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Abstract:  Model Predictive Control (MPC) is a class of control systems which use a dynamic process 
model to predict the best future control actions based on past information. Thus, a representative process 
model is a key factor for its correct performance. Therefore, the investigation of model-plant-mismatch 
effect is very important issue for MPC performance assessment, monitoring, and diagnosis. This paper 
presents a method for model quality evaluation based on the investigation of closed-loop data and the 
nominal complementary sensitivity function. The proposed approach ensures that the MPC tuning is 
taken into account in the evaluation of the model quality. A SISO case study is analyzed and the results 
show the effectiveness of the method. 
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1. INTRODUCTION 

The industrial use of Model Predictive Controllers (MPC) has 
increased significantly in the last years, due to growing 
requirement of more profitability and safety associated with 
the reduction of pollution and energy consume. This kind of 
control systems uses a dynamic process model to predict the 
behavior of controlled variables along a future horizon based 
on past control actions and knows disturbances. From this 
result, an optimization algorithm calculates the control 
actions that lead the process to the optimal operational 
condition.   

The maintenance of MPC is a challenging problem due to 
multicausal nature. The performance degradation can be 
caused by model plant mismatch, bad tuning , bad set of soft 
and hard constraints, and unmeasured disturbances (Sun et 
al., 2013). Among these many sources, the poor model 
quality is the most frequent and impactful one. Several 
methods are focused on model quality investigation. A class 
of the methods such as: Huang et al. (2003), Conner et al. 
(2005), Jiang et al. (2012) are based on investigate the need 
of system re-identification. Other approaches (e.g., Badwe et 
al. (2009), Kano et al.  (2010), Ji et al. (2012) and Sun et al. 
(2013))  are looking for the locations in the model (i.e. the 
pairs controlled-manipulated variables) responsible for the 
performance degradation.   

A quite common temptation is simply to simulate the model 
using the control action as inputs and compare the simulated 
results with the real plant outputs. However, in the context of 
process control this is not a good approach, since it does not 
take into account the feedback effect produced by the 
controller, which can compensate part of the model mismatch 
that is not critical for closed loop control performance.  

A good model should represent the real system in the 
frequency where the MPC works. Therefore, the metric to 
quantify the model plant mismatch (MPM) should consider 
the feedback effect, so that the effective impact on the closed 
loop performance can be correctly quantified. Here, we 
propose a new metric for MPM based on the nominal 
complementary sensitivity function. Although this approach 
can be applied for any controller type, it is particularly useful 
for MPC, since the kernel of this control strategy is a model. 
Based on the proposed approach it is possible to quantify the 
MPM for MPC.  

The first work that uses the sensitivity function for model 
quality assessment was presented by Badwe et al. (2010), 
where an identified sensitivity function was used to quantify 
the impact of model-plant mismatch in MPC performance. 
Although the results demonstrate its efficiency, this method  
have a narrow applicability, since it requires the identification 
of a sequence of models and, for that, requires performing 
several perturbations in the setpoints, which is not always 
trivial to be obtained in practical terms. The method proposed 
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here circumvents such limitations through determining of a 
benchmark response of the controlled variable without any 
data-based model identification. 

Section 2 introduces the proposed approach. Section 3 
suggests some diagnosis rules for model inconsistency 
detection.  The method is tested using an SISO MPC and the 
results are discussed in section 4. Section 5 compares our 
approach with Badwe et al. (2010) method. Section 6 
finalizes the paper with conclusions and final remarks. 

  

2. PROPOSED METHOD 

Consider a control loop free of disturbances illustrated in 
Figure 1 where  ���� is the controller, ����� is the nominal 
model, ∆���� is the model-plant-mismatch, i.e. the difference 
between	����� and the real plant model 	����, 	
��� is the 
set-point, ����	is the manipulated variable, ���� is the 
measured output and �
��� is the simulated output.   

 

Fig. 1. Schematic diagram of closed-loop system. 

The measured output can be calculated by the closed loop 
transfer function ���� defined by:  

���� � ��
1 � �� � ����


��� (1) 

Being the nominal closed loop transfer function, �����, given 
by:  

����� � ���
1 � ��� � �����


���  (2) 

The model-plant mismatches,	Δ� � � � ��, produces a 
corresponding closed loop plant mismatch ∆� given by:  

∆� � � � �� (3) 

Theorem: The closed-loop output free from model-plant-
mismatch, called nominal output (��), can be estimated 
from the difference between measured and simulated output 
by filtering with the nominal complementary sensitivity 
function	��, according to following equation: 

����� � ���� � �� � ����������� �	������ (4) 

Proof: 

 Substituting (1) and (2) in (3), after some simple 
manipulations we get: 

∆�
� � 	�� � ���1 � ���

��  (5) 

Replacing � by  

� � �� � Δ� (6) 

in (5) it is possible to rewrite this equation as follows: 

∆�
� � ��� � ∆��� � ���1 � ��� � ∆����

��� � ∆��� 	� ∆� � ∆���
��� � ∆�� � �1 � ��� ∆��  (7) 

Now, it is possible to apply the following equivalent 
expressions: 

���� � �
���
���� � ����� � ������

����� � ∆�
�  (8) 

to convert (7) into a more appropriated formulation, which 
can be applied directly to the measured (�) and simulated (�
� 
outputs, i.e.,  

∆�
� � 	 �1 � ��� �� � �


� � (9) 

In a similar way, it is possible base on (1) to substitute ���� 
by ����/
��� what transform (9) into:  

�1 � ��� �� � �

� � � 	∆�	
�  

(10) 

With these further simplifications steps:  

�1 � ����� �	�
� � ∆�	
 (11) 

�1 � ����� �	�
� � � � �� (12) 

We finally arrive to (4): 

����� � ���� � �� � ����������� �	������  (13)  

Q.E.D 

Equation (4) presents a useful tool to work directly with the 
measured (y) and simulated (�
) data. It shows that it is 
possible to estimate the behavior that would be happen in 
closed loop in case of no model plant mismatch at current 
tuning. ��	may be considered as a benchmark for the model 
quality for control, so that, for good model in closed loop the 
difference between � and �� should be small. Note that the 
model can produce a good result in closed loop even if his 
quality in open loop is quite different, i.e., even in the case 
where the difference between � and �
 is large.  

The nominal closed loop response (��) can be obtained 
analytically from the nominal process model (��) and 
controller model (�), as showed in eq. (2). However, 
considering the complexity of MPC formulation it is more 
simple and practical to identify it using simulation data in 
closed loop with the MPC considering no model-plant-
mismatch. Note that it is only necessary to apply this 
procedure again if the MPC tuning or nominal model is 
changed.  
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3. MODEL QUALITY ASESSMENT 

Since �� is an estimation of the output process in case of an 
inexistence of model-plant-mismatch and unmeasured 
disturbance, it could be considered as a model output 
response benchmark. From this benchmark, any output 
performance indicator can be applied. The diagnosis 
procedure is represented by Figure 2. 

 

Fig 2. Diagnosis procedure of proposed methodology. 

For example, a useful indicator is the comparison of control 
errors variances, as suggest by Badwe et al. (2010):  

!"#$ � %&
�� � 
�
%&
��� � 
�		

 
(14) 

Another possibility is the analysis of autocorrelation function 
(ACF) of control errors (i.e.,	� � 
	and �� � 
�  . The ACF is 
an indicator of the correlation of a temporal series with itself. 
A high value of ACF means that the current control error is 
strongly correlated with past errors. High ACF is an 
undesirable behavior for a control systems. It can be also 
used to identify oscillatory behavior of control loops 
(Kempf,2003). 

 

4. APPLICATION OF PROPOSED METHOD 

To illustrate the application of the proposed approach, a SISO 
MPC was configured in MATLAB. For this controller, a 
slow and a fast tuning were considered, by changing the 
Move Suppression parameter. The tuning parameters are 
summarized in Table 2 and the corresponding nominal 
sensitivity function ('� � 1 − ��) are presented in Figure 3. 
Table 1 shows the three different models that will be 
considered as real plant. Note that these models have model-
plant mismatch in different dynamic regions, as illustrated in 
Figure 4.  

 

Fig 3. The nominal sensitivity response ('� = 1 − ��)  
for Fast and Slow Tuning. 

Table 1: Plant and Controller Models 

Model 1 Model 2 Model 3 

3.04
63.1� + 1 

3.04
960�. + 33� + 1 

4
80� + 1 

Table 2.  Tuning parameters of MPC 

Tuning Parameter Fast Tuning Slow Tuning 

Sample Time  15 15 

Prediction Horizon  32 32 

Control Horizon  8 8 

CV Weight  550 550 

Move Suppression  100 50000 

 

Fig 4. Step Response of Plant and Controller Models 

 

Combining the tunings with the models, different scenarios 
are configured according to Table 3. The controller is 
configured using Model 1 in all scenarios. The basis cases are 
Scenarios BF and BS, corresponding to situations without 
model-plant-mismatches. Simulations are performed 
considering a series of step changes in the set-point. No 
disturbance or noise were added. The comparative results of 
data with and without model-plant-mismatch and the 
resultant �
	 are presented on Figures 5 to 8.  

 

Table 3 : MPC SISO: Scenario Configuration 

Scenario Name Controller 
Model 

Controller 
Tuning 

Plant 
Model 

Base case Slow (BS) Model 1 Slow Model 1 

Base case Fast (BF) Model 1 Fast Model 1 

Model 2 Slow (M2S) Model 1 Slow Model 2 

Model 2 Fast (M2F) Model 1 Fast Model 2 

Model 3 Slow (M3S) Model 1 Slow Model 3 

Model 3 Fast (M3F) Model 1 Fast Model 3 
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(a) 

 

(b) 

Fig 5.  Comparison of M2S and BS outputs (a) and inputs (b). 
The green line is the M2S output measurement, the red line is 
the corresponding output simulation, the blue line is the BS 
output measurement, the brown and grey lines are the input 

measurements of M2S and BS, respectively. 

 

 

(a) 

 

(b) 

Fig 6.  Comparison of M2F and BF outputs (a) and inputs (b). 
The green line is the M2F output measurement, the red line is 
the corresponding output simulation, the blue line is the BF 
output measurement, the brown and grey lines are the input 

measurements of M2F and BF, respectively. 

 

 

(a) 

 

(b) 

Fig 7.  Comparison of M3S and BS outputs (a) and inputs (b). 
The green line is the M3S output measurement, the red line is 
the corresponding output simulation, the blue line is the BS 
output measurement, the brown and grey lines are the input 

measurements of M3S and BS, respectively. 

 

 

(a) 

 

(b) 

Fig 8.  Comparison of M3F and BF outputs (a) and inputs (b). 
The green line is the M3F output measurement, the red line is 
the corresponding output simulation, the blue line is the BF 
output measurement, the brown and grey lines are the input 

measurements of M3F and BF, respectively. 

 

The results above show that the model-plant-mismatches 
cause different effects, depending on the MPC tuning. In 
Figure 5, there is no significant effect of model-plant-
mismatch. This is consistent with our expectations because 
the tuning is slow and Model 2 and Model 1 have the same 
steady state behavior, making the result very similar to BS. 
Similarly, it is expected that M3F and BF present similar 
results because Model 3 and Model 1 have the same initial 
dynamic behavior, as showed by Figure 8. Scenarios M2F 
and M3S are most sensitive to the model-plant-mismatches, 
as demonstrated by Figure 6 and 7.  A relative evaluation of 
results is performed by the investigation of variance index 
(eq. 14) and comparative ACF. The result is presented on 
Table 4 and Figure 9. The results demonstrate that, although 
the mismatches are not very intensive in any scenario, 
Scenarios M2S and M3F present the most similar Auto-
Correlation Function (ACF) and	!"#$ 	nearest to 1. The ACF 
indicates that a mismatch in scenario M2F causes an 
oscillatory behavior in the system. The mismatch in scenario 
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M3S has a helpful effect on performance, because 	!"#$  is 
lower than 1. All these results are consistent with showed on 
Figures 5 to 8. 

 

Table 4: Relative Variance Index (	!"#$) 

Scenario 0123 
M2S 0.94 

M2F 1.12 

M3S 0.86 

M3F 0.96 

 

(a) M2S (b) M2F 

(c) M3S (d) M3F 

Fig 9. Comparative Autocorrelation Function (ACF)  
of � − 
	(red line) and �� − 
 (blue line):  

 Scenario M2S (a), M2F (b), M3S (c) and M3F (d). 

 

5. ESTIMATION OF ��: COMPARISION WITH 
THE METHOD OF BADWE ET AL. (2010) 

Badwe et al. (2010) proposed also method based on system 
sensitivity to quantify the impact of model-plant mismatch 
for MPC performance. The method consists in the 
identification of an Output-Error (OE) model for the design 
sensitivity ('4) (eq. 15). Then another OE model is identified 
to quantify 5�� (eq. 16) and finally the signal is 
reconstructed according to eq. 17. 

�
 − �) = '4�
 − � + �
) (15) 

�� − �
) = 5���
 − � + �
) (16) 


 − �� = '4�1 + 	5��)	�
 − � + �
) (17) 

The Badwe et al. (2010) nominal output was 
estimated for all scenarios of section 4, considering 
estimation of third order OE model. Results are compared 
with our proposed method as well as the output obtained 
using the base case in Figures 10 to 13. A quantitative 
comparison is presented in Table 5, performed according to 

eq. 18, where 6 is the approach used for �� (i.e., proposed or 
Badwe et al. 2010) estimation and �7#89  is the data of 
corresponding basis case, and :�&;<=> is the number of 
sampled data. 

'?@A = 	 B |�7#89 − ��A|	
D8#EFG9

HIJ
 (18) 

 

Fig. 10. Comparative result of ��	for M2F: Badwe et al. 
(2010) approach (blue line), proposed method (green line) 
and BF output (red line). 

 

 

Fig. 11. Comparative result of ��	for M3F: Badwe et al. 
(2010) approach (blue line), proposed method (green line) 
and BF output (red line). 

 

Fig. 12. Comparative result of ��	for M2S: Badwe et al. 
(2010) approach (blue line), proposed method (green line) 
and BF output (red line). 

 

 

Fig. 13.  Comparative result of ��	for M3S: Badwe et al. 
(2010) approach (blue line), proposed method (green line) 
and BF output (red line). 
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Table 5: '?@ for Badwe et a. (2010) and proposed method. 

Scenario ��K '?@ 

M2S 
Badwe et al. (2010) 83.53 

Proposed Method 0.8163 

M2F 
Badwe et al. (2010) 118.5 

Proposed Method 9.582 

M3S 
Badwe et al. (2010) 9.302 

Proposed Method 3.011 

M3F 
Badwe et al. (2010) 57.92 

Proposed Method 19.06 

 

Figures 10 to 13 and Table 5 show that both approaches are 
capable to provide �� ,	however, the proposed method has 
superior results when compared with Badwe et al. (2010), 
since the results are nearest to the base case.  It occurs 
because the existence of two model identifications steps in 
Badwe et al. (2010) method, what inserts uncertainties in the 
results and is strongly dependent of the data quality and input 
excitation. Furthermore, the best model order must be 
determined, what can be considered an additional drawback 
of the Badwe et al. (2010) method.  Ultimately, our approach 
has the advantage to be independent of setpoint, which makes 
it flexible to be used in several industrial applications where 
variables are controlled by operating intervals instead of a 
single setpoint. 

 

6. CONCLUSIONS 

A methodology for quantifying the model-plant-mismatch 
(MPM) was developed and applied for MPC performance 
monitoring. The proposed approach takes into account the 
closed loop effect produced by different controller tunings. 
Based on this nominal behavior it is possible to define an 
output in closed loop that would be expected in case of no 
MPM, i.e., ��. Two different indices have been proposed 
considering a comparison between the nominal and measured 
outputs.  

The proposed indices have been tested using a simple and 
illustrative case study. The results show that the MPM is 
directly impacted by controller tuning, since a same MPM 
causes different effects in the process, depending on the MPC 
moving suppression. The indices based on �� are capable to 
detect significant effects of MPM in MPC performance. 

The estimation of the nominal output by the proposed 
approach has superior quality in relation to Badwe et al. 
(2010) method. It occurs because the existence of two model 
identifications steps in Badwe et al. (2010), what inserts 
uncertainties in the results and is strongly dependent of the 
data quality, input excitation and model order selection. 
Furthermore, the proposed method is independent of 

setpoints, which makes it flexible to be used in several 
industrial applications where variables are controlled by 
operating intervals. 
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