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Abstract: Recently, a concurrent projection to latent structures (CPLS) for multivariate
statistical process was proposed. It has been proved to be a better monitoring method than
the traditional PLS. However, its fault diagnosis methods have not been developed yet. In this
paper, we discuss a new fault diagnosis approach based on CPLS. Five monitoring indices used
in CPLS are unified into two general forms. Based on these general forms, we define their
complete decomposition contributions (CDC) and reconstruction-based contributions (RBC).
The diagnosability of these two contribution methods is further analyzed. Finally, simulation
case studies are presented to demonstrate the results.
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1. INTRODUCTION

Over the last two decades, multivariate statistical methods
such as principal component analysis (PCA) and pro-
jection to latent structures (PLS) have been successfully
applied to the monitoring of industrial processes (Nomikos
and MacGregor (1995), Wise et al. (1989) & Qin (2012)).
These methods build statistical models from normal opera-
tion data, and they partition measurements into a number
of subspaces. Each subspace is monitored by a statistical
index. A fault is detected when a new measurement breaks
the normal statistical correlation causing one of the mon-
itoring indices to go beyond its control limit.

Both PCA and PLS partition the process measurements
X into a principal subspace and a residual subspace, and
use the T 2 and Q indices to monitor them, respectively.
When quality measurements are expensive or difficult
to obtain, PCA has been used to monitor abnormal
variations in process variables. On the other hand, PLS
has been used to build an input-output relation to infer
the quality variables, and this input-output relation is
used to monitor the input subspace that is relevant to
the output quality. However, this monitoring method for
PLS has two problems. First, the principal subspace in
PLS, which is thought to reflect major variations related
to the quality measurements Y, still contains variation
orthogonal to Y. Second, PLS does not extract variations
of the process measurements in a descending order, and
therefore, the residual subspace can still contain large
variations, making it inappropriate to be monitored by
the Q index. To solve these problems, methods including
orthogonal PLS (OPLS), total PLS (TPLS), concurrent
PLS (CPLS), and their variants have been proposed by

Trygg and Wold (2002), Zhou et al. (2010), Qin and Zheng
(2013), & Zhao et al. (2014).

Once a fault is detected, it is desirable to diagnose its
cause. Many methods have been proposed to solve this
problem. One popular category among them consists of
contribution analysis methods. Contribution methods de-
termine the contribution of each variable to the fault
detection indices calculated. The idea is that faulty vari-
ables have high contributions to the fault detection index.
Several contributions have been defined and used for fault
diagnosis (Cherry and Qin (2006) & Qin et al. (2001)).
Alcala and Qin (2011) showed that they can be unified
into three general categories: diagonal contribution, gen-
eral decompositive contribution, and reconstruction-based
contribution. Diagonal contribution was proposed by Qin
et al. (2001), and is specialized in dealing with mulit-block
process monitoring. Among the general decompositive
contributions, the complete decomposition contribution is
mostly widely used in industry. In this paper, the complete
decomposition contributions (CDC) and reconstruction-
based contributions (RBC) are defined for CPLS moni-
toring indices and compared for sensor faults.

The remaining part of this article is organized as follows.
Fault detection based on PLS models is briefly reviewed
in Section 2. The CPLS algorithm is presented and its
properties derived in Section 3. The CPLS fault detection
indices and their general forms are calculated in Section
4. The CDCs and RBCs are defined for CPLS in Section
5, and their diagnosability are analyzed in Section 6.
Simulation case studies are presented in Section 7. Finally,
we conclude the article in Section 8.
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2. PLS FOR PROCESS AND QUALITY
MONITORING

Given an input matrix X ∈ Rn×m consisting of n samples
with m process variables, and an output matrix Y ∈ Rn×p
with p quality variables, the PLS algorithm first scales, and
then projects X and Y to a low-dimensional space, which
is defined by a small number of latent variables (t1, . . . tl),
where l is the PLS component number. The mean-centered
and scaled X and Y are decomposed as:


X =

l∑
i=1

tip
T
i + E = TPT + E

Y =

l∑
i=1

tiq
T
i + F = TQT + F

(1)

In (1), T = [t1, . . . tl] are the latent score vectors, P =
[p1, . . .pl] and Q = [q1, . . .ql] are the loading vectors
for X and Y, respectively. The matrices E and F are
the corresponding residuals to X and Y. In general,
the PLS decomposition is carried out iteratively. The
first latent vector t1 is extracted by maximizing the
covariance between X and Y, and then both matrices are
deflated to form X1 and Y1. The second latent vector
is then extracted by maximizing the covariance between
X1 and Y1, and the process is repeated until enough
latent components have been extracted. Intuitively, it is
desired to have the number of PLS components, l, to give
the maximum prediction power to the PLS model based
on data that are excluded from training data, where l
is usually determined by cross-validation. Although the
PLS decomposition is an iterative process, once the model
is built and parameters stored, all score vectors can be
computed directly from original X:

T = XR and R = W(PTW)−1

where the weight vectors W = [w1, . . .wl] are also param-
eters in the PLS decomposition. They are used to calculate
the scores ti = Xiwi. Readers who are interested in detail
of PLS algorithms can refer to Geladi and Kowalski (1986)
and Höskuldsson (1988).

To perform process monitoring on a new data sample x,
the PLS model projects it onto a principal subspace x̂,
which is thought to reflect major variations related to Y,
and a residual subspace x̃, which is thought to contain
variation unrelated to the output Y. However, unlike
orthogonal projections in the PCA, Li et al. (2010) showed
that the PLS induces an oblique projection decomposition.

Early literature (e.g., MacGregor et al. (1994)) suggests
to monitor principal subspace by T 2 index and residual
subspace by Q index.

T 2 = tTΛ−1t ≤ l(n2 − 1)

n(n− 1)
Fl,n−l,α

Q = ||x̃||2 = xT (I−PRT )x ≤ gχ2
h,α

where t = RTx, Λ−1 = 1
n−1TTT, Fl,n−l,α is the F -

distribution with l and l − 1 degrees of freedom, α is the

level of significance, and χ2
h is the χ2-distribution with

h degrees of freedom. The calculation of g and h can be
found in MacGregor et al. (1994).

3. CONCURRENT PROJECTION TO LATENT
STRUCTURES

Unlike PLS, the CPLS algorithm projects the input and
output data spaces concurrently to five subspaces. They
consist of: a joint input-output covariance subspace, an
output-principal subspace, an output-residual subspace,
an input-principal subspace, and an input-residual sub-
space. Based on the CPLS algorithm the data matrices X
and Y are decomposed as follows:

{
X = UcR

†
c + TxP

T
x + X̃

Y = UcQ
T
c + TyP

T
y + Ỹ

(2)

The CPLS algorithm is shown in Table 1. Note that there
is a small modification on the original algorithm proposed
by Qin and Zheng (2013). In step 4, the ratio between the

variance of Ỹc and Y is computed. If this ratio is small,
essentially all of Y is predictable, then Ỹc = Ỹ is simply
the output residuals, and there are no output-principal
variations. A similar modification has been made in step 6
for input space. Readers can refer to Qin and Zheng (2013)
for details of CPLS algorithm.

Once the CPLS model is built, it can decompose a single
sample as follows:

uc = RT
c x

x̃c = (x−R†Tc uc)

ỹc = (y −Qcuc)

tx = PT
x x̃c = PT

xx (5)

ty = PT
y ỹc = PT

y (y −Qcuc)

x̃ = (I−PxP
T
x )x̃c = (I−PxP

T
x )x (6)

ỹ = (I−PyP
T
y )ỹc = (I−PyP

T
y )(y −Qcuc)

The second equalities in (5) and (6) are not obvious. To
prove them, we derive some properties of CPLS here.

Lemma 1. X̃cRc = 0.

Proof. In step 6 of the CPLS algorithm in Table 1,

X̃cRc = (X−UcR
†
c)Rc

= XRc −Uc(R
T
c Rc)

−1RT
c Rc

= Uc −Uc

= 0

Lemma 2. PT
xR†Tc = 0 and PT

x̃R†Tc = 0.
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Table 1. Concurrent PLS algorithm

1. Scale X and Y to zero-mean and unit-variance. Perform
PLS on X and Y using (1) to give T, Q, and R. The number
of PLS components l is determined by cross-validation.

2. Perform singular value decomposition (SVD) on the ”pre-
dictable output” Ŷ = TQT .

Ŷ = UcDcV
T
c = UcQ

T
c

where Qc = VcDc includes all lc nonzero singular values
in descending order and the corresponding right singular
vectors.

3. Set Uc = XRc where Rc = RQT VcD
−1
c

4. Form the ”unpredictable output” Ỹc = Y − UcQT
c and

compare the variance between Ỹc and Y.

Ry =
var(Ỹc)

var(Y)
(3)

where var(A) is simply the sum of squared singular values
of A. If Ry < 0.05, there is no output-principal subspace,
and Ỹc = Ỹ is simply the output residuals. Skip step 5 and
go to step 6. Otherwise if Ry ≥ 0.05, go to step 5.

5. Perform PCA on Ỹc with ly principal components

Ỹc = TyPT
y + TỹPT

ỹ = TyPT
y + Ỹ

to yield the output-principal scores Ty and output residuals
Ỹ.

6. Form the ”output-irrelevant input” X̃c = X−UcR
†
c, where

R†c = (RT
c Rc)−1RT

c and compare the variance between X̃c

and X.

Rx =
var(X̃c)

var(X)

If Rx < 0.05, there is no input-principal subspace, and
X̃c = X̃ is simply the input residuals. Skip step 7 and stop.
Otherwise if Rx ≥ 0.05, go to step 7.

7. Perform PCA on on X̃c with lx principal components

X̃c = TxPT
x + Tx̃PT

x̃ = TxPT
x + X̃ (4)

to yield the input-principal scores Tx and input residuals
X̃.

Proof. By using (4) and Lemma 1.

X̃cRc = [Tx Tx̃]

[
PT
x

PT
x̃

]
Rc = 0

Since [Tx Tx̃] is full rank, PT
xRc = 0 and PT

x̃Rc = 0.
Therefore PT

xR†Tc = PT
xRc(R

T
c Rc)

−1 = 0 and PT
x̃R†Tc =

PT
x̃Rc(R

T
c Rc)

−1 = 0.

We are now ready to prove the second equalities in (5) and
(6).

Lemma 3. tx = PT
xx and x̃ = (I−PxP

T
x )x

Proof. This can be easily proved by using Lemma 2.

tx = PT
x x̃c

= PT
x (x−R†Tc uc)

= PT
xx−PT

xR†Tc uc

= PT
xx

Table 2. Values for M

Index T2
c T2

x Qc

M (n− 1)RcRT
c PxΛ−1

x PT
x I − PxPT

x

x̃ = (I−PxP
T
x )x̃c

= (Px̃P
T
x̃ )(x−R†Tc uc)

= Px̃P
T
x̃x−Px̃P

T
x̃R†Tc uc

= Px̃P
T
x̃x

= (I−PxP
T
x )x

4. CPLS BASED FAULT DETECTION

Each of the five subspaces can be monitored with the
following T 2 and Q indices.

T 2
c = (n− 1)uTc uc = (n− 1)xTRcR

T
c x ≤ χ2

lc,α

T 2
x = tTxΛ−1x tx = xTPxΛ−1x PT

x x ≤ χ2
lx,α

Qx = ||x̃||2 = xT (I−PxP
T
x )T (I−PxP

T
x )x

= xT (I−PxP
T
x )x

≤ gxχ
2
hx,α

T 2
y = tTy Λ−1y ty = ỹTc PyΛ

−1
y PT

y ỹc

= (y −Qcuc)
TPyΛ

−1
y PT

y (y −Qcuc)

≤ χ2
ly,α

(7)

Qy = ||ỹ||2 = ỹTc (I−PyP
T
y )T (I−PyP

T
y )ỹc

= ỹTc (I−PyP
T
y )ỹc

= (y −Qcuc)
T (I−PyP

T
y )(y −Qcuc)

≤ gyχ
2
hy,α

(8)

where T 2
c , T 2

x , Qx, T 2
y , and Qy are the monitoring indices

for the variations in input-output covariance subspace,
input-principal subspace, input residual subspace, output-
principal subspace, and output residual subspace, respec-
tively. The symbol α is the level of significance, and χ2

a
is the χ2-distribution with a degrees of freedom. The
calculation for the parameters gx, hx, gy, and hy is given in
Qin and Zheng (2013). The above control limits are valid
only when n is large (Box et al. (1954)).

The indices T 2
c , T 2

x , and Qx that monitor the input space
can be written in quadratic forms in terms of x. To simplify
the notation, we can expressed them in a general form

Index(x) = xTMx

where M is shown in Table 2 for each detection index.

The indices T 2
y and Qy that monitor the output space can

be written in quadratic forms only in terms of ỹc and not in
terms of y. Expanding (7) and (8) will result in quadratic
polynomials in terms of y. Again, to simplify the notation,
we can express them in a general form:
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Index(y) = yTNy − 2yTa + c(x)

where N, a and c(x) are shown in Table 3 for each
detection index. These two general forms will be used to
define contributions and analyze their diagnosabilities.

Table 3. Values for N, a and c(x)

Index T2
y Qy

N PyΛ−1
y PT

y I − PyPT
y

a NQcRT
c x NQcRT

c x

c(x) xT RcQT
c NQcRcx xT RcQT

c NQcRcx

5. FAULT DIAGNOSIS BY CONTRIBUTIONS

In this section, we define the complete decomposition con-
tributions (CDC) and reconstruction-based contributions
(RBC) from the general forms.

5.1 Complete decomposition contributions

In general, the CDC for monitoring indices with a
quadratic form is defined as

Index(x) = xTMx = ||M(1/2)x||2

=

n∑
i=1

(
ξTi M(1/2)x

)2
=

n∑
i=1

CDC
Index(x)
i

where ξi is the i th column of the identity matrix and

CDC
Index(x)
i =

(
ξTi M(1/2)x

)2
. (9)

There is no general way to define the CDC for monitoring
indices with a quadratic polynomial. However, from the
expression of the Index(y)

Index(y) = yTNy − 2yTa + c(x)

= ||N(1/2)y||2 − 2yTa + c(x)

=

n∑
i=1

(
ξTi N(1/2)y

)2
− 2yTa + c(x)

We propose the CDC to be

CDC
Index(y)
i =

(
ξTi N(1/2)y

)2
− 2yiai + c(x)/n (10)

where yi and ai are the i th component of vectors y and
a, respectively. This definition allows the sum of all CDCs
to be equal to Index(y) while eliminating the ”smearing”
effect on the linear and constant terms of the quadratic
polynomials. Smearing is when a fault in the i th variable
affects the contribution of other variables (Westerhuis
et al. (2000)). Smearing is unavoidable in both CDCs and
RBCs, and can lead to misdiagnosis. The smearing effect
will be further studied in section 6.

5.2 Reconstruction-based contributions

The RBC was proposed by Alcala and Qin (2009) & Alcala
and Qin (2010). It uses the amount of reconstruction
of a fault detection index along a variable direction as
the contribution of that variable. The reconstructed index
with a quadratic form along a variable direction ξi is

Index (xri ) = ||M(1/2)xri ||2 = ||M(1/2)(x− ξif)||2 (11)

where f is the reconstructed portion to be determined. The
best reconstruction by minimizing (11) gives the optimal
value of f . If we take the derivative of Index(xri ) with
respect to f and set it equals to zero, the expression of f
can be solved as

f =
(
ξTi Mξi

)−1 (
ξTi Mx

)
(12)

The RBC is defined as

RBC
Index(x)
i = Index(x)− Index(xri )

= xTMx− (x− ξif)TM(x− ξif)

= 2xTMξif − fT ξTi Mξf

=
(ξTi Mx)2

ξTi Mξi

(13)

Note that
(
ξTi Mξi

)−1
can be zero. In that case, this fault

is not reconstructible and the RBC does not exist. The
symbol f is a scalar, and therefore its transpose is equal
to itself. The forth equality in (13) is the result of applying
(12).

Similarly the reconstructed index with a quadratic poly-
nomial along a variable direction ξi is

Index (yri ) = yrTi NyTi − 2yrTi a + c(x)

= (y − ξif)TN(y − ξif)

−2(y − ξif)Ta + c(x).

(14)

Minimizing (14) gives the optimal value of f . Once again,
take the derivative of Index(yri ) with respect to f and set
it to zero. The expression of f can be solved as

f = (yTNξi − ai)(ξTi Nξ)−1 (15)

The RBC for a quadratic polynomial is defined as

RBC
Index(y)
i = Index(y)− Index(yri )

= yTNy − 2yTa + c(x)

−(y − ξif)TN(y − ξif)

+2(y − ξif)Ta− c(x)

= 2yTNξif − f2ξTi Nξi − 2fξTi a

=
(yTNξi − ai)2

ξTi Nξi

(16)

The last equality in (16) is the result of applying (15).
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6. ANALYSIS OF DIAGNOSABILITY

Contribution methods have been used in practice, but
not much fundamental analysis on their diagnosabilities
has been developed. Alcala and Qin (2009) proposed to
approach this by examining the case where a sensor fault
happened in the ξj direction with a sufficiently large fault
magnitude f . A fault in sensor j is represented as x = x∗+
ξjf where x∗ is the fault-free part of the measurement.
When f is sufficiently large, x∗ is negligible compared to
ξjf , and therefore

x ≈ ξjf. (17)

Similarly for fault sample y

y ≈ ξjf. (18)

This case will be utilized to examine the diagnosability of
the above defined contributions.

6.1 Diagnosis using complete decomposition contributions

Substituting the fault in (17) into (9), and (18) into (10)
we get

CDC
Index(x)
i =

{
[M(1/2)]2ijf

2 for i 6= j

[M(1/2)]2jjf
2 for i = j

and

CDC
Index(y)
i =

{
[N(1/2)]2ijf

2 + c(x)/n for i 6= j

[N(1/2)]2jjf
2 − 2faj + c(x)/n for i = j

where [A]ij = ξTi Aξj is the ij th element of the matrix A.
Correct diagnosis using CDC is guaranteed only if

[M(1/2)]2jj ≥ [M(1/2)]2ij (19)

and

[N(1/2)]2jjf
2 − 2faj ≥ [N(1/2)]2ijf

2. (20)

The inequalities (19) and (20) however, are not always
true. It is worth noting that if we assume the data are
stationary, the model is fixed, and so is M. Therefore,
when (19) does not hold, the CDC method completely
fails, and the correct diagnosing rate is zero.

6.2 Diagnosis using reconstruction-based contributions

Substituting the fault in (17) into (13) and (18) into (16)
we get

RBC
Index(x)
i =

{
[M]2ij [M]−1ii f

2 for i 6= j

[M]jjf
2 for i = j

and

RBC
Index(y)
i =

{
{[N]ijf − ai}2 [N]−1ii for i 6= j

{[N]jjf − aj}2 [N]−1jj for i = j

≈

{
[N]2ij [N]−1ii f

2 for i 6= j

[N]jjf
2 for i = j

(21)

The approximation in (21) assumes f is sufficiently large
and therefore ai and aj are negligible compared to [N]ijf
and [N]jjf . Correct diagnosis using RBC is guaranteed
only if

[M]jj ≥ [M]2ij [M]−1ii (22)

and

[N]jj ≥ [N]2ij [N]−1ii . (23)

Since both M and N are positive semi-definite matrices,
(22) and (23) always hold. The proof is given in the
appendix of Alcala and Qin (2009).

In summary, for the simplest case of a sufficiently large
sensor fault, RBC methods guarantee correct fault diag-
nosis, but the CDC methods do not. However, for modest
fault magnitudes the randomness in the fault-free portion
x∗ will likely affect the diagnosis results, which will be
studied next by simulation.

7. SIMULATION CASE STUDIES

In this section, we use synthetic simulations to create a
number of representing sensor fault scenarios to demon-
strate and compare the effectiveness of the above defined
contributions for fault diagnosis.

The simulated numerical example without faults is as
follows.

{
xk = Azk + ek
yk = Cxk + vk

(24)

where A =

 1 3 4 0 0
3 0 4 0 1
1 1 0 0 0
0 0 0 1 0


T

, C =

(
2 2 1 1 0
0 0 0 1 0

)
,

zk ∈ R4 ∼ U([0, 1]), ek ∈ R5 ∼ N(0, 0.12), and vk ∈
R2 ∼ N(0, 0.082). U([0, 1]) is the uniform distribution in
the interval [0, 1].

All of the parameters are more or less randomly chosen,
except that x4 is independent of other input variables, and
it is the only input variable that contributes to y2. This
will make sure that x4 is in the input-output covariance
subspace.

Equation (24) is used to generate normal operation data,
and the number of PLS components l = 3 is determined
by 10-fold cross-validation. In this model, Ry in (3) is
less than 0.05, and therefore there is no output principal
subspace.

A sensor fault is added in the following form in the input
space or in the output space.
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Table 4. Percent rates of correct diagnosis for
scenario 1 & 2

Scenario 1 Scenario 2
Qy T 2

c

f FDR CDC RBC FDR CDC RBC

0.5 5.8 37.93 0.00 33.8 98.82 94.08
1 7.8 38.46 0.00 86.6 100.00 99.31
2 31.6 51.90 60.13 100.0 100.00 100.00
3 100.0 66.40 98.60 100.0 100.00 100.00
10 100.0 99.20 100.00 100.0 100.00 100.00

Table 5. Percent rates of correct diagnosis for
scenario 3

Scenario 3
T 2
x Qx

f FDR CDC RBC FDR CDC RBC

0.5 1.8 0.00 22.22 26.0 30.77 34.62
1 8.2 0.00 31.71 75.8 43.01 45.91
2 28.8 0.00 30.56 100.0 63.20 62.80
3 53.6 0.00 35.45 100.0 79.20 73.60
10 100.0 0.00 65.60 100.0 100.00 100.00

xk = x∗k + ξxfx , yk = y∗k + ξyfy

where x∗k and y∗k are the fault-free values, ξx and ξy are
the fault directions, and fx and fy are the respective fault
magnitudes.

Three scenarios are being studied.

(1) A sensor fault was added to y1, which was detected
only by Qy;

(2) A sensor fault was added to x4, which was detected
only by T 2

c ; and
(3) A sensor fault was added to x2, which was detected

by both T 2
x and Qx.

Due to the page limitation, their fault detection indices are
not plotted here. The percent rates of correct diagnosis
and the fault detection rates (FDR) with various fault
magnitudes are given in Table 4 and 5. From the result, we
can see that although RBC can guarantee correct diagnosis
when the fault magnitude is sufficiently large, it is very
hard to tell which method is better with a modest fault
magnitude. However, it is interesting to note that the CDC
method completely failed on T 2

x index in scenario 3.

8. CONCLUSIONS

In this article, CPLS based contributions for fault diag-
nosis are proposed and studied. We unified the five CPLS
monitoring indices into two general forms, and based on
these general forms, we defined their complete decompo-
sition contributions (CDC) and reconstruction-based con-
tributions (RBC). Diagnosability of the CDCs and RBCs
are also analyzed. At the end, synthetic case studies on
sensor faults are presented. A future step is to test this
fault diagnosis framework on process faults.
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