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Abstract: It is very important to diagnose abnormal events in industrial processes. Based on
normal operating data in a dynamic process, dynamic latent variable model provides a clear
view of separating dynamic and static variations. Recent work by Li et al. (2014a) has shown an
effective diagnosis in faulty variables with multidirectional reconstruction based contributions.
Their further work took Granger causality analysis into accounts to explore the casual relations
instead of only correlations. Although Granger causality is a widely used method for many
applications, it needs time series to be stationary to calculate the causality index, which is
not applicable for nonstationary fault processes. In this paper, a new causality analysis index
based on dynamic time warping is proposed to determine the causal direction between pairs of
faulty variables. The case study on the Tennessee Eastman process with a step fault shows the
effectiveness of the proposed approach.

Keywords: Root cause diagnosis, causality analysis, dynamic latent variable model,
multi-directional reconstruction based contribution, dynamic time warping, wavelet denoising

1. INTRODUCTION

In the area of industrial manufacturing, it has been a
great issue to monitor industrial processes for a long
time. Because of wide use of decentralized controller, it
is difficult and expensive to obtain a plant-wide physical
model. However, with the development of statistics and
computer science, it has become easier to grasp the latent
structure hidden under the huge data in both normal
or abnormal situations. One of the most popular and
fruitful area is multivariate statistical process monitoring,
including principal component analysis (PCA) and par-
tial least squares (PLS) (Qin, 2012). These data-driven
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modeling and monitoring techniques benefit greatly from
the development in machine learning, distributed cloud
computation, advanced sensors, large scale data collection
and storage, which can be seen as the application of big
data technology in traditional manufacturing monitoring.

Static PCA models are not enough to describe dynamic
processes. In order to deal with auto-correlations among
variables, dynamic PCA (DPCA) is proposed by Ku et al.
(1995), which performs PCA on an augmented matrix
of measurements. However, as DPCA uses variables at
different time, it is difficult to interpret. Recently, Li et al.
(2014b) proposed a new method of dynamic latent variable
modeling for dynamic processes, which extracts dynamic
factors explicitly and then static relations. To identify
faulty variables, one of the most popular methods for root
diagnosis is contribution plots (MacGregor et al., 1994)
and reconstruction based contribution (RBC) (Alcala and
Qin, 2009). In order to limit the number of candidates

Preprints of the
9th International Symposium on Advanced Control of Chemical Processes
The International Federation of Automatic Control
June 7-10, 2015, Whistler, British Columbia, Canada

WeA4.5

Copyright © 2015 IFAC 1289



of faulty variables, Li et al. (2014a) extended RBC to
multidirectional RBC.

However, as statistical models only describe correlations
rather than causality, it is difficult to determine the causal
direction between pairs of faulty variables. More recently,
Granger causality has been used for identifying causality
between different variables responsible for undesirable
oscillations (Yuan and Qin, 2014). However, the above
method is suitable for only stationary faulty process. For
nonstationary faults such as step and drift faults, Granger
analysis may lose its power.

In this work, a dynamic latent variable (DLV) model is
used as the model for dynamic processes. Once a fault is
detected, multi-directional RBC method is implemented
to search a compact set of faulty variables. Then, wavelet
based denoising is used to extract the trend of each time
series from the candidates and k-means clustering is used
for grouping these trends. Within a cluster, a dynamic
time warping (DTW) based causality analysis index is
proposed to determine the causality direction pairwise,
which manages to locate the root cause and uncover the
fault propagation path. Finally, the case study on the
Tennessee Eastman process with a step fault is used to
demonstrate the effectiveness of the proposed framework.

2. MODELING AND MONITORING WITH DLV
MODEL

2.1 Dynamic latent variable modeling

Let vector x(k) ∈ Rm represent m sensor measurements
sampled at time k. Due to the nature of dynamic processes,
samples at different time are correlated. To capture auto-
correlations and cross correlations separately, a dynamic
latent variable model is constructed, which optimizes the
following objective (Li et al., 2014b):

max
w,β

(β ⊗w)TZTZ(β ⊗w)

s.t. ∥w∥ = 1, ∥β∥ = 1
(1)

where

Z =


x(q) x(q + 1) . . . x(n+ q − 1)

x(q − 1) x(q) . . . x(n+ q − 2)
...

...
. . .

...
x(1) x(2) . . . x(n)


T

(2)

and β⊗w = [β0w
T , β1w

T , . . . , βq−1w
T ]T is the Kronecker

product. The DLV model can be expressed as follows, t(k) =

p∑
j=1

αjt(k − j) + v(k)

x(k) = Pt(k) +Psts(k) + er(k)

(3)

and from a new sample, each part of DLV model can be
calculated as:

t(k) = RTx(k)

v(k) = t(k)−
p∑

j=1

αjt(k − j)

ts(k) = PT
s (I−PRT )x(k)

er(k) = (I−PsP
T
s )(I−PRT )x(k)

(4)

where t(k) and v(k) represent the score and residual in dy-
namic variations, and ts(k) and er(k) represent the score
and residual in static variations. P,Ps are the loading
matrices corresponding to dynamic and static components.
R is the weighting matrix, used for obtaining dynamic
scores directly from original x. αi is the parameters in the
auto-regression model for t(k).

2.2 Monitoring based on the DLV model

DLV decomposes original measurement space into three
subspaces with different meanings, which are supposed to
be monitored separately. Therefore, three indices are con-
structed to monitor the process based on DLVmodel which
are listed in the Table 1. Different indices have different

Table 1. Fault detection indices

Statistics Calculation Control limit

T 2
d vTΛ−1

v v δd =
A(n2−1)
n(n−A)

FA,n−A,α

T 2
s tTs Λ−1

s ts δs =
As(n

2−1)
n(n−As)

FAs,n−As,α

Qr ∥er∥2 δr = gχ2
h,α

n: number of training samples, A: number of dynamic principal

components; As: number of static principal components; Λd =
1

n−1
VTV; Λs = 1

n−1
TT

s Ts; V = [v1, ...,vn]T ; For Qr, g =

σ2/2µ, h = 2µ2/σ2, µ is the sample mean of Qr, and σ2 is the

sample variance of Qr

meaning for monitoring. On one hand, T 2
d monitors the

innovation process for dynamic variations. On the other
hand, T 2

s reflects static variations, while Qr measures the
noise level and modeling error. In practice, it is preferred
to combine T 2

s andQr together into a static index to detect
faults in the original space:

ϕs(k) =
T 2
s

δs
+

Qr

δr
= xT (k)Φx(k) (5)

where Φ can be derived easily.

2.3 Diagnosis based on multi-directional RBC

It is critical to identify faulty variables responsible for the
detected fault. Alcala and Qin proposed reconstruction
based contribution method to improve contribution a lot.
For simple faults, the faulty sensor can be identified
effectively by the RBC method. Nevertheless, for complex
faults, RBC can be extended to a generalized form (Li
et al., 2011):

RBCΞ = xTΦΞ(ΞTΦΞ)+ΞTΦx (6)

where (·)+ denotes the Moore-Penrose pseudoinverse of
a matrix, Ξ is the fault direction matrix which can be
extracted from faulty data. For a new fault, fault direction
information is usually unavailable. Therefore, searching for
a set of faulty variables responsible for the fault is an

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1290



alternative. Li et al. (2014a) extended generalized RBC
to multi-directional RBC, which searches the candidates
among all sensors. A brief algorithm is given in Appendix
A. After obtaining the candidate set Sf , it is necessary to
calculate the contributions of selected candidates to the
whole RBC: RBC =

l∑
j=1

Contj

Contj = {ξTj [(Ξ
TMΞ)+]

1
2ΞTMx}2

(7)

where (j = 1, ..., l) is the index number in Sf , and ξj is jth
column of identity matrix Il. For convenience, contribution
to RBC is normalized by RBC. Subsequently, a criterion
for candidate variable is defined over all samples:

TRj =
1

nf

nf∑
k=1

Contj(k)(j = 1, . . . ,m) (8)

where Contj(k) means the RBC for the j-th variable
of the k-th sample. As

∑m
j=1 Contj(k) = 1 holds for

normalized RBC contribution each sample, it is evident
to see

∑m
j=1 TRj = 1. If TRj > 1

m , i.e. the average
contribution of a variable, xi should be selected into the set
of candidates. Notice that j in (7) denotes the jth element
in Sf , while j in (8) denotes the jth variable.

3. CAUSALITY ANALYSIS FOR NONSTATIONARY
FAULTS

The above multi-directional RBC can provide more com-
pact candidate set than RBC. For static processes, candi-
dates at different time may not change a lot. However, for
dynamic processes, the candidates could change over time,
for the reason that the influence of fault will propagate
from one variable to another. Therefore, it is informative
whether a variable has a causal impact on another.

Granger causality (GC) uses a statistical hypothesis test to
judge whether a time series is causally affected by another
time series based on predictability. Recently, Yuan and Qin
(2014) proposed a method based on Granger causality for
the diagnosis of oscillation sources and propagation. Li
et al. then proposed an effective framework for root cause
diagnosis of random faults in dynamic processes. However,
it is not so effective to use Granger causality analysis for
nonstationary fault process, because the model residual
will not be stabilized so that the method of statistical
inference fails. In this section, faulty data series are directly
analyzed in the form of shape. For a pair of similar series
in shape, an index is defined to measure the time order
of them, which indirectly determine the causality between
them. In order to remove disturbance from noise, only low-
frequency part of a series is captured by using a wavelet
based denoising procedure.

3.1 causality analysis based on DTW

In the area of time series, dynamic time warping is widely
used as an algorithm for measuring the similarity between
two temporal sequences which may vary in time or speed

(Berndt and Clifford, 1994). Generally, DTW calculates
an optimal match between two given time series with some
restrictions. The series are warped in the time dimension
to determine a measure of their similarity.

Given two time series xi,xj in our case, the two sequences
could be arranged on the sides of a grid, with xi on
the bottom and xj the left hand side. Inside each cell, a
distance measure can be calculated for the corresponding
elements of the two time series. The objective is to find
route with the minimum sum of distances between the
start point and the ending point in all possible routes
through the grid. The DTW algorithm adopts dynamic
programming to keep track of the best path at each point
as follows (Berndt and Clifford, 1994):

γ(u, v) = d(u, v)+min{γ(u−1, v−1), γ(u, v−1), γ(u−1, v)}
(9)

where boundary conditions are given as γ(1, 1) = d(1, 1),
γ(u, 1) = d(u, 1)+γ(u−1, 1) , γ(1, v) = d(1, v)+γ(1, v−1).
Remark 1. d(u, v) = ∥xi(u) − xj(v)∥ is the distance mea-
sure for each pair of points in the grid, i.e. u point in xi

and v point in xj . γ(u, v) is the cost from point (1,1) to
(u,v). From γ(u, v) in all cells, a path with shortest cost
can be found effectively by searching from (n,n) to (1,1)
along only the bottom,left, bottom-left directions.

As DTW is sensitive to the basis and scale of the series,
series should be preprocessed in a standard form. In this
paper, time series is shifted firstly so that the minimum
point reaches zero point. Secondly, the series data is
zoomed by a factor so that the maximum point is set to
one. At last, DTW value is divided by the larger length of
two series. After the modification, DTW will be focused
on the shape of curves, regardless of the basis, scale, and
length of a time series.

Denote the DTW distance of two series xi,xj with shift
(0 ≤ w ≤ wmax) as

Dij(w) = DTW(xi(1 : n− w),xj(w + 1 : n)) (10)

Subsequently, a new DTW based causality index (DCI)
can be defined as follows:

DCIij =
minDij(w)

Dij(0)
(11)

DCIij measures whether a pattern appears earlier in xi

than in xj , i.e. whether xi precedes xj . Therefore, if
DCIij < α, it can be concluded that there is a significant
causality from xi to xj , where α is the significance level.
If DCIij ≥ α, it indicates the two series are causal to
each other. Notice that if two series are not similar in the
shape, it is not proper to use this index for indicating the
causality. Therefore, it is necessary to cluster these series
according to DTW distance.

3.2 k-means clustering with DTW distance

The task of clustering is to classify a set of samples
so that the within-group similarity is minimized and
the between-group dissimilarity is maximized. k means
clustering is popular for cluster analysis in data mining.
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( k-means clustering with the DTW distance)
(1) Select the proper number of clusters, k. Initialize k

centers for all clusters randomly, cj , (j = 1, . . . , k).
(2) For each time series xi, calculate DTW(xi, cj)

and assign each sample to the class with the
maximum of DTW distance,i.e. class(xi) =
argmaxjDTW(xi, cj).

(3) When all the objects have been assigned, recalculate
the center of each cluster, i.e. cj =

1
nj

∑
xi∈Sj

xi .

(4) Go to Step 2 until cj converges for all j.

Given a set of series samples (x1,x2, . . . ,xm), k-means
clustering aims to partition m observations into k sets
{S1, S2, . . . , Sk} (Kanungo et al., 2002). In this paper,
the Euclidean distance is replaced by DTW distance,
which is more effective for a time series. The algorithm is
summarized as follows: After clustering the time series, it
is clear which series are similar in shape and share similar
dynamic response. It is reasonable to useDCI for causality
analysis of series in a group. With the above clustering
and causality analysis approaches, the root cause of each
group is explored, which indicates the real source of the
fault ultimately.

Remark 2. Once faulty variables are clustered into several
groups, the relations among the variables within one group
will be restricted into three types. Takes pairs (xi, xj) as
two variables in a group. The possible cases are xi → xj ,
xj ← xi, and xi ↔ xj . The case that there is no causality
between xi and xj will not appear, because they are similar
in the shape and therefore highly correlated.

However, it is also notable that the proposed approach
only considers the causality that are reflected in a direct
shape matching, covering linear and stretching transforma-
tion of two series. Those nonlinear and seriously distorted
effects between two nodes with a strong causality, may
be ignored considerably in this framework. The whole
procedure is summarized in the Figure 1.

Historical normal data

Dynamic Latent 

Variable modeling

Online data stream

Fault detection

Multidirectional 

reconstruction based 

contributions

Normal

Fault

model

Affected 

Faulty 

sensors

Time series of  

faulty data

Wavelet based 

denoising 

Candidate 

set

DTW based 

clustering

Same cluster?

DTW based 

causality index

Causality graph

Yes

Signal 

trends
selected 

series

Pairs of 

signal trends

Causality 

inference

summary

Fig. 1. The whole procedure for root diagnosis of dynamic
processes

4. CASE STUDY ON TE PROCESS

In this section, the effectiveness of the proposed causality
analysis methods is demonstrated by the Tennessee East-
man (TE) process, which was created as the benchmark
for evaluating process control and monitoring approaches
(Chiang et al., 2001). TE process benchmark provided 12
manipulated variables and 41 measurements for analysis,
including 19 quality indices as product qualities, as shown
in Table 2. In this paper, XMEAS(1-22) and XMV(1-11),
are chosen as X.

To perform process monitoring for the TE process, it is
necessary to build a dynamic process model with normal
historical data first. After 480 normal samples are centered
to zero mean and scaled to unit variance, they are used to
construct the DLV model with model parameters q = 2,
A = 6, p = 3 and As = 16 (Li et al., 2014b). There are
15 known faults, including seven step faults, five random
faults and three sticking and slow change faults. Due to
page limitation, only the first type of fault denoted as
IDV(1), is taken as an example to show the effectiveness
of the method. When IDV (1) is introduced to the testing
data at the 160th sample, a step change is induced in the
A/C feed ratio in Stream 4, which causes an increase in
the C feed and a decrease in the A feed in Stream 4. The
description of IDV(1) implies variable 4 is directly affected
and thus becomes the source for the fault. The disturbance
in variable 4 will spread to the manipulated variable (26)
quickly and then leads to influence in other variables. This
fault is detected at 161th sample as shown in Fig. 2. Fig.
3 depicts the multi-directional RBC result for diagnosis.
The area with darker color represents a higher contribution
to RBC value, which should be more responsible for the
fault. According to the criterion in 8, the candidates are
selected as variables {2, 4, 18, 19, 20, 21, 23, 24, 26, 27, 31}.
Figures 4-5 show all series from candidates before and
after denoising, respectively, reflecting denoising proce-
dure is beneficial to the trend extraction of series. The
denoising is implemented with Haar wavelet in 5 layers of
decomposition, and a soft threshold. After that, k-means
clustering with DTW distance is performed on these trend
signals. Although the initial number of clusters are 3,
the result of clustering is two groups. One group consists
of variables {2, 4, 20, 21, 23, 24, 26, 27}, the other contains
{18, 19, 31}. The clustering result is convincing by observ-
ing the pattern in Fig. 5. Finally, DCIij is calculated for
each group with a significance α = 0.99 shown in Figs 6-7,
where a dashed line represents a bi-directional causality
and an arrowed line represents a unidirectional causality
from the tail to the head. From Fig. 6, it can be seen that
variable 4 and 26 are the most possible causes over other
variables in Group 1, which also discloses where this fault
originates. Group 2 has less correlation with group 1, and
they response to the fault nearly simultaneously according
to Fig. 7. The diagnosis results are consistent with the
description of IDV(1), which shows a great improvement
compared to existing RBC based methods.
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Table 2. Process variables and quality variable

Var index Description Type Var index Description Type

1 A feed (stream 1) Measured 18 stripper temperature Measured

2 D feed (stream 2) Measured 19 stripper steam flow Measured

3 E feed (stream 3) Measured 20 compressor work Measured

4 total Feed (stream 4) Measured 21 reactor cooling water outlet temp Measured

5 recycle flow (stream 8) Measured 22 condenser cooling water outlet temp Measured

6 reactor feed rate (stream 6) Measured 23 D feed flow (stream 2) Manipulated

7 reactor pressure Measured 24 E feed flow (stream 3) Manipulated

8 reactor level Measured 25 A feed flow (stream 1) Manipulated

9 reactor temperature Measured 26 total feed flow (stream 4) Manipulated

10 purge rate (stream 9) Measured 27 compressor recycle valve Manipulated

11 separator temperature Measured 28 purge valve (stream 9) Manipulated

12 separator level Measured 29 separator pot liquid flow (stream 10) Manipulated

13 separator pressure Measured 30 stripper liquid product flow Manipulated

14 separator underflow (stream 10) Measured 31 stripper steam valve Manipulated

15 stripper level Measured 32 reactor cooling water flow Manipulated

16 stripper pressure Measured 33 condenser cooling water flow Manipulated

17 stripper underflow (stream 11) Measured

0 200 400 600 800 1000
0

200

400

600

T
2 d

sample index

Detection rate 99.5%

0 200 400 600 800 1000
0

50

100

150

φ s

sample index

Detection rate 100%

Fig. 2. Fault detection for IDV(1) with T 2
d and ϕ based on

DLV models

5. CONCLUSION

In this paper, a new root diagnosis tool is proposed based
on dynamic time warping with a dynamic latent variable
model. When there is a fault detected by DLV model,
Multi-directional RBC is used for initial diagnosis of fault
related variables. After extracting the trend signal from
the original faulty series, fault related variables can be
clustered into groups with k-means clustering. Finally, the
causality directions can be revealed with the proposed
DTW based causality index. The case study on TE process
shows a success in locating where the fault comes from.
The method can be applied to other nonstationary faults,
such as a drift fault.

Appendix A. MULTI-DIRECTIONAL RBC

For each faulty sample, the following algorithm can search
for a minimized set of faulty related candidates:

samples number

va
ria

bl
e 

in
de

x

MRBC for φ
s
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Fig. 3. Faulty variables identification for IDV(1) based on
MRBC for ϕs
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Fig. 4. Original measurements of selected faulty variables

(1) Initialize Sf = ∅ as the set of faulty variables and
l = 0 is the number of elements in Sf .
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Fig. 5. Measurements of selected faulty variables after
wavelet denoising
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Fig. 6. Causality analysis for the 1st group of variables
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Fig. 7. Causality analysis for the 2nd group of variables

(2) for i = 1 : m − l, construct Ξi = I(f1, . . . , fl, gi),
where fl ∈ Sf , gi ̸∈ Sf , I is the identity matrix, I(·)

consists of indexed columns of I. Calculate RBC for
Ξi with Eq. (6).

(3) Insert fl+1 = argmax
gi

RBC into Sf .

(4) l = l+1, go back to Step 2, until reconstructed index
Indexrecont = Index −RBCΞ is below the control
limit.
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