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Abstract: Complex chemical processes usually operate at multiple operating modes, resulting from 

various factors, such as changes in market demand, set point modifications, and feedstock changes. It is 

difficult to monitor a multimode process without generating significant number of false alarms. In this 

paper, a risk-based alarm system design methodology is proposed to monitor multimode processes. The 

methodology comprises of three main steps: i) analysis of operating data using Gaussian mixture model, 

ii) identification of independent operating modes (e.g. set points, virtual transient state), and iii) 

probabilistic model to assess risk and activation of appropriate warning. A continuous stirred tank reactor 

with model predictive control system is used to demonstrate the effectiveness of the proposed method.  
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

1. INTRODUCTION 

Over the past decades, more and more attentions have been 

paid to the process monitoring from both academia and 

industry because of its indispensable role in guaranteeing safe 

operation. Complex chemical processes usually operate at 

multiple operating modes, resulting from various factors, 

such as changes in market demand, set point modifications, 

and feedstock changes (Hwang and Han, 1999). The real-

time monitoring and warning of danger in multimode 

processes is a challenging problem, which has drawn 

increasing attention recently (Zhao et al., 2010).  

To resolve the issues associated with monitoring multiple 

operating modes processes, multivariate statistical process 

monitoring (MSPM) is becoming popular due to the 

availability of large sets of data generated by large-scale 

chemical processes (Ning et al., 2014, Qin, 2012). MSPM 

techniques, such as partial least-squares (PLS) and principal 

component analysis (PCA), have been intensively 

investigated and fruitful of applications  have been 

demonstrated (Wise and Gallagher, 1996). Zhao proposed a 

method based on multiple partial least-squares models to 

monitor multimodal process (Zhao et al., 2006). Also, many 

PCA-based techniques have been reported. Chen and Liu 

proposed a fault detection method using mixture of PCA 

models, in which the number of clusters are determined 

automatically (Chen and Liu, 1999). Ng and Srinivasan 

proposed an Adjoined PCA approach, where a mixture of 

PCA models are adjoined (Ng and Srinivasan, 2009). Choi 

formulated the maximum likelihood principal component 

analysis (MLPCA) mixture model to monitor process. Feital 

proposed a multimodal modelling and monitoring approach 

based on MLPCA analysis and presented an operating modes 

identification method (Feital et al., 2013). All these PCA-

based methods suffer drawbacks of dealing with non-

Gaussian distributed operating data in process. 

Compared to the PCA-based mixture models, advantages of 

the Gaussian mixture model (GMM) includes: (1) the model 

structure is simple so that it is easy to understand and to 

implement in non-Gaussian process, (2) can be used to 

monitoring multimode processes, (3) can handle the 

nonlinear process (Ge et al., 2013). The GMM method can 

describe complex industrial process dataset by several local 

linear models. To learn the Gaussian mixture model, the 

Expectation-Maximization (EM) algorithm is employed to 

estimate the values of its parameters. GMM is promising 

method to monitor non-Gaussian, multimode process (Ge et 

al., 2013, Choi et al., 2004, Yu, 2012, Yu and Qin, 2009, 

Chen and Zhang, 2010). Ververidis (Ververidis and 

Kotropoulos, 2008) and Hennig (Hennig, 2010) showed the 

strong ability of Gaussian mixture model to separate different 

operating modes in process. Yu and Qin developed a finite 

Gaussian mixture model (FGMM) and used the Bayesian 

inference-based probability (BIP) index for process 

monitoring (Yu and Qin, 2008). The number of modes in a 

GMM is automatically determined along with its other 

parameters. 

In this paper, a risk-based warning system design method 

using the GMM is proposed to represent non-Gaussian, 

multimode operating data and to separate different 

operational modes. As a result, the process state (including 

acceptable transient state) can be identified for operating data 

in real-time, give proper warning message while minimize 

the false alarms at the same time. 

This paper proceeds as follows. First, the proposed 

methodology is described in Section 2 followed by a case 

study in Section 3. Finally, discussions and conclusions are 

presented. 
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2. METHODOLOGY 

The proposed methodology of alarm management in 

multimode process is shown in Figure 1. The methodology is 

comprised of three important steps: i) analysis of operating 

data using Gaussian mixture model, ii) identification of 

independent operating modes (e.g. set points, virtual transient 

state), and iii) probabilistic model to assess risk and 

activation of appropriate warning. The details of the 

methodology is explained in following subsections. 
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Figure 1. Methodology for alarm management in multimode 

process 

2.1  Gaussian mixture model to represent multimode 

Let us consider a simple situation. Suppose data from normal 

operating situations are represented in Figure 2. All records 

of operating point values can be represented by Gaussian 

mixture model, and also can be separated into different 

operating modes. In this example, there are two different 

operating modes with set point sp1 and sp2. 
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Figure 2. Measured values and separated operation modes 

2.2  Identification of operating modes 

In this example, there is a variable x, with two possible set 

point, sp1, and sp2. Also the system may be on the way from 

sp1 to sp2 or vice versa is considered, this is a transient mode. 

This situation is considered to be a normal situation, not to 

alarm as a false alarm. So a virtual operating mode is 

introduced, shown in Figure 3, to help identify the transient 

mode from operating point sp1 to sp2 , or vice versa. In this 

virtual mode, denoted as the OnTheWay mode, there is a 

special operating point. All transient operating trajectories 

frequently pass through it, and it can be a reference location 

to identify that the operating point is in its transient situation. 

Because it is a transient state, if all operating data are 

correctly recorded, this transient mode can be properly 

separated by the Gaussian mixture model. 
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Figure 3. Operating modes and OnTheWay virtual mode 

2.3  Risk estimation and activation of alarm 

With the OnTheWay virtual mode, process state can be 

monitored in real time. Fault probability for every operating 

point can be calculated over time. And then activate different 

level of early warnings according to the probability and 

severity. In this method, both severity and probability are 

represented in terms of distances from the centers. The 

severity classification schematic is shown in Figure 4. With 

the probability and severity values, the state of the current 

operating point can be identified, and give proper warning if 

it is necessary. 
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Figure 4. Severity classification schematic, the area A is the 

normal operation ranges, and area D is a possible fault 

requiring a warning message. 

The severity corresponds to the potential consequence; the 

values are assigned in Table 1. 

Table 1. Severity classification 

Classification Consequence Meaning 

Class A 1 Normal operation 

Class B 10 Deviation acceptable 

Class C 50 Deviation require attention 

Class D 100 Fault require warning message 

The consequences in Table 1 denote the relative importance 

of operating points. These values will be used to calculate the 

potential risk at an operating point.  

2.4  The probability graphical model for warning system 

The probability graphical model is shown in Figure 5.  
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Figure 5. Probability graphical model for warning system. 

Here, the variable x is the value of operating point in feasible 

spaces, the node SP1 is a multivariate normal distribution to 

describe the probability of current operating point x belongs 

to the operating mode SP1, the mean is 1μ , which is an 

operating set point, and the variance is 1Σ . The same 

situation can be found to node SP2. The node OnTheWay is a 

node for virtual operating mode, together with SP1 and SP2, 

the fault distribution can be calculated in Fault node, based 

on the probability of fault and the possible consequence loss. 

The state of current operating point can be correctly 

identified, and the risk is estimated. Finally, different 

warnings according the calculation result are activated. 

3. CASE STUDY 

A continuous stirred tank reactor (CSTR) with model 

predictive control system is used to demonstrate the 

effectiveness of the proposed method. 

3.1  CSTR process description 

The schematic of the CSTR process (Seborg et al., 2010) is 

shown in Figure 6. 
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Figure 6. Schematic of CSTR with temperature controller 

A liquid phase, irreversible chemical reaction takes place in 

the reactor where chemical species A reacts to form species B. 

The rate of reaction is first order with respect to component A, 

Ar kc
 

Where r is the rate of reaction of A per unit volume, k is the 

reaction rate constant, and cA is the molar concentration of 

species A.  
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The inlet stream consists of pure component A with molar 

concentration, cAi. A cooling jacket is used to maintain the 

reaction mixture at the desired operating temperature.  

A perfect mixing condition is assumed. The mass densities of 

reactant and product are assumed to be the same. The liquid 

volume of the reactor is kept constant. The dynamic model of 

the CSTR is as follow. 
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The CSTR is under a model predictive controller (MPC). A 

Simulink model is developed to simulate the dynamic process. 
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3.2  Gaussian mixture model 

Using the CSTR model, 1461 operating points are generated 

in simulation. Among all variables, the two key state 

variables, reactor temperature and concentration are shown in 

Figure 7.  
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(b) 

Figure 7. Reactor temperature and concentration change with 

time, (a) temperature, (b) concentration 

The correlation between temperature and concentration are 

shown in 8. 
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Figure 8. Concentration and temperature 

There are two operating modes, and the set point values are 

listed in Table 2.  

From Figure 7 and Figure 8, it can be seen there is a transient 

between these two set points. With data in Figure 8, the 

Gaussian mixed model is established to represent the 

distribution of these operating data, details can be found in 

Figure 9. 

 

Table 2. Set points for the CSTR process 

 
set point 1, 

sp1 

set point 2, 

sp2 
units 

Temperature, Tr 311.0 373.0 K 

Concentration, Cr 8.5 2.0 kmol/m
3
 

 

These data can be well represented by three bivariate normal 

distributions, corresponding to two set points and an 

OnTheWay virtual state. The details of these three 

components of Gaussian mixture model are in Table 3. 

Table 3. Components in the Gaussian mixture model 

 Component 1 Component 2 Component 3 

Name Set point 1 Set point 2 OnTheWay 

Means 1

317.3

8.1

 
  
 

μ

 
2

376.8

1.8

 
  
 

μ

 
OTW

348.4

4.6

 
  
 

μ

 

Variances 1

20.9 1.7

1.7 0.1

 
  

 
Σ

 
2

12.5 0.9

0.9 0.1

 
  

 
Σ

 
OTW

127.0 15.8

15.8 2.0

 
  

 
Σ

 

Weights 0.30 0.40 0.30 

The weights of these components are: 0.30, 0.40 and 0.30. 

The total 1461 operating points can be well represented by 

mixing these three bivariate normal distributions with the 

mentioned weights. 

From Gaussian mixture model, these operating components 

are separated, including the mode around set points and the 

virtual OnTheWay mode. In practice even if the actual set 

points and the virtual modes are unknown, the GMM can 

separate them correctly with proper data. Next, a probability 

graphical model for warning system is developed. 
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Figure 9. Gaussian mixture model of operating data 

3.3  Warning (alarm) system model 

The probability graphical model of the CSTR for warning 

system is shown in Figure 10. According to this model, every 

operating point can be evaluated by all operating modes, that 

is, calculate probabilities of operating point that belongs to 

these operating modes (including virtual operating modes). 

With these probabilities, the probability of fault is calculated. 

Based on this probability and the consequence severity values,      1 1 1 2 2 2 3 3 3X     μ Σ μ Σ μ ΣN , N , N ,
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the risk can be estimated and then different warning will be 

activated accordingly.  
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Figure 10. Probability graphical model of CSTR for warning 

system. 

Parameter values in this probability model will be 

continuously updated with increasing dataset and feedbacks. 

3.4 Risk-based warning (alarm) system 

With probability graphical model, the operating data 

sequences can be analyzed and identified dynamically over 

time. Figure 11 shows the recorded data in CSTR with a 

runaway situation. 
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(b) 

Figure 11. Simulation with temperature and concentration run 

away 

There are totally 122 operational data here to simulate with 

temperature and concentration run away, and these data in 

sequence can be classified into different severity classes. The 

consequence value to every probability are considered to 

calculate the dynamic risk of the process, the result is shown 

in Figure 12. 
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Figure 12. Dynamic risk in CSTR process 

From Figure 12 the different level of risk can be identified 

and the corresponding early warning is given accordingly. 

When the calculated risk value is greater than 50, it indicates 

that there is an unacceptable deviation from any operating 

mode (including the transient mode).  

3.5 Identify run away operating points 

Here 800 operating point data are generated for testing, some 

of them with very large deviation from neither the set points 

operating modes nor the OnTheWay mode. These operating 

points are shown in Figure 13. 
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Figure 13. Generated data for testing 

With the established probability graphical model, the state of 

every operating point can be identified, and the proper early 

warning of different classes is issued. 

With the same threshold, these testing operating point data 

can be classified into different classes with/without virtual 

mode, details as follow in Table 4: 

Table 4. Comparison between with/without OnTheWay 

mode in testing data classification 

Type With OnTheWay mode Without OnTheWay mode 

Class A 479 350 

Class B 115 52 

Class C 20 12 

Class D 186 386 
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It can be seen from Table 4, with the OnTheWay virtual 

mode which determined by the proposed methodology, the 

transient states can be identified, and the false alarm of the 

fault (e.g. the class D) is reduced significantly; 200 false 

alarms are avoided (from 386 to 186 in Class D). The virtual 

mode is separated by GMM-based methodology, in this way, 

the number of false alarm is reduced greatly. 

4. CONCLUSION 

Multiple operating modes should be considered carefully in 

daily operation. The Gaussian mixture model can represent 

data set of operating points involving different operating 

modes, Furthermore, it can separate the operating modes, 

together with on the way virtual mode, as independent 

components. With these multiple components, the probability 

graphical model for warning system can be established to 

analyze the operating data and give proper warning at 

different safety levels. Furthermore, with the increasing 

number of operating data, the parameters of Gaussian mixture 

model and the probability graphical model can be updated, 

and the performance of the methodology can be improved 

continuously. As a result, the false alarms can be reduced 

greatly and the different early warning messages can be 

properly passed to operators based on the dynamic risk in 

multimode process. 
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