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Abstract: In this paper an iterative identification method is proposed to simultaneously estimate the 
parameters of an output error model together with a delay parameter for industrial processes with time 
delay, to facilitate model based control design. An extended observation vector is constructed to establish 
a negative-gradient based iterative identification algorithm. An auxiliary model is established to estimate 
the unknown noise-free output of the system for consistent estimation. Moreover, a variable forgetting 
factor (VFF) is introduced to enhance the convergence rate and identification accuracy against 
measurement noise. The convergence of the proposed algorithm is analyzed with a strict proof. An 
illustrative example is shown to demonstrate the effectiveness of the proposed identification method. 
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1. INTRODUCTION 

    Control-oriented model identification methods have been 
increasingly explored in the recent years, owing to the fact 
that model based control strategies have been widely used to 
obtain superior system performance for various industrial and 
chemical processes, as surveyed by Liu, Wang, and Huang 
(2013) and Ljung (2010). Since time delay is usually 
associated with industrial applications, linear transfer 
function models with time delay have been extensively used 
for control system design and controller tuning (Liu and Gao, 
2012; Richard, 2013). In fact, it is quite challenging to 
identify a transfer function model with time delay due to the 
nonlinear relationship between the delay parameter and the 
other model parameters, especially in the presence of 
measurement noise. Based on step or relay tests,  
identification methods for obtaining frequency domain 
transfer function models with time delay have been 
developed in the literature (Hang, Åström, Wang, 2002; 
Atherton, 2006; Ahmed, Huang, and Shah, 2007; Liu and 
Gao, 2009 and 2010). It should be noted that most of these 
methods are implemented offline.  

For the convenience of online control tuning, online model 
identification has become appealing in modern process 
industry. In continuous-time domain, a number of online 
identification methods have been developed by Gomez, 
Orlov, and Kolmanovsky (2007), Gawthrop, Nihtila, and Rad. 
(1980), Rad, Lo, and Tsang (2003), Ren, Rad, Chan, and Lo 
(2005) and Na, Ren, and Xia (2014). In discrete-time domain, 
a recursive least-squares (RLS) identification method for 
sampled time delay systems was proposed by Ferretti, 
Maffezzoni, and Scattolini (1991), where a recursive update 
of the time delay was suggested by inspecting the phase 
change of the identified model. Elnaggar, Dumont, and 
Elshafei (1990) proposed an online identification algorithm 
for estimating all the model parameters including time delay 

in terms of a two-step procedure, the first step assumes a 
known time delay to estimate the other model parameters, 
and then the second step determines the optimal model 
parameters by minimizing the squared output error index 
with respect to the assumed time delay. By taking 
partial derivatives with respect to the time-shift operator to 
construct a generalized regression vector,  Bedoui, 
Abderrahim, and Ltaief (2013, 2012) proposed a few 
algorithms for simultaneously estimating all the model 
parameters including time delay, but these algorithms for 
output error model would cause bias. 

Because the identification of time delay systems is 
involved with nonlinear formulation of model parameters, 
existing linear recursive algorithms cannot be directly applied 
to estimate all the model parameters. To solve this problem, 
this paper proposed an extended observation vector for 
iterative identification of an output error model with time 
delay. In view of that the standard RLS algorithm cannot 
guarantee consistent estimation for output error model 
(Söderström and Stoica, 1989; Ljung, 2002), an auxiliary 
model as developed by Peter C. Young (2011) is introduced 
to construct instrumental variables for improving consistent 
estimation. To relieve computation load, it is suggested to use 
a variable forgetting factor (VFF) in combination with a 
stochastic gradient (SG) algorithm for parameter estimation, 
which can apparently improve the convergence rate and 
estimation accuracy. For clarity, the paper is organized as 
follows. Section 2 presents the problem formulation. The 
proposed identification algorithm is detailed in section 3. The 
convergence analysis of the algorithm is given in section 4. 
An illustrative example is shown in section 5. Finally, some 
conclusions are given in Section 6. 

2. PROBLEM FORMULATION 

Consider an industrial process with time delay described 
by the following output error model with time delay, 
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where  u t  and  y t  are the input and output signals of the 

plant, respectively, ( )v t  denotes measurement noise or 

disturbance, d  indicates the process time delay, and 
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In this study, the following assumptions are made for 
model identification. 

A1. Measurement noise  v t satisfies  E 0v t    , 

  2 2E vv t     
 

 and    E 0v t v i     for i t . 

A2. The process input,  u t , is uncorrelated with  v t . 

A3. The process to be identified is observable and 
controllable, while  1zA   and  1zB   are coprime. 

The polynomial degrees, an  and bn , are known.  

A4. The system is causal, i.e.  y t  depends on  u s  and 

 v s  for s t , but not on future values of   u t  and 

 v t . 

A5. In the parameter estimation, the time delay is rounded 
to be an integer for practical implementation. 

3. PROPOSED ALGORITHM  

Define the unknown noise-free output (i.e. true output) 
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Define the parameter vector, generalized parameter vector 
including the time delay and information vector, respectively, 
by  
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where 0 a bn n n   and 1a bn n n   . 

    Correspondingly, Eq. (4) can be rewritten as 
      Tx t t t   (5) 

The model in (1) can be rewritten as, 
          Ty t x t v t t v t      (6) 

Note that the process output can be estimated by  
      ˆˆˆ Ty t t t   (7) 

where  ˆ t and  ˆ t denotes the estimated observation vector 

and estimated parameter vector, respectively. 
Hence, the prediction error can be computed by 

        ˆ ˆˆ, Te t d y t t t    (8) 

It is obvious that the unknown time delay impede 
computing the prediction error in (8). To resolve the problem, 
the following cost function is adopted herein, 

     21 ˆˆ, ,
2GJ t t e t d   (9) 

   Using the negative gradient search approach (Goodwin and 

Sin, 1984), the SG algorithm for estimating   Ĝ t   is 

presented as follows. 
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where  t  is the step size or convergence factor. 

Taking the first derivative of  ˆ,e t d with respect to d̂ , we 

have  
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    Given a sampled system, there exists 1   when the 

sampling period denoted by sT  goes to zero. Therefore, the 

first derivative of  e t  with respect to Ĝ  may be 

numerically computed by 
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be a generalized observation vector, 

Eq. (10) can be rewritten as 

          ˆˆ ˆ 1 ,G Gt t t t e t d       (13) 

To guarantee the convergence of  Ĝ t ,  t  as discussed 

by Peter C. Young (2011) must satisfy 
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    Owing to the fact that a SG-type algorithm does not 
involve the computation on covariance matrices, it has less 
computation load, but its convergence rate may be slow. 
Therefore, we introduce a variable forgetting factor to 
improve its tracking performance, i.e. letting  
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where    0,1t   is a variable forgetting factor (VFF) 

defined by 
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   mint   (18) 

where M  is a window used to alleviate the influence from  
disturbance or noise, and min  is a lower limit of the VFF for 

implementation. 
The key idea behind using the VFF is to set a smaller 

forgetting factor to obtain a faster convergence rate when the 
prediction error is large, and when the algorithm converges to 
the true value, the VFF will become a larger value to ensure 
good accuracy as discussed by Ljung (2002). 

However, the information vector  ˆ t and  t  contains 

the unknown inner variables  x t i . A feasible solution is 

therefore given based on using an auxiliary model as 
discussed by Peter C. Young (2011). Hence, the proposed 
negative-gradient algorithm, named as AMVFSG, is 
summarized as below. 

Step1. Take ˆ (0)G  as a nonzero vector with very small 

elements. e.g. 3
1

ˆ (0) 10G nI 
 ,  (0)r   where   is 

a small positive number, e.g. (0) 1r  ,   M  an 

suitable window length, e.g. [0,  10]M  , and 

 min 0,1  .     

Step2.  Construct the observation vector  ˆ t , and the 

generalized observation vector  t in terms of the 

sampled data. 

Step3. Compute Ĝ  by 
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Step4. Increase t  by 1 and return to Step 2, until a specified 

convergence condition    
2

2

ˆ ˆ 1G Gt t      is 

satisfied or t N .  

4. CONVERGENCE ANALYSIS 

In this section, using the stochastic process theory and the 
martingale hyper convergence theorem, we focus on 
analyzing the convergence property of the proposed 
AMVFSG algorithm. The following lemma is given first to 
establish the main convergence results. 

Lemma 1. For the system described in Eq. (6), if the 
generalized information vector  t  is constructed by 

persistent excitation, that is, there exist constants 
0       and N n  such that the following strong 

persistent excitation (SPE) condition holds 
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where 0 ,     and N n , while  0r  is chosen to 
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    Proof :  Taking the Frobenius norm on (27), we have  
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Taking into account Eq. (22), it follows that 
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Thus, there is 
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Note that 
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Combining Eq. (28), there stands 
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This completes the proof of Lemma 1. 

Theorem 1. For the system described in Eq. (6), with 
assumptions A1 and A2  and the SPE condition in Eq. (27), 
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the parameter estimation error given by the AMVFSG 
algorithm in Eq. (19)-(26) satisfies  
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Proof:  Define the parameter estimation error vector 
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where  
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Note that 
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Define a non-negative definite function    
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FGT t t  , 

we have  
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Using Eq.(22), it follows 
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Due to 
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there exists 
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Assume that  t  is bounded by  20 t   . Because 

 1G t  ,  y t ,  t ,  r t ,  and  t  are uncorrelated 

with  v t , by taking the expectation of Eq.(43) with respect 

to 1tF   , where  1tF   is the algebra sequence generated by 

  1v t  , we have   
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2 21
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  and 

 
2
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      , we have 
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Define    2
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   in terms of its  

neighbourhood bounded by  ,  
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we obtain for    c
G tt N R   that 
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Using the Martingale Hyper Convergence Theorem 

(MHCT) (Ding and Yang, 1999), we ensure    G tt N R  . 

Because   is arbitrary real number, we have  
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Notice that the auxiliary model satisfies (Peter C. Young, 
2011, Ding and Chen, 2005) 
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    Let  
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Using Eq.(36) and Eq.(40), we obtain 
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    Taking the Frobenius norm on Eq. (54) and using Eq.(30), 
we have  
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Taking the expectation of Eq. (55), we obtain 
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(56) 

This completes the proof of Theorem 1.     

5. ILLUSTRATION 

Let ˆ ( )G n  be the estimated value of G  in the -thn  test of 

the total M  Monte Carlo tests. Denote by err  the relative 

error of each step,  ˆ /G G Gerr n    . The noise level 

is evaluated in terms of the noise-to-signal ratio (NSR), 

 
( ( ))

NSR
( ( ))

mean abs noise

mean abs signal
  (57) 

 
Example 1: Consider the time delay system studied by Na, 

Ren, and Xia (2014), 

7.5 12.5 4 ( 0.4) 12.5 ( 0.4) ( )y y y u t u t v t          

With a sampling interval of 0.1s, the discrete-time model is 
below 
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For illustration, the input excitation is taken as the 
pseudorandom binary sequence (PRBS) with an amplitude of 
1.0 and  v t  is taken as a white noise sequence with 

zeromean and variance 2 0.1v  , which causes NSR=9.78% . 

In the proposed algorithm take 3ˆ (0) 10G nI  , (0) 1r  , 

min 0.1  , 3M   and the identification data  10,1000t . 

The parameter estimates and error criteria with respect to t  
are shown in Fig. 1. It is seen that the proposed AMVFSG 
algorithm gives obviously improved accuracy and faster 
convergence rate compared to the results given in the cited 
reference, which used an input excitation composed of 
multiple piecewise sinusoidals. 
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Fig.1 Parameter estimation results and errors for NSR=9.78%  

To further demonstrate the identification effectiveness, one 
hundred Monte Carlo tests are performed with 9.78%NSR   
and the total iterative steps of 1000N   is adopted for each 
test. The computation results are listed in Table 1 where the 
estimation result for each parameter is shown by the mean 
value along with the standard deviation in parentheses, which 
demonstrate the effectiveness of the proposed algorithm.

Table 1. Identification results under one hundred Monte Carlo tests for NSR=9.78% 

t a1 a2 b1 b2 d round(d) err (%) 

50 
-1.2034 

(±0.0716) 
0.4670 

(±0.0649) 
-0.1447   

(±0.1077)
0.1178 

(±0.1142)
2.8633 

(±0.2004)
3.0200 

(±0.1407) 
26.3001   

(±2.8981) 

100 
-1.4008  

(±0.1000) 
0.4767  

(±0.0812) 
0.2778  

(±0.1365)
0.2973 

(±0.0920)
3.6181 

(±0.1561)
3.8700 

(±0.3380) 
6.0583   

(±7.8653) 

500 
-1.3793 

(±0.0182) 
0.4625 

(±0.0239) 
0.3250 

(±0.0137)
0.2390 

(±0.0184)
3.6903 

(±0.1409)
4.0000 

(±0.0000) 
0.8193  

(±0.4186) 

1000 
-1.3828 

(±0.0132) 
0.4685 

(±0.0166) 
0.3230  

(±0.0107)
0.2397 

(±0.0164)
3.7033  

(±0.1414)
4.0000 

(±0.0000) 
0.6240     

(±0.2770) 
True -1.3850 0.4724 0.3170 0.2398 4.0000 4.0000  
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6. CONCLUSION 

For the identification of industrial processes with time 
delay, a negative-gradient based iterative identification 
method has been proposed in this paper to obtain an output 
error model with a delay parameter. The key idea lies with 
using a feasible auxiliary model together with a variable 
forgetting factor to establish an iterative identification 
algorithm, which facilitates the convergence rate and 
identification accuracy. A strict proof on the convergence has 
been given. The application to an illustrative example from 
the literature has well demonstrated the effectiveness and 
merits of the proposed identification method. 

ACKNOWLEDGEMENT 

    This work is supported in part by the National Thousand 
Talents Program of China, NSF China Grants 61473054, and 
the Fundamental Research Funds for the Central Universities 
of China. 

REFERENCES 

Ahmed S., Huang, B., & Shah, S.L. (2007). Novel 
identification method from step response. Control 
Engineering Practice, 15, 545-556. 

Atherton, D.P. (2006). Relay autotuning: An overview and 
alternative approach. Ind. Eng. Chem. Res., 45, 4075-
4080. 

Bedoui, S., Abderrahim, K., & Ltaief, M. (2013). Online       
identification of multivariable discrete time delay 
systems using a recursive least square algorithm. 
Mathematical Problems in Engineering, 1-18. 

Bedoui, S., Ltaief, M., & Abderrahim, K. (2012).New results 
ondiscrete-time delay systems identification. 
International Journal of Automation and Computing, 
9(6), 570-577. 

Elnaggar, A., Dumont, G.A., & Elshafei, A.L. (1990). New 
method for delay estimation. Proceedings of the 29th 
IEEE Conference on Decision and Control, 3, 1929-1930. 

Ferretti, G., Maffezzoni, C., & Scattolini, R. (1991). 
Recursive estimation of time delay in sampled systems. 
Automatica, 27(4), 653-661. 

Gawthrop, P.J., Nihtila, M.T., & Rad, A.B. (1980). Recursive       
parameter estimation of continuous systems with 
unknown time-delay. Control Theory and Advanced 
Technology, 5(3), 227-248. 

Gomez, O., Orlov, Y., & Kolmanovsky, I.V. (2007). Online  
identification of SISO linear time-invariant delay 
systems from output measurements. Automatica, 43(12), 
2060-2069. 

Goodwin, G.C., & Sin, K.S. (1984). Adaptive Filtering, 
Prediction and Control. Prentice–Hall, Englewood Cliffs, 
NJ. 

Hang, C.C., Åström, K.J., & Wang, Q.G. (2002). Relay 
feedback auto-tuning of process controllers— A tutorial 
review. Journal of Process Control 12, 143-163. 

Liu, T., & Gao, F. (2009). A generalized relay identification      
method for time delay and non-minimum phase 
processes.  Automatica, 45 (4), 1072-1079. 

Liu, T., & Gao, F. (2012). Industrial Process Identification 
and Control  Design: Step-test and Relay-experiment-
based Methods.  Springer, London, UK. 

Liu, T., & Gao, F. (2010). A frequency domain step response       
identification method for continuous-time processes with 
time delay. Journal of Process Control, 20(7), 800-809. 

Liu, T., Wang, Q., & Huang, H. (2013). A tutorial review on       
process identification from step or relay feedback test. 
Journal of  Process Control, 23(10), 1597-1623. 

Liu, T., & Wang, Y. (2012) A synthetic approach for robust         
constrained iterative learning control of piecewise affine 
batch processes. Automatica, 48 (11), 2762-2775. 

Ljung, L. (2002) .System Identification: Theory for the User, 
second edition. Prentice-Hall, Englewood Cliffs, New 
Jersey.  

Loxton, R., Teo, K.L., & Rehbock, V. (2010). An 
optimization approach to state-delay identification. IEEE 
Transactions on Automatic Control, 55(9), 2113-2119. 

Na, J., Ren, X.M., & Xia, Y.Q. (2014). Adaptive parameter       
identification of linear SISO systems with unknown 
time-delay. Systems & Control Letters, 66, 43-50. 

Peter C. Young. (2011). Recursive Estimation and Time-
Series Analysis: An introduction for the student and 
practitioner. Springer, London, UK.  

Rad, A.B., Lo,W.L., & Tsang, K.M. (2003). Simultaneous on 
line identification of rational dynamics and time delay: A 
correlationbased approach. IEEE Transactions on 
Control Systems Technology, 11(6), 957-959. 

Ren, X.M., Rad, A.B., & Chan, P.T. Lo, W.L. (2005). Online 
identification of continuous-time systems with unknown 
time delay. IEEE Transactions on Automatic Control, 
50(9), 1418-1422.  

Richard, J. (2003). Time-delay systems: an overview of some       
recent advances and open problems. Automatica, 39(10), 
1667- 1694. 

Söderström, T., & Stoica, P. (1989). System Identification. 
Prentice  Hall, New York, USA. 

Wang, Q.G., Liu, M., Hang, C.C., Zhang, Y., Zhang, Y., & 
Zheng, W.X. (2008). Integral identification of 
continuous-time delay systems in the presence of 
unknown initial conditions and disturbances from step 
tests, Ind. Eng. Chem. Res. 47 4929-4936. 

Ding, F., & Chen. T. (2005). Parameter estimationof dual-
rate stochastic systems by using an auxiliary model. 
IEEE Transactions on Automatic Control, 50(9), 1436-
1441. 

Ding, F., & Yang. J.B (1999). Remarks on Martingale 
hyperconvergence theorem and the convergence of 
forgetting factor leasrt squares algorithm. Control 
Theory and Applications, 16(4), 1-10. 

 

 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 894


