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Abstract: Steam quality is a critical process variable in the once through steam generator (OTSG) 

operation. However, the lack of online measurement and closed loop control of steam quality limits the 

efficient operation of OTSGs. To resolve this problem, this paper presents a model predictive control 

(MPC) solution based on soft sensor measurement for OTSG steam quality. Bad status handling strategy 

is outlined to ensure reliable estimation and control results. Instrumentation reliability issue is also 

considered in the MPC design. Successful application results have demonstrated effectiveness of the 

developed control strategy. 
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1. INTRODUCTION 

Alberta oil sands play important roles in North American and 

world energy market. It is estimated that over 80% of the oil 

sands reserves in Alberta are too deep to be extracted with the 

conventional mining approach (Acosta 2010). An alternative 

technology to retrieve these deeply buried oil sands is called 

SAGD (steam-assisted gravity drainage). High pressure 

steam is continuously injected into the underground 

formation to heat the bitumen and reduce its viscosity. The 

melted oil, together with the steam condensate, is then 

pumped out. The emulsion from the wells is processed in the 

central plant, where oil is separated from water and sold to 

the market. The recovered water is recycled and used to 

generate steam. In comparison to the mining approach, only 

about 15% of the surface land in the development area is 

disturbed (Suncor Energy 2014). SAGD operation also 

consumes much less water than mining. More than 90% of 

the process water is recycled. However, a large amount of 

natural gas is required to generate steam in SAGD operation. 

There is a strong incentive from the industry to reduce energy 

intensity of the steam generation process. 

A common steam generation process in the SAGD operation 

is the once through steam generator (OTSG).  It is a type of 

tube boiler without a boiler drum. A key variable in the 

OTSG operation is the steam quality. It is defined as the mass 

fraction in a saturated mixture that is vapour (Cengel and 

Boles 2002). Dry steam has a steam quality of 100%, and 

water has a steam quality of 0%. The boiler feed water is 

recycled from underground steam condensate, and has a high 

concentration of impurities. High steam quality will lead to 

deposition of solids in the boiler tubes, causing decreased 

heat transfer efficiency and local hot spots. If steam quality 

remains high for a prolonged period, it may result in tube 

damage or rupture. On the other hand, low steam quality 

means low energy efficiency, since the energy is only used to 

increase water temperature, but not converting water into 

steam. Therefore steam quality needs to be controlled within 

a tight range to ensure a safe and efficient OTSG operation. 

The high constrain of steam quality is 80%. The desired 

target quality is as close to the high constrain as possible. 

Unfortunately there is no reliable online measurement and 

closed loop control of OTSG steam quality. As a result, the 

steam quality is usually kept much lower than the optimal to 

maintain a safe margin.  

In this work, we propose a model predictive control (MPC) 

solution for OTSG steam quality control based on soft sensor 

measurement. The paper is organized as follows.  Section 2 

introduces the OTSG process and associated control problem. 

The steam quality soft sensor based on the work of Xie et al. 

(2013) is reviewed in Section 3, and the bad PV status 

handling strategies for a reliable soft sensor application is 

also presented. The MPC scheme for the steam quality 

control is designed in Section 4, with consideration of 

instrumentation reliability issue. Section 5 shows the 

implementation results and discusses the benefits. 

Concluding remarks are given in Section 6. 

2. PROCESS DESCRITPTION 

A simplified process flow diagram of an OTSG is shown in 

Fig. 1. The heating source of the OTSG is the natural gas 

burner. Natural gas is mixed with combustion air to burn in 

the burner. The hot exhaust gas travels in the opposite 

direction of the water flow, and the energy is then transferred 

into the water. Finally the exhaust gas exits the steam 

generator through the stack. The amount of natural gas burnt 

in the OTSG is determined by an energy balance calculation. 

The energy required is estimated by subtracting the enthalpy 

of the target water/steam mixture with the enthalpy of the 

boiler feed water. Boiler efficiency and heat loss through the 

stack are also considered in the calculation. The required 

energy is then converted into natural gas flow setpoint for 

FC8, called firing rate. The setpoint of the combustion air 

flow controller FC9 is proportional to the natural gas flow, 

with a bias from the stack O2 controller.  
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Fig. 1. Simplified OTSG process flow diagram.

The boiler feed water is fed into the steam generator by high 

pressure pumps. A control valve, FV7, at the inlet of the 

steam generator maintains the flow to a setpoint provided by 

the operator. The feed water is then split into six passes 

before being sent into the steam generator. The flow of each 

pass is controlled by a flow controller, FC1 to FC6. The 

setpoint of each pass is set by the total boiler feed water flow 

divided by six, so that the water is distributed evenly among 

the six passes. The water is heated and transformed into 

saturated steam/water mixture as it flows through the OTSG. 

Once the wet steam mixture exits the OTSG, it enters a steam 

separator, where the dry steam is separated and sent to the 

steam header, and the water is sent to the blowdown line for 

re-processing. 

In current operation, there is no closed loop control on the 

steam qualities. The steam qualities may fluctuate because of 

external disturbance. The only intervene is the infrequent 

manual adjustment on the firing rate. Also due to uneven heat 

distribution and different tube conditions, the steam qualities 

of the six passes may differ. Due to these reasons, the steam 

quality is usually kept low to avoid violating the 80% high 

constrain. 

3. STEAM QUALITY SOFT SENSOR 

A key challenge associated with the control of OTSG steam 

quality is the lack of accurate online measurement. The lab 

sample is updated every six hours. The only available online 

estimation in between the lab samples is for the overall steam 

quality, which is calculated from mass balance of the total 

boiler feed water flow and the steam blowdown flow, 

𝑄𝑚𝑎𝑠𝑠 =  1 −
𝐹𝑇8

𝐹𝑇7
.                                 (1) 

A problem with the mass balance calculation is the accuracy 

of the steam blowdown measurement. The flow transmitter 

FT8 is not properly sized. The actual flow is close to the low 

end of the calibrated range. As observed in Fig. 2, there is a 

significant bias between the lab sample and the mass balance 

estimation. 

 

Fig. 2. Mass balance steam quality estimation and lab sample 

result. 

In addition to the bias problem, the blowdown flow 

transmitter also has slow drift overtime. Fig. 3 shows the 

difference between the lab sample and the mass balance 

estimation over five months. It can be seen that the bias 

between the two is not constant. 

As for the pass quality, there is no online measurement 

available. The lab sample is only updated every six hours. 

Within the lab sampling interval, there is no indication on 

how the pass flow qualities change. 

Facing the above challenges, steam quality soft sensors based 

on the work of Xie et al. (2013) have been configured in the 

distributed control system (DCS) to provide real time 

estimations of the overall steam quality and the individual 
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pass qualities. A hybrid modelling methodology is used to 

develop the soft sensor models. Process information and 

knowledge are included to select the soft sensor inputs and to 

set up the model structure. Then the data driven approach is 

applied to identify the model parameters. 

 

Fig. 3. Bias between mass balance calculation and lab 

sample. 

The overall steam quality soft sensor predictor �̂̅�(𝑡) is 

constructed as 

�̂̅�(𝑡) = 𝑘 ∙ 𝑄𝑚𝑎𝑠𝑠(𝑡) + 𝛽(𝑡)                       (2) 

β(t) = α ∙ [�̅�(𝑡 − 1) − 𝑘 ∙ 𝑄𝑚𝑎𝑠𝑠(𝑡 − 1)] 

+(1 − 𝛼) ∙ 𝛽(𝑡 − 1) ,                    (3) 

where 𝑄𝑚𝑎𝑠𝑠(𝑡) is the mass balance quality estimation at lab 

sampling update time t, as shown in Eqn. 1; �̅�(𝑡 − 1) is the 

previous lab sample updated at sampling time t-1; k is the 

scaling parameter to overcome the proportional error of the 

mass balance estimation; 𝛼 is the forgetting factor. 

The individual pass quality model is built on the basis of heat 

balance of the pass flow. The soft sensor predictor �̂�𝑖(𝑡) for 

the i-th pass is constructed as 

�̂�𝑖(𝑡) = 𝑋𝑖(𝑡) + 𝛽(𝑡)                          (4) 

𝑋𝑖(𝑡) = 𝑘1𝑢1(𝑡) + 𝑘2𝑢2(𝑡) + 𝑘3𝑢3(𝑡)               (5) 

β(t) = α ∙ [𝑄𝑖(𝑡 − 1) − 𝑋𝑖(𝑡 − 1)] + (1 − 𝛼) ∙ 𝛽(𝑡 − 1) , (6) 

where 𝑢1(𝑡) =
𝐹𝑇7(𝑡)

𝐹𝑇𝑖(𝑡)
𝑄𝑚𝑎𝑠𝑠(𝑡), 𝑢2(𝑡) =

𝐹𝑇7(t)

𝐹𝑇𝑖(𝑡)
[𝑇𝑇8(𝑡) −

𝑇𝑇7(𝑡)], 𝑢3(𝑡) = [𝑇𝑇𝑖(𝑡) − 𝑇𝑇7(𝑡)], 𝑄𝑖(𝑡 − 1) is the 

previous lab sample for pass i;  𝑘1, 𝑘2, and 𝑘3 are the model 

parameters to be identified; 𝛼 is the forgetting factor 

parameter. 

The details of the soft sensor model structure and parameter 

identification are available in Xie et al. (2013), and will not 

be repeated here.  

Fig. 4 and 5 show the performance of the overall steam 

quality and pass 1 steam quality soft sensors. Table 1 

summarizes mean error and standard deviation of error for all 

soft sensors. We can see that all the soft sensors have good 

estimation accuracy. 

 

Fig. 4. Overall soft sensor performance. Upper plot: time 

series trend of the soft sensor and lab sample. Lower plot: 

Scatter plot of the soft sensor.  

 

Fig. 5. Pass 1 soft sensor performance. Upper plot: time 

series trend of the soft sensor and lab sample. Lower plot: 

Scatter plot of the soft sensor. 

Accuracy of the soft sensors heavily depends on process 

variable measurements and lab samples. If any of the inputs 

are not reliable, the corresponding soft sensor estimation 

results will also be questionable. In the following scenarios, a 

bad status will be marked for the soft sensor that uses the 

abnormal inputs:  

1. Process variable measurements show bad status. 

The models of the soft sensors are built based on the 

measurements of total boiler water flow, boiler 

water temperature, pass flows, pass steam outlet 

temperatures, total steam temperature, and steam 

blowdown flow. The accuracy of the soft sensor  
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Table 1. Soft sensor performance 

 Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6 Overall 

Mean error 0.022% 0.021% 0.19% 0.15% 0.17% 0.074% -0.058% 

Standard deviation 

of error 
0.70% 0.99% 1.18% 1.09% 1.17% 1.14% 0.57% 

outputs completely depends on the reliability of the 

aforementioned measurements. When an instrument 

has a bad status, it indicates that the process variable 

measurement is not reflecting the real process 

condition. Hence the soft sensor that has the bad 

measurement as an input cannot be trusted either.  

2. Process variable is out of normal range. 

The soft sensors have a limited range due to the data 

from which the model is built. If the process 

variables, including the lab samples, are beyond the 

envelope of the identification data set, the accuracy 

of the soft sensors cannot be guaranteed.  

3. Lab sample fails to update. 

Lab samples play important roles in the soft sensor 

updating scheme. It enables the soft sensor with 

adaptive ability to deal with time varying behaviour 

of the process (Mu et al. 2006). In the OTSG 

process, samples are taken by the field operators, 

and the testing results are sent into DCS via an OPC 

connection. Occasionally a sample can be missed. 

The OPC connection may also fail due to 

communication system issues. If the lab sample is 

absent for an extended period of time, the soft 

sensor output may drift away. Currently the lab 

result is updated every six hours. In consideration of 

shift changes or some other high priority operation 

issues, a time limit of 10 hours is set for the 

maximum lab update interval. If the sampling 

interval times out, the corresponding soft sensors 

will be mark as bad. 

4. MPC CONTROLLER DESIGN 

The main purpose of OTSG steam quality control is to 

achieve a common target for each individual pass quality 

while maintaining the total boiler feed water flow at a 

setpoint given by the operator. MPC is a good fit for this type 

of multi-variable control application.  

The first step to design a MPC controller is to choose the 

controlled variables (CVs). A very natural selection for the 

CVs will include the six pass qualities. However, it is 

observed that the pass steam outlet temperature 

measurements have drifting problem. Fig. 6 shows an 

example of how the pass temperatures change over 3 days’ 

period.  

 

Fig. 6. Pass temperature drifting. 

The steam pressure, however, remained the same during the 

three days. Due to the saturated nature of the steam/water 

mixture, the steam temperature should not change if the 

pressure remains constant. The common steam outlet 

temperature also remained the same during the period, which 

supports the conclusion that the pass temperature transmitters 

have a drifting problem.  

The pass temperature is a key input to the pass quality soft 

sensor model. Drifting temperature will result in drifting pass 

steam quality estimations. Fig. 7 shows pass 4 steam quality 

soft sensor output during the same period.  As seen in the 

figure, when the temperature drifts, the steam quality soft 

sensor output can have a 2% change, but such change is not 

observed in the lab samples. The pass soft sensor result is 

seriously affected by the temperature drifting issue. 

By carefully examining the temperature trend in Fig. 6, one 

can notice that the temperature drifting on all the passes 

occurs at the same time, and the magnitudes of the drifting 

are also similar. If only the differences between the pass 

qualities and the pass quality average are to be controlled, 

much of the impact caused by pass temperature drifting can 

be removed. Again pass 4 is used as an illustrative example 

in Fig. 8. The change of pass 4 quality deviation due to the 

temperature change is less than 0.5%, which is much smaller 

than the change of the absolute value.  
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Fig. 7. Impact of temperature drifting on pass 4 steam quality 

estimation. 

  

Fig. 8. Impact of temperature drifting on pass 4 steam quality 

deviation. 

Recall that the objective of OTSG steam quality control is to 

maintain the individual pass qualities to a common setpoint, 

i.e., zero deviation of all pass qualities from the setpoint. 

Thus the control objective can be re-formatted as: control all 

pass quality deviations to zero, and control the overall steam 

quality to the setpoint. 

The quality deviation of pass i is calculated as 

∆�̂�𝑖 = �̂�𝑖 −
∑ �̂�𝑗

6
𝑗=1

6
.                                (7) 

Out of the six pass quality deviations, only five of them are 

independent variables due to the degree of freedom. That is, 

for instance, if ∆�̂�1, ∆�̂�2, ⋯, ∆�̂�5 are controlled to zero, the 

other pass quality deviation ∆�̂�6 will also be zero. Hence 

only five pass quality deviations have to be controlled. The 

pass flow setpoints of the six passes, 𝐹𝐶1, 𝐹𝐶2, ⋯, 𝐹𝐶6 are 

adopted as the manipulated variables (MVs) to control the 

pass quality deviations.  

Note that the pass quality deviations do not reflect the 

absolute value of the steam qualities, so the overall steam 

quality soft sensor output �̂̅�(𝑡) has to be included as a CV. 

The firing rate trim, which is a multiplier coefficient applied 

to the enthalpy based firing rate calculation output, is selected 

as the MV for �̂̅�(𝑡). The trimmed firing rate is then applied 

to the natural gas and combustion air flow controllers. 

In current operation, the total boiler feed water flow is 

determined by the control room operators or the plant master 

controller. The local steam quality MPC controller does not 

have the privilege to change the total feed water flow. 

Therefore the summation of all the pass flow setpoints must 

be equal to the desired total flow setpoint. The summation of 

pass flow setpoints ∑ 𝐹𝐶𝑖6
𝑖=1  is included in the controller as a 

CV. 

In summary, there are in total seven CVs, and seven MVs. 

Table 2 provides a list of all the variables. 

Table 2. CV and MV list of the MPC 

Controlled variables Manipulated variables 

5 Pass quality deviations 

∆Q̂1to ∆Q̂5 

6 Pass flow setpionts 

𝐹𝐶1 to FC 6 

Overall steam quality �̂̅�(𝑡) 
Firing rate trim 

coefficient 

Total pass flow setpoint 

∑ 𝐹𝐶𝑖6
𝑖=1  

 

As discussed in Section 3, the status of soft sensor outputs 

may turn bad. We designed the following bad status handling 

strategy for the MPC controller: 

1. A pass quality soft sensor goes bad. 

The corresponding pass quality deviation will be 

removed from the CV list. The flow control for that 

pass will be switched to local control mode. The 

flow setpoint will be the total feed flow divided by 

six, and become a disturbance variable in the MPC 

controller. The pass quality will also be dropped 

from the pass deviation calculation for the other 

passes. For instance, if pass 1 quality has a bad 

status, the pass deviation for the other passes will be 

calculated as 

∆�̂�𝑖 = �̂�𝑖 −
∑ �̂�𝑗

6
𝑗=2

5
,                       (8) 

where 𝑖 = 2, 3, ⋯ ,5. 

2. Three or more pass quality soft sensors go bad. 

All pass quality deviations will be dropped from the 

MPC controller, and all pass flow controls will be 

switched to local mode, since the remaining quality 

deviations are unlikely to reflect the real process 

condition. 

3. Overall steam quality goes bad. 
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An option is to only switch the firing rate to local 

control. However, after discussion with other 

stakeholders, it is decided that switching off the 

whole MPC controller is the preferred solution, as a 

safety precaution. 

5.  CONTROL PERFORMANCE AND BENEFIT 

ANALYSIS 

The steam quality controller is configured in DCS with built-

in MPC function blocks.  

 

Fig. 9. Pass quality deviation control performance. 

Fig. 9 shows the pass quality deviation control performance. 

Pass 1 to 5 pass deviations used in the controller as CVs are 

all controlled to zero. Pass 6 quality deviation is also 

displayed in the figure. It goes to zero as the other pass 

quality deviations are controlled to zero, which endorses the 

degree of freedom analysis in Section 4. With MPC on, the 

average gap between the highest pass quality and the lowest 

pass quality is reduced from 3.08% to 0.78%. 

Fig. 10 shows the comparison of the overall steam quality 

performance. As seen in the figure, the overall steam quality 

variation is significantly reduced. The standard deviation of 

steam quality decreased from 1.35% to 0.25%.  

With the proposed MPC control, all the pass qualities can be 

controlled tightly to the target setpoint, and thus higher steam 

quality can be achieved without violating the high constrain. 

In Fig. 10, the average steam quality has risen from 75.58% 

to 77.64%, an increase of 2.06%. Assume that the boiler feed 

water runs at 175C and 11300 kPa, and the saturated 

steam/water mixture runs at 313C and 10300 kpa. The energy 

required to generate 1kg of steam can be calculated as (Green 

and Perry 2007). 

𝐸 =
[(1419−747)+(2720−1419)∙𝑄%]

𝑄%
,                 (9) 

where 𝑄 is the steam quality. By increasing the steam quality 

from 75.58% to 77.64%, the energy to produce 1kg of steam 

has declined from 2191 kJ/kg to 2166 kJ/kg, a 1% reduction 

in energy consumption. Looking at Fig. 10, there is sufficient 

safety margin to control the steam quality even closer to the 

80% constrain, and therefore save more energy. 

  

Fig. 10. Overall steam quality control performance. 

6. CONCLUSIONS 

This paper employs soft sensor and MPC technologies to 

implement OTSG steam quality control. The MPC scheme is 

designed to minimize the impact of unreliable 

instrumentations. The application result demonstrates the 

effectiveness of the proposed measurement and control 

strategy. By controlling steam qualities tightly, the energy 

intensity of SAGD operation can be reduced, leading to lower 

operating cost and less greenhouse gas emissions. 
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