser model first. And
then, this study proposed a novel closed-loop 2-D CRSD
model subspace identification method for the transferred
parameter unknown 2-D model. After identifying the 2-
D model, an LQG benchmarkCbased ILC performance
assessment method can be utilized. The proposed closed-
loop 2-D CRSD model subspace identification method
and the ILC performance assessment method are demon-
strated via simulations.Actually, the proposed closed-loop
2-D subspace identification method only aims to the 2-
D CRSD model, and a general closed-loop 2-D subspace
identification will be our future research. The CPA for
the ILC controlled batch processes with time delay will
be considered in the future.
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