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Abstract: Most of the previous studies on the required critical minimum velocity to move
the solid bed inside the slurry pipelines are related to the design step where the dynamics
of the process are not thoroughly considered. In this paper, a general framework for on-line
estimation of the critical minimum velocity is proposed and applied to the underflow stream of
an important Primary Separation Vessel (PSV) in an oil sand industry. Appropriate statistical
and probabilistic models are used to improve the on-line measurements and estimations. The
proposed method demonstrates a satisfactory performance in detection of different conditions
of the PSV operations.
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1. INTRODUCTION

1.1 Process Overview

The industrial application of this paper is critical mini-
mum velocity estimation in the underflow pipeline of an
industrial scale PSV in oil sand industry. The PSV unit is
schematically presented in Fig. 1.

The PSV unit is a large settling vessel to separate the
feed into three different streams. The slurry feed, which
includes aerated bitumen aggregates, water, coarse sand
and fine solids, enters at the center of the unit. The
bitumen floats over a weir circling the top for further froth
treatment. Coarse sand particles settle to the bottom and
form the underflow stream. A third outlet stream, which
usually contains fines, bitumen aggregates and water,
is removed from the middle of the vessel and referred
to as middlings. Both middlings and underflow streams
are transferred to secondary recovery units with limited
recovery rate by using two variable speed pumps through
two different pipelines.

1.2 Definition of the Critical Minimum Velocity

The critical minimum velocity, also known as the depo-
sition velocity, is the operational velocity at which the
stationary bed of solids first forms. The diagram of the
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Fig. 1. Three layers of the PSV unit

pressure loss inside the pipeline (
Pa

m
) verses average mix-

ture velocity (
m

s
) for water and the slurry flow is available

in literature (Poloski et al. (2009)).

In the case of having water inside the pipeline, the pressure
loss increases while raising the average mixture velocity.
However, in the case of slurry flow, there is a velocity below
which the particles start to make a stationary bed, and
right above it, the bed of particles starts to move. This
critical point, where the pressure loss inside the slurry

Preprints of the
9th International Symposium on Advanced Control of Chemical Processes
The International Federation of Automatic Control
June 7-10, 2015, Whistler, British Columbia, Canada

MoA2.3

Copyright © 2015 IFAC 211



pipeline becomes the minimum, is known as the critical
minimum velocity or the deposition velocity.

1.3 Importance of the Critical Minimum Velocity

Since the underflow stream in the PSV unit usually con-
tains coarse sand particles, there is a concern of sand
deposition and pipeline plugging. Complete plugging of
the pipeline, which occurs at flow-rates below the critical
velocity, is referred to as the “sanding” phenomena in
oil sand industry. In addition to the sanding phenomena,
operating velocities below the critical minimum velocity
will cause excessive erosion in the lower part of the pipeline
(Lahiri et al. (2010)).
On the other hand, operating velocities greater than the
critical minimum velocity are uneconomical as more pump
power will be required (Lahiri et al. (2010)).
On-line estimation of the critical minimum velocity and
comparison with the current operating velocity will pro-
vide a lower limit for the operator to avoid near sanding
as well as sanding regions. Also, it will help to avoid
conservative high flow-rate operations in the underflow
stream, and therefore, improve PSV bitumen recovery.

1.4 Solution Strategy

Unlike the previous applications where the critical mini-
mum velocity equations are only used in the design step,
in this paper, a novel approach for on-line estimation
of the critical minimum velocity with application to the
underflow stream of the PSV unit is introduced. When
the on-line estimation becomes greater than the current
operating velocity, a near-sanding alarm is generated.

The solution strategy is as follows:
First, the appropriate semi-empirical equation for on-line
estimation of the critical minimum velocity is selected.
Next, the effective variables for the estimation are ob-
tained. Since one of the key variables, carrier fluid density,
has some inaccurate on-line measurement, a soft sensor is
developed to provide a parallel on-line measurement for
this variable. The recursive Partial Least Squares (rPLS)
method is used to develop this soft senor. Also, an adaptive
approach based on Hidden Markov Models (HMMs) is
used to adaptively change the sensitivity of the critical
velocity estimations. Due to the presence of unknown
operating modes, the Expectation Maximization (EM)
algorithm is used to train the HMM. Finally, the algorithm
is tested in on-line environment through the connection to
the Distributed Control System (DCS), OPC server and
MATLAB.

2. CRITICAL MINIMUM VELOCITY ESTIMATION

Numerous semi-empirical equations have been developed
for the purpose of deposition velocity estimation in lit-
erature (Durand (1953) and Turian et al. (1987)). They
are based on both force balance and laboratory analysis.
Quality of these models depends primarily on the quality
of the experimental data.

As explained by Poloski et al. (2009), Shook et al. de-
veloped a correlation between the Archimedes (Ar) and
Froude (Fr) numbers to estimate the critical minimum

velocity. Shook et al. introduce the Archimedes number as
an independent variable and provide the following relation
between the Archimedes and Froude numbers (Gillies et al.
(2000), Shook et al. (2002)):

540 < Ar, Fr = 1.78Ar−0.019 (1)

160 < Ar < 540, F r = 1.19Ar0.045

80 < Ar < 160, F r = 0.197Ar0.4

This equation, which is known as the SRC (Saskatchewan
Research Council) equation, is based on a large data-base
with properties similar to the underflow pipeline of the
PSV unit. It is developed based on high quality experi-
mental data and is applicable to the turbulent flows and
a variety of pipeline diameters from 0.05 to 0.5 [m]. Com-
bination of all these properties makes the SRC equation
an appropriate choice for the industrial application of this
paper.

The key variables for estimation of the critical minimum
velocity using the SRC equation are as follows:

2.1 Carrier Fluid Density (ρf )

Carrier fluid is a portion of the slurry which contains
fine and particles with diameter less than 44 [µm] (Shah-
mirzad (2012)). In the PSV unit, as presented in Fig. 1,
coarser particles usually settle to the tailings stream while
fines and bitumen aggregates enter the middlings stream.
Therefore, the middlings stream provides a good indication
to the carrier fluid properties. In this study, middlings
density, which is measured through an on-line analyzer,
is used as an indication to the carrier fluid density in the
SRC equation.

2.2 Carrier Fluid Viscosity (µf )

Carrier fluid viscosity is known to be a function of carrier
fluid solid concentration in fluid particle systems liter-
ature. Having the value of the carrier fluid density as
explained in the previous section, the carrier fluid solid
concentration can be obtained from (2):

ρf = Cfρs + (1− Cf )ρl(T ) (2)

where Cf is the carrier fluid solid concentration, ρs is
the density of the solid phase, which is often selected as

2650 [
kg

m3
] in oil sand industry as an average, and ρl(T )

is the density of the liquid phase (water is the dominant
component) as a function of the PSV temperature (T )
from Tanaka’s equation (Tanaka et al. (2001)).

Having the carrier fluid solid concentration, various semi-
empirical correlations exist in literature to find the carrier
fluid viscosity. Among them, our investigation on the
historical data of the PSV shows that Equation (3),
which is developed in conditions close to the middlings
stream (Smith (2013)), is appropriate for this industrial
case study. The linear behavior of this equation provides
smooth estimations for the critical minimum velocity.

µf = µl(T )(1 + 14.7Cf ) (3)
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where µl(T ) is the viscosity of the liquid phase (water is
the dominant component) as a function of temperature (T)
in Kelvin. This equation is explained in detail in literature
(Al-Shemmeri (2012)).

2.3 Coarse Particle Diameter

Coarse particle diameter plays an important role in esti-
mation of the critical minimum velocity. Intuitively, coarse
particle diameter should have a positive correlation with
the ratio of volumetric concentration of coarse solids to
fines in the mixture as in (4). Similar intuitive correlations
are available in literature (Brown (2003)).

d ∝ X =
Cmix − Cfines

Cfines
(4)

where d is the coarse particle diameter, Cmix is the
volumetric concentration of solids in the mixture and
Cfines is the volumetric concentration of fines in the
mixture.
In (4), one could see that in the case of having no
coarse particles in the mixture (Cmix = Cfines), the X

factor becomes zero. When the ratio of (
Cmix

Cfines
) starts

to increase, i.e., there are more coarse particles in the
mixture, the X factor starts to grow. Since d is the median
of all available particle diameters in the mixture, it is
expected to have a positive correlation with the X factor.
As previously stated in the introduction section, fines and
bitumen aggregates usually enter the middlings stream
while the coarser particles tend to go directly to the
tailings. Therefore, the X factor in (4) can be written as,

X =
Cund − Cmid

Cmid
(5)

where ”und” and ”mid” refer to underflow and middlings
streams respectively.
In this study, the positive correlation between coarse
particle diameter and the X factor is assumed to be
linear. More complicated correlations can be considered
as a subject of future studies. Having the minimum and
maximum value of the coarse particle diameter (Sanders
et al. (2000)), the minimum and maximum value of the X
factor from historical data, and the linearity assumption,
the on-line estimation of coarse particle diameter can be
calculated as in (6):

X −Xmin

Xmax −Xmin
=

d− dmin

dmax − dmin
(6)

Since this equation is subject to many uncertainties, it is
only applied when the X factor is within two standard de-
viations of Xmean. Otherwise the coarse particle diameter
is assumed to be constant (dmean).

3. SOFT SENSOR DEVELOPMENT

From the previous sections, one could observe that carrier
fluid density, which is available through middlings den-
sity analyzer, plays a key role in on-line estimation of
the critical minimum velocity. However, there are several

short periods in the historical data where this on-line
measurement is not available. Maintenance of the PSV or
exceeding the measurement limits is the main reason of
such circumstances. During such periods, the data which
appears in DCS represents the lower limit of the online
analyzer, and not the true value. As a result of such
malfunctions, the Archimedes number suddenly decreases.
This results in a sudden spike, and a false alarm in on-line
estimation of the critical minimum velocity.
Consequently, providing another on-line measurement par-
allel to the density on-line analyzer will help to avoid such
false alarms and malfunctions in the case of on-line ana-
lyzer failure (see Fig. 4 and Fig. 5 for more information).
Lab data for the middlings density is available every two
hours.
Density of the middlings stream is strongly correlated
with the density of other layers, e.g., feed, froth and the
underflow. Therefore, linear regression techniques like Par-
tial Least Squares (PLS) provide appropriate data-driven
models to solve this problem. However, since the PSV unit
shows a time varying behavior according to the historical
data (working conditions of the PSV might change due
to the changes in the feed properties) model updating is
necessary.

3.1 Recursive Exponentially Weighted PLS (rPLS)

Many different approaches have been reported in literature
in order to update the model in the on-line application.
One of the simplest ways is known as model coefficients
recalculation (Li et al. (2010)). Such methods will cause
some delay in model updating. Successful applications of
the recursive Partial Least Squares (rPLS) method in
industrial processes are reported in literature (Haavisto
et al. (2009)). Unlike the model coefficients recalculation
methods, the rPLS method significantly weights every new
sample to the data-base and continuously updates the
model. Therefore, the model will more rapidly adapt to
new process conditions.
The rPLS method used in this paper is based on the study
on improved PLS kernel algorithm by Dayal et al. (1997-
A). In this updating strategy, a forgetting factor is used
to exponentially discount the past data and takes into
account the effect of the recent observations (Dayal et al.
(1997-B)). The covariance matrix is updated as follows
(Chen (2013)):

Rxx(t) = λRxx(t− 1) + x̃(t)T x̃(t) (7)

Rxy(t) = λRxy(t− 1) + x̃(t)T ỹ(t)

where the forgetting factor (0 ≤ λ ≤ 1) reflects the rate
of discounting the old data. The procedure to update the
mean centered data (x̃(t) and ỹ(t)) for the new available
inputs and outputs is explained in detail in literature
(Chen (2013)).

When the new covariance matrices are available from (7),
the regression coefficients (b) are obtained following a fast
kernel PLS calculation. Details of the method can be found
in Dayal et al. (1997-A). Having the regression coefficients
available, the mean centered final prediction (ŷt) in on-line
application is obtained as,
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ŷt = bXt (8)

where Xt is the mean centered vector of input variables at
time t.
Results of the rPLS algorithm will be compared to the
fixed PLS in the Results Section.

4. ADAPTIVE SENSITIVITY LEVELS FOR
CRITICAL VELOCITY ESTIMATION

The main idea of the work presented in this section
is to adaptively change the sensitivity of the critical
velocity estimations according to the operating mode
of the process. Consequently, more sensitive predictions
will be generated when the process is operating more
abnormally and the prediction sensitivity decreases when
the process is in normal operating condition.
In order to avoid false alarms and provide more sensitive
predictions, it is necessary to adaptively select the K(t)
value in (9).

QS(t) = QC(t) +K(t)× σQC
(9)

where QS(t) is the sensitive estimation of QC(t) (critical
flow-rate) based on the current operating mode of the real
flow-rate at time t (Ft), and σQC

is the standard deviation
of the critical flow-rate estimation error due to the mid-
dlings density measurement errors, which is obtained from
a Monte-Carlo simulation. Note that, having the diameter
of the pipeline, velocity can be easily converted to flow-
rate.
The lower and upper bounds of the K value (KL/U ) in (9)
can be obtained by solving the optimization problem in
(10) based on different sensitivity values, e.g., use αL = 0.7
to find KL and αU = 1 to find KU , etc.

KL/U = argminK‖QS − αL/UFNormal‖ (10)

where FNormal is the vector of normal flow-rates of the
process from historical data.
The historical data for the underflow flow-rate can be di-
vided to three operating modes (I ′ts), i.e., mode 1 (It = 1)
is low flow rate, mode 2 (It = 2) is average flow rate and
mode 3 (It = 3) is the high flow-rate. In the application
of this paper, mode 1 (near sand deposition and plugging)
and mode 3 (impact on the bitumen recovery) are consid-
ered as upset operations. In order to avoid such regions,
the K(t) value will be adaptively selected according to
(11):

K(t)−KL

KU −KL
= 1− P (It = 2|Ft, ..., F0) = P (Upset Modes)

(11)

where Ft, ..., F0 are the underflow flow-rate observations
from time 0 to t, and P (Upset Modes) is the probability
of the upset operating modes to occur.
Adaptive selection of the K value according to (11) will
increase the sensitivity of the estimations in the upset
operating modes, while reducing the sensitivity in the
normal modes. Using this adaptive technique, the number
of false alarms will be greatly reduced.

4.1 Flow-rate Mode Diagnosis

In order to calculate P (It|Ft, ..., F0) in (11), Hamilton’s
filtering strategy is used to infer the operating mode of the
process (Hamilton (1988)). It is assumed that operating
modes of the flow-rate can transit to each other following
a Markov chain model with mean values, variances, state
transition probabilities and initial state distributions given
as µi,σ

2
i ,αij and πi where i and j (1 ≤ i, j ≤ M = 3) are

indicators of the operating mode (It = i, j, 1 ≤ i, j ≤M).
The training procedure to obtain these parameters will
be explained in the next section. More details regarding
this filtering strategy for an online diagnosis application is
available in literature (Hamilton (1988)).

4.2 HMM Training

In this section, the procedure of training HMMs to model
the transitions of the flow-rate is introduced. Following
the proposed strategy of this section, means and variances
of the different operating modes of the flow-rate (µi’s
and σ2

i ’s), the transition probabilities (αij ’s) and initial
state distribution of the Markov chain model (π) will be
obtained.
Due to the existence of the unknown operating modes,
the Expectation Maximization (EM) algorithm provides
appropriate solutions to this problem. The training proce-
dure of this paper is adopted from the study by Hamilton
(1990). Our recent studies provide a more general solution
to such problems in the presence of both continuous and
discrete observations (Sammaknejad et al. (2014), and
Sammaknejad et al. (2015)).
Means, variances, transition probabilities and the initial
state distributions can be found from the update equations
(12) to (15) respectively.

µ
(n)
i =

∑N
t=1 FtP (It = i|θ(n−1), Cobs)∑N
t=1 P (It = i|θ(n−1), Cobs)

(12)

where θn−1 = {µn−1
i , σn−1

i , αn−1
i,j , πn−1

i }, 1 ≤ i, j ≤M , is
the set of parameters from the previous iteration starting
from the initial value θ0, and Cobs = {F1, ..., FN} is the
set of observations in the training data-set with length N .
n is an indicator of the iteration number.

(σ
(n)
i )2 =

∑N
t=1(Ft − µ(n)

i )2P (It = i|θ(n−1), Cobs)∑N
t=1 P (It = i|θ(n−1), Cobs)

(13)

α
(n)
ij =

∑N
t=2 P (It = j, It−1 = i|θ(n−1), Cobs)∑M

j=1

∑N
t=2 P (It = j, It−1 = i|θ(n−1), Cobs)

(14)

π
(n)
i = P (I1 = i|θ(n−1), Cobs) (15)

The training procedure is iteratively repeated until certain
convergence criterion is satisfied.
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Fig. 2. Middlings density (
g

cm3
) soft sensor estimations

verses lab data (scatter plot)

Fig. 3. Middlings density (
g

cm3
) soft sensor estimations

verses lab data (time trend plot)

5. RESULTS

5.1 Soft Sensor Performance

In this section, results of the middlings density soft sensor
are presented. Results are compared to the soft sensor with
fixed parameters (rPLS versus PLS).

Fig. 2 and Fig. 3 illustrate the results of the soft sensor
predictions in 2012 historical data (scatter plot and time
trend). From these figures, one could observe that the soft
sensor is able to track the trend of the lab data.
Comparison of the results between the fixed and recursive
soft sensors is presented in Table 1. The model perfor-
mance is evaluated by Root Mean Square Error of Predic-
tion (RMSEP) and the correlation coefficient R.

Table 1. Comparison between the performance
of the fixed and recursive PLS soft sensors

Soft Sensor PLS rPLS

RMSEP 0.2119 0.1054
R 0.4273 0.6077

The current results for the rPLS soft sensor satisfy the
need to have a parallel measurement for the middlings
density on-line analyzer. This parallel measurement will
help to avoid false alarms and sudden spikes in the
predictions of the critical velocity due to the on-line
analyzer malfunctions as explained in Section 3. Fig. 4
presents a case of the on-line analyzer failure. Fig. 5 shows
how the results have been improved after having a parallel
measurement from the soft sensor.

Fig. 4. Sudden spike in the prediction of the critical
minimum velocity due to the on-line analyzer failure)

Fig. 5. Modified critical velocity estimation results in the
case of analyzer failure

Fig. 6. A case of near sanding operation in 2013 data-set

5.2 Critical Velocity Estimation

A case of combination of normal and abnormal regions
which has occurred in 2013 is presented in Fig. 6.

In this figure real (blue line) and the critical (red line) flow-
rates are compared. It presents two cases of near-sanding
operations which have occurred in the historical data. In
both cases, the operator has increased the flow-rate to
avoid sand deposition in the pipeline. However, it can be
observed that in the first near-sanding operation, the flow-
rate has been increased very conservatively. This might
cause bitumen and energy loss in the process. Increasing
velocities that are close to the critical velocity are usually
sufficient to avoid near-sanding regions.
Operating modes of the flow-rate to provide critical veloc-
ity estimations with adaptive sensitivities are presented in
Fig. 7.

In this figure, different operating modes of the flow-rate
based on the filtering algorithm introduced in Section 4.1,
and the trained Markov chain model, are presented. As
previously mentioned in Section 4, and illustrated in Fig. 6,
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Fig. 7. Flow-rate operating modes for the data in Fig. 6

adaptive modification of estimation sensitivity based on
the process operating mode will greatly reduce the number
of false alarms.

6. CONCLUSION

In this paper, a novel procedure for on-line estimation of
the critical minimum velocity is introduced. Application
of the method is tested on the Primary Separation Vessel
of an oil-sand industry. A soft sensor is developed to
correct the measurements from the on-line analyzer for
the key process variable. In order to reduce false alarms, an
adaptive scheme based on HMMs is proposed to determine
the sensitivity of the critical velocity estimations.
The proposed method is tested both on-line and on the
historical data of the PSV unit, and shows acceptable per-
formance in detection of operating modes of the process. In
near-sanding operating conditions, the estimated value of
the critical velocity increases. A caution alarm is generated
when the value of the critical velocity is higher than the
current flow-rate. Increasing the underflow flow-rate by
adding more water can help to return the process to the
normal operating condition.

ACKNOWLEDGEMENTS

The authors would like to acknowledge financial support
from NSERC and Syncrude Canada Ltd.

REFERENCES

A.P. Poloski, H.E. Adkings, J. Abrefah, A.M. Casella,
R.E. Hohimer, F. Nigl, M.J. Minette, J.J. Toth, J.M.
Tingey, S.T. Yokuda. Deposition velocities of Newtonian
and non-Newtonian slurries in pipelines. PNNL-17639,
WTP-RPT-175, Revision 0, Pacific Northwest National
Laboratory, Richland, WA, 2009.

S.K. Lahiri, K.C. Ghanta. Artificial neural network model
with parameter tuning assisted by genetic algorithm
technique: study of critical velocity of slurry flow in
pipeline. Asia-Pacific Journal of Chemical Engineering,
5:763-777, 2010.

R. Durand. Basic relationships of the transportation of
solids in pipes - Experimental research. Proceedings:
Minnesota International Hydraulics Convention, Inter-
national Association for Hydraulic Research, 89-103,
1953.

R.M. Turian, F.L. HSU, T.W. MA. Estimation of the
critical velocity in the pipeline flow of slurries. Powder
Technology, 51(1):35-47, 1987.

R.G. Gillies, J. Schaan, R.J. Sumner, M.J. McKibben,
C.A. Shook. Deposition velocities for Newtonian slurries
in turbulent flow. The Canadian Journal of Chemical
engineering, 78(4):704-708, 2000.

C.A. Shook, R.G. Gillies, R.S. Sanders. Pipeline hydro-
transport with applications in oil sands industry. SRC
Pipe Flow Technology Centre, 2002.

A.A. Shahmirzad. The Effect of fine flocculating particles
and fine inerts on carrier fluid viscosity. MSc. Thesis,
University of Alberta, Fall 2012.

M. Tanaka, G. Girard, R. Davis, A. Peuto, N. Bignell.
Recommended table for the density of water between
0◦C and 40◦C based on recent experimental reports.
Metrologia, 38:301-309, 2001.

J.L. Smith. Measurements of carrier fluid viscosities for
oil sand extraction and tailings slurries. MSc. Thesis,
University of Alberta, Spring 2013.

T. Al-Shemmeri. Engineering Fluid Mechanics. Bookboon,
2012.

R.B. Brown. Soil Texture. University of Florida, IFAS
Extension, 1-8, 2003.

R.S. Sanders, A.L. Ferre, W.B. Maciejwski, R.G. Gillies,
C.A. Shook. Bitumen effects on pipeline hydraulics
during oil sand hydrotransport. The Canadian Journal
of Chemical Engineering, 78(4):731-742, 2000.

W. Li, L. Xing, L. Fang, J. Wang, H. Qu. Application of
near infrared spectroscopy for rapid analysis of interme-
diates of Tanreqing injection. Journal of Pharmaceutical
and Biomedical Analysis, 53(3):350-358, 2010.
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