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Abstract: A key challenge in production optimization is handling of model uncertainty. Tra-
ditionally, production optimization is done in a deterministic setting, ignoring the uncertainty.
In this work, we formulate the problem as a two-stage stochastic programming problem. The
solution to the problem is a strategy for operating the wells, instead of a single setpoint obtained
from the deterministic problem. This strategy is easy to follow for the operator. A synthetic case
study shows how the proposed approach increases the expected oil production by 1.5 percent.
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1. INTRODUCTION

In the exploitation of oil and gas, Real Time Optimization
(RTO) can be used to optimize the production. RTO is
a widely studied topic, see Tosukhowong et al. (2004),
and although no widely accepted formal definition of
RTO exists, it is used to denote a workflow where some
of the decision variables are optimized by the use of
mathematical optimization. A control hierarchy is often
structured in layers according to time scales. In the context
of upstream production, this hierarchy is divided into
the four layers, asset management, long-term reservoir
management, production optimization in daily operation,
and control and automation (Foss and Jensen, 2011). We
will in this work focus on production optimization, where
typical control inputs include production choke opening
and gas-lift rates. However, this layer is closely linked
to the other layers, especially reservoir management. An
early reference in the context of petroleum production is
Saputelli et al. (2003), and a later overview of RTO can
be found in Bieker et al. (2007a). The remainder of this
paper will focus on this application domain.

In RTO, a mathematical model is employed when optimiz-
ing the performance of the system. This model is used to
predict the outcome when changing decision variables, e.g.
a model may describe an oil well by predicting flow rate
for various choke openings. However, the model may fail to
accurately predict the outcome due to model uncertainty.
For example when the model is based on recent production
data, it will often be accurate in the region around the
current operating point, but poor when evaluated further
away from this operating point. Models used in produc-
tion optimization and reservoir management are inherently
uncertain. This is due to the complexity of the system,
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difficulty in modeling multiphase flow and sparsity of well
tests. If special precautions are not taken, the solution
to the optimization problem might be in a region where
we do not trust the model, and the output might thus
have to be disregarded. The model uncertainty challenge
was articulated in Bieker et al. (2007a); “The handling
of model uncertainty is a key challenge for the success of
RTO”.

Although models are uncertain, this is often neglected
when solving RTO problems. The most common approach
is to solve what is known as the expected value problem.
That is using the expected value of the uncertain param-
eters, e.g. using the gas-oil-ratio (GOR) and water cut
(WC) from the most recent well test of each well. Thus,
the fact that these values are uncertain does not enter
into the formulation of the optimization problem. For an
unconstrained problem, this might still be a viable ap-
proach, although no guarantee of optimality can be given.
For a constrained problem, however, this approach has
some serious flaws. Consider the production optimization
problem where the objective is to maximize oil production,
subject to a constraint on the gas processing capacity.
When the gas processing capacity is limiting the produc-
tion, the solution to the optimization problem will be at
the constraint, that is, the modeled gas flow at the solution
will be equal to the capacity constraint. If the solution
were to be implemented directly, there is a chance that
the constraint will be violated, but also a chance for the
constraint to be inactive, such that there is spare capacity
left. This happens because of model uncertainty, where
the actual response of the system deviate from the model
output.

The operator will, in a petroleum production setting,
adjust the controls iteratively in order to reach the sug-
gested setpoint. Thus, when there are multiple wells, there
are multiple paths in order to reach the setpoint. If the
operator discovers that he can not reach it, meaning it
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is infeasible, he might simply disregard it, and end up
somewhere in between the prior operating condition and
the suggested one. Thus, it is clear that the selected path
will affect the outcome. However, this fact is actually not
included in the optimization problem.

When solving the expected value problem, often denoted
as the deterministic problem, we make the assumption that
everything about the problem is perfectly known. We can
then find a setpoint for all the control inputs, which will be
optimal for the formulated problem. In this context, the
solution will be feasible provided a feasible point exists.
However, because of model uncertainty, there is a great
chance the solution is unreachable. To overcome this, we
can formulate the problem such that the solution will be
feasible with a high probability. This can be done by using
chance constraints, or in an even more conservative way,
by applying a robust formulation. With chance constraints
or a robust formulation, we can be quite certain that the
solution will be feasible in practice, the drawback, however,
is that the solution may be quite conservative.

In the deterministic world, where everything is known, it
makes sense that the solution to the optimization problem
is a setpoint for all the wells. In the real world, however,
it is sensible to challenge this approach. Thus, in this
paper, we propose a two-stage optimization formulation
that defines an operational strategy rather than a single
operating point. We also argue that such a strategy fits
nicely into the mindset of operators.

We give a short overview of previous work in Section 2,
before focusing on stochastic programming in Section 3.
The mathematical formulation of our approach is given in
Section 3.1. We then evaluate the approach on 3 different
synthetic cases with increasing complexity in Section 4,
ahead of a discussion of the results and conclusion in
Section 5.

2. PREVIOUS WORK

There exists numerous publications on reservoir manage-
ment under uncertainty, amongst others (van Essen et al.,
2009; Chen et al., 2011). Uncertainty usually enters the
reservoir optimization problems by the use of multiple re-
alizations to span subsurface uncertainty. Published work
does not, to the authors’ knowledge, include capacity con-
straints, except for Chen et al. (2011), where they use a
robust formulation to handle such constraints.

There are only a few published papers on short term pro-
duction optimization under uncertainty. In Elgsæter et al.
(2010), a structured approach for changing the setpoint
when there is uncertainty is proposed. The uncertainty
is, however, not considered in the optimization itself,
only to assess the solution. To our knowledge, the only
publication where the uncertainty is explicitly handled
in the optimization problem is by Bieker et al. (2007b).
They propose to formulate the optimization solution as
a priority list between the wells. This list represents an
operational strategy, thus whenever there is spare capacity
or the opposite, the priority list is applied.

Although many deterministic formulations result in a
single operating point, there are some methods which
naturally extends to a strategy. The ideas of using in-

cremental GOR for rate dependent wells in Urbanczyk
and Wattenbarger (1994) and Barnes et al. (1990), can
be thought of as strategies rather than providing specific
operating points. However, these methods works for only
one constraints, and are not easily extended for multiple
constraints.

3. PRODUCTION OPTIMIZATION BY STOCHASTIC
PROGRAMMING

A general deterministic optimization problem can be for-
mulated as

min
x
J(x) s.t. c(x) ≤ 0 (1)

When the problem contains uncertainty, both the objective
and the constraints can be dependent on a stochastic pa-
rameters, denoted ω. Thus, the objective and constraints
are no longer deterministic, but rather stochastic variables.
To compare two different stochastic objective functions, we
must compare distributions instead of scalars. A natural
approach is therefore to compare expected values. Methods
emphasizing some quantile of the distribution is also typi-
cal. Since the short term production optimization problem
is solved on a daily basis over many years, it is reasonable
to use the expected value. For the reservoir optimization
problem, however, a more conservative approach could be
more reasonable.

While handling uncertainty in the objective boils down to
assessing distributions instead of scalars, constraints are
fundamentally different. The satisfaction of a constraint
on average is often inadequate, while a robust formulation
ensuring that the constraints hold with probability 1, can
lead to an overly conservative solution. A middle of the
road approach is to use chance constraints, formulating
the problem as

min
x

E[J(x, ω)] s.t. Pr.{c(x, ω) ≤ 0} ≥ α (2)

so that the solution must hold with a predefined probabil-
ity α. The solution of (2) will, however, with probability
α have a margin to the constraint. In the production op-
timization problem with capacity constraints, this means
there will probably be spare capacity when the solution
is implemented. The operator might try to utilize this,
but it is not included in the optimization problem. Thus,
the final implemented operating point is dependent on
the optimized solution and the operators implementation
strategy.

Since the constraints are uncertain, it is not possible to
provide the operator with a single setpoint for all the
wells, such that it is feasible with probability 1, while
at least one capacity constraint is active. However, we
could specify a setpoint for each well, and in addition
specify which well to turn up to utilize additional spare
capacity. The initial setpoint should be feasible with a high
probability. This is similar to how many fields are operated
today, using a swing producer to utilize any spare capacity.
The difference is that we include this information into the
optimization problem itself, and the setpoint is calculated
with awareness of this second phase. Which well to use as
a swing producer will also be part of the solution to the
optimization problem. Because of different well properties
and dynamics, certain wells might be more suitable to
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use as swing producer. This can easily be included in the
problem formulation by constraints.

If there is substantial uncertainty in the well models,
it might be difficult to provide a setpoint with a high
probability of being feasible, while guaranteeing that all
spare capacity is utilized by the swing producer. It is then
necessary to use multiple swing producers. The solution
can then be a list of setpoints to the operator. At each step,
the operator should turn up one well to a specified opening,
until he reaches a capacity constraint, or, optionally, that
all wells are fully open. The initial setpoint to each well
must, however, be a feasible configuration.

The above approach can be seen as a generalization of
the priority list by Bieker et al. (2007b). By restricting
the initial setpoint such that all wells are closed, the
last setpoint leaving all wells fully open, the number of
steps equal the number of wells, and only one capacity
constraint, the approaches are identical.

In the case of multiple capacity constraints, we assume
that the operator will follow the list until one of the
constraints becomes active, and stop there. We assume
the operator can determine if a constraint is active or not
and do not rely on measurements of the distance to a
constraint, for instance measurements of total produced
gas rate. If such measurements are reliable and available,
it opens up for a wide range of on-line optimization
and extremum seeking approaches, as it permits on-line
identification. This would result in a complex operating
strategy for the operator, while our approach yields a
simple strategy.

3.1 Mathematical formulation

We can formulate our approach as a two stage-problem,
by the use of Sample Average Approximation (SAA). The
first stage decision is the strategy on how to operate the
controls, while the second stage variables are the actual
operating points for different realizations of the unknown
parameters. Further, the second stage variables have to
obey the strategy defined by the first stage variables. It is
the first stage variables we are really interested in, but to
evaluate the effect of them, we must consider a range of
different scenarios.

We assume linear well models, and the decision variable
of each well is a setpoint specifying an opening between 0
and 1, where 1 means it is fully open. The deterministic
problem can then be modeled as

max
xd

∑
i∈I

cix
d
i s.t.

∑
i∈I

ai,kx
d
i ≤ bk ∀ k ∈ B (3)

where xdi is the setpoint for well i. Superscript d denotes
deterministic. In general, subscript is used for denoting
index sets, and superscript for description of variables or
parameters. The sets are defined in Table 1. ci and ai,k
include the model parameters, calculated by using the
mean of any uncertain well parameter. bk defines the k’th
capacity constraint.

For the stochastic formulation, the strategy is given by ns

steps. These steps are defined by ns + 1 points. The first
stage decision variables are then

0 ≤ xi,j ≤ 1 ∀ i ∈ I, j ∈ J (4)

Table 1. Sets used in model

I = {1, . . . , nd} set of wells
J = {1, . . . , ns + 1} set of points
S = {1, . . . , N} set of realizations
B = {1, . . . , nc} set of capacity constraints

where xi,j is the well opening of well i at point j. At each
step, only one decision variable can be changed. This is
handled by introducing the binary variable yi,j , which is 1
if decision variable i can change in step j, from point j to
j + 1. This is modeled by

xi,j−yi,j ≤ xi,j+1 ≤ xi,j+yi,j ∀ i ∈ I, j ∈ J \{ns+1} (5)

When a well can not be turned back at any step, the left
inequality reduces to

xi,j ≤ xi,j+1 ∀ i ∈ I, j ∈ J \ {ns + 1} (6)

To ensure that only one well is adjusted at each step, we
require ∑

i∈I
yi,j = 1 ∀ j ∈ J \ {ns + 1} (7)

The second stage variables must obey the strategy defined
by the first stage variables, and are the operating point as
if the parameters was known precisely. zi,s is the opening of
well i in scenario s. To ensure that zi,s obeys the strategy
defined by xi,j , we introduce the binary variables vj,s. vj,s
is 1 when zi,s is on the line between xi,j and xi,j+1. This
can be imposed by

xi,j − (1− vj,s) ≤ zi,s ≤ xi,j+1 + (1− vj,s)
∀ i ∈ I, j ∈ J \ {ns + 1}, s ∈ S (8)

and only one vj,s can be nonzero for a scenario, thus∑
j∈J\{ns+1}

vj,s = 1 ∀ s ∈ S (9)

Note that this only works when there is a single well
changing in step j.

The capacity constraint must be satisfied for all second
stage variables, so that∑

i∈I
ai,s,kzi,s ≤ bk,s ∀ s ∈ S, k ∈ B (10)

where bk,s is the capacity constraint k of scenario s. It will
typically be one constraint for each phase. ai,s,k describes
how well i in scenario s influences constraint k.

We must also ensure that all previously visited points
defined by the strategy are feasible. This can be done by∑

i∈I
ai,s,kxi,j ≤ bk,s + (

∑
i∈I

ai,s,k − bk,s)(1−
ns∑
t=j

vt,s)

∀ j ∈ J , s ∈ S, k ∈ B (11)

However, when the setpoints are non-decreasing for all
wells, and all elements of ai,s,k are non-negative, these
constraints can be omitted.

The objective, which we want to maximize, is defined as

J =
1

N

∑
s∈S

∑
i∈I

ci,szi,s (12)

where ci,s is the oil potential of well i in scenario s.

4. CASE STUDY

The model formulated in section 3.1 is implemented in
MATLAB using YALMIP (Löfberg, 2004), while CPLEX
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Table 2. Well properties, case 1

(µGOR, σGOR) Oil potential [Sm3/d]

Well 1 (64, 20) 200
Well 2 (64.1 , 0) 300

Table 3. Well properties, case 2 and 3

(µGOR, σGOR) (µWC , σWC) Oil potential [Sm3/d]

Well 1 (337, 22) (0.47, 0.10) 518
Well 2 (400, 16) (0.32, 0.06) 885
Well 3 (360, 24) (0.45, 0.01) 662
Well 4 (397, 69) (0.32, 0.08) 630
Well 5 (393, 17) (0.58, 0.02) 545
Well 6 (336, 31) (0.30, 0.02) 950
Well 7 (380, 22) (0.32, 0.10) 253
Well 8 (353, 41) (0.54, 0.05) 971

is used for solving the optimization problem. CPLEX is
a state of the art MILP solver. The problem is solved
in its extensive form, and no attempt to exploit the
structure of the problem is made. Exploiting this structure
is complicated because of the binary second stage variables
and uncertainty in the recourse matrix. All calculations are
performed on a quad-core laptop running at 2.5 GHz with
16 GB memory.

The case study consists of 3 synthetic cases. We start with
2 wells and 1 constraint, then extend this to 8 wells and 1
constraint, before we introduce a second constraint, ending
up with 8 wells and 2 constraints. In all cases, we assume
that there is uncertainty in the GOR and WC estimates.
We assume they are given by normal distributions with
known mean and variance, and no correlation between the
GOR and WC estimates, or correlations at the well level.
The oil potential and capacity constraints are assumed
to be known precisely. In all cases, we are interested in
comparing the stochastic approach to the deterministic
solution. This is however not straight forward, since the
deterministic solution is a single point, which might be
infeasible. When there is only one constraint, there is a
natural prioritizing of the wells. The deterministic solution
is then evaluated by following this prioritizing, until a
constraint is hit or all wells are fully open. However, there
is no natural extension to multiple constraints.

For a real life application, great effort must be put into
describing the uncertainty. In Elgsæter et al. (2008), boot-
strapping is used for obtaining parameter and uncertainty
estimates. The focus of this work is, however, solving the
resulting optimization problem.

Case 1; 2 wells, 1 constraint: Two synthetic linear well
models are defined by the properties in Table 2. The total
gas processing capacity is set to 60% of the expected total
gas when both wells are fully open. The stochastic problem
is defined to be a single step, resulting in two points.

The deterministic solution is operated by turning up well 1
first, since it has a marginally lower expected GOR, before
opening well 2.

Case 2; 8 wells, 1 constraint: 8 linear well models are
defined by the properties in Table 2. The WC is not used
in this case. Again, the deterministic solution is operated
by prioritizing according to expected GOR. The total gas
processing capacity is set to 60% of the expected total gas
when all wells are fully open.

Case 3; 8 wells, 2 constraints: Case 2 is extended by
also including a water handling capacity, set to 60% of the
expected total water production when all wells are fully
open. The uncertain WC properties are given by normal
distribution and parameters are listed in Table 3.

4.1 Results

Because of the computational complexity, the stochastic
problems are solved with a relatively small number of
scenarios. However, all solutions are evaluated over 10 000
realizations generated from identical distributions, which
we denote as the statistical ensemble.

The first point of the stochastic solutions will be feasible
for all scenarios considered in the optimization problem.
However, there is no guarantee it will be feasible for
all scenarios in the statistical ensemble. To make a fair
comparison, we extend the strategy from the stochastic
solution, so that is turned up sequentially from the origin
to the first point. This is done by the well numbering.
Similarly, we extend the solution to sequentially set all
wells to fully open after the last point.

Case 1: Figure 1 illustrates how the two wells are operated
for the different strategies. The black lines shows the
probability for the capacity constraint being satisfied. The
deterministic solution is the single point plotted as a circle.
The operational strategy, however, implies opening well
1 first and subsequently well 2 until production hits the
capacity limit. The stochastic problem was defined by a
single step, which is the horizontal part of the path, but as
already explained, it is extended to make the comparison
fair. The stochastic based strategy entails opening well 2
up to about 70% before opening well 1 until the capacity
is fully exploited. Both strategies can therefor be seen as
a path from fully closed to fully open wells.

In Figure 2, we observe a box plot of the actual well
opening, evaluated on the statistical ensemble. The red
line is the median, the edges of the box are 25th and
75th percentile, while the whiskers show the most extreme
values. For the deterministic case, the red cross is the
setpoint from the deterministic problem.

In Figure 3, we show the histogram of the total oil
production for the different approaches. The mean for
the deterministic approach is at 300 [Sm3/d], while it is
310 [Sm3/d] for the stochastic approach, which yields an
improvement in expected oil production of about 3.3%.

The stochastic problem was solved with 100 realizations.
The solver returned a proven global optimum in less than
a second.

Case 2: In Figure 4 shows the histograms for the total
oil production. The mean for the deterministic approach
is 3411 [Sm3/d], while it is 3414 [Sm3/d] for the stochastic
approach.

The stochastic problem was solved with 100 scenarios,
using two steps. After one hour run time, the optimization
was terminated with an optimality gap of 0.4%. The best
integer feasible solution had not been improved during the
latter 50 minutes.
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Fig. 1. Illustrating the different strategies/paths for case 1

Fig. 2. Statistics of actual well opening for case 1

Fig. 3. Histogram of total oil production for case 1

Fig. 4. Histogram of total oil production for case 2

Case 3: When there are multiple constraints, there is
no natural prioritization of the wells, when evaluating
the deterministic solution. One option is to order by
either GOR or WC, or some weighted average of these.
A wide range of orderings were tested, and it turned
out that ordering by WC seemed to be a reasonable
choice. We include results based on GOR and WC priority,
respectively, for the deterministic problem. Again, the
stochastic problem was solved with 100 scenarios, using
two steps. After one hour run time, the optimization was
terminated with an optimality gap of 0.8%.

In Figure 5, we see a boxplot of the well openings for the
different scenarios. This resulted in a mean total oil pro-
duction of 3116 [Sm3/day] for the deterministic GOR pri-
ority approach, 3252 [Sm3/day] for the deterministic WC
priority approach, and 3301 [Sm3/day] for the stochastic
approach. This is an improvement of 1.51% or 5.94%,
depending on the chosen baseline approach. In Figure 6,
the histogram for total oil production is shown. To keep
the figure readable, only the deterministic WC priority and
stochastic approach are shown.

5. DISCUSSION AND CONCLUSION

In the small constructed case 1, we saw that we could
achieve an increase in expected oil production of about
3.3%. This was done by solving the stochastic two stage
problem, which takes the uncertainty into account. The
two wells are very similar in expected value, but well 1 is
slightly “better” then well 2, although the estimate of well
1 is uncertain. The deterministic approach is unaware of
this uncertainty, while the stochastic approach is able to
exploit this information. By first setting well 2 to about
70%, and then opening well 1, we are able to limit the
effect when well 1 is worse than expected, while most of
its potential is utilized if it is better than expected. This
occurs because of how we reach the constraint. However,
when we look at the 8 wells in case 2, we no longer have any
significant benefit from considering the stochastic solution.
When there are multiple uncertain wells, we are not
able to control the final approach towards the constraint
accurately, and we can not benefit from the effect as in
case 1. Furthermore, if it were only one uncertain well,
and we could control the final approach accurately, the
benefit does not scale with problem size.

When there are multiple constraints, there is an advantage
of using the stochastic approach. The performance of the
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Fig. 5. Statistics of actual well opening for case 3

Fig. 6. Histogram of total oil production for case 3

deterministic solution depends on the chosen operational
strategy. We tried various priorities of the deterministic
solution, and the WC prioritizing worked best in this case
study. However, even in this case, there was an expected
increase in total oil production by about 1.5% when
considering the stochastic solution. From the histograms
in Figure 6, we note that we are able to limit the worst
case behavior.

We have assumed GOR and WC were given by normal dis-
tributions. GOR enters directly in the capacity constraint,
while WC is used to calculate the water-oil ratio (WOR)
by WOR = WC

1−WC . This means WOR is not given by
a normal distribution, but a distribution with a longer
tail towards high WOR values. This explains why the WC

prioritization works well in this case. In a real application,
estimating these distributions is very important.

We have shown that the stochastic approach has a poten-
tial for increasing expected total oil production, when con-
sidering linear wells and multiple constraints, compared to
the deterministic solution. The method is computational
demanding, thus further research will study how to exploit
problem structure. The methodology can be extended to
nonlinearly behaving wells, although this will increase the
complexity significantly.
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