
Stochastic proxy modelling for coalbed
methane production using orthogonal

polynomials ?

Gouthami Senthamaraikkannan ∗ Vinay Prasad ∗ Ian Gates ∗∗

∗University of Alberta, Department of Chemical and Materials
Engineering, Edmonton T6G2V4, AB, Canada

∗∗University of Calgary, Dept. Chemical and Petroleum Engineering,
Calgary T2N1N4, AB, Canada

Abstract: Uncertainty in data or in the parameters of models occurs in many real world
applications. Quantifying this uncertainty and its effects is required for robust design, control
and optimization. In this paper, we attempt to build a proxy model for the stochastic solutions
of coupled governing equations describing coalbed methane (CBM) production at different well
bottomhole pressures. To achieve this, monthly production from wells (output) is expanded as a
linear combination of Legendre orthogonal polynomials in the input (well bottomhole pressure)
and the Wiener-Askey polynomial chaos is used to propagate the uncertainty of the model
parameters. A Gaussian quadrature technique is then employed to solve for the coefficients of
the basis functions in the proxy model. Alternatively, nonlinear least squares curve fitting using
the Levenberg-Marquardt algorithm (LMA) is also used with polynomial chaos expansion to
generate the stochastic proxy model. The proxy model now enables robust optimization using
statistical metrics of CBM production calculated over the entire parameter space. In the case of
multiple decision variables, the appropriate proxy model built using these techniques will allow
for robust optimization without the use of any search algorithms.

Keywords: Uncertainty, stochastic modelling, polynomial chaos expansion, least-squares
approximation, regression, robust estimation

1. INTRODUCTION

Many applications in science and engineering require
mathematical models which can simulate solutions for a
physical variable of interest along spatial and temporal
dimensions. The simulations are usually not fully deter-
ministic due to the presence of uncertain parameters/input
random variables (Fagiano and Khammash (2012)). Dif-
ferent methods are available for the propagation of uncer-
tainty. The Monte Carlo method is a popular technique
where simulations are performed for a large number of
values sampled from a known distribution of the random
source. Although this method is robust, it requires a large
number of simulations, and is therefore computationally
expensive. Another method, the power series expansion
(PSE), coupled with contour mapping techniques was ex-
plored for distributional robustness analysis in Nagy and
Braatz (2007). However it is less acurate for lower order
expansions and requires confirmation a posteriori using
Monte Carlo simulations. The same work establishes that
the polynomial chaos expansion (PCE) method for uncer-
tainty propagation usually gives better results even with
relatively lower order approximations.

PCE is a method used for uncertainty propagation in
nonlinear dynamic systems and was introduced by Wiener

? Corresponding author, email:vprasad@ualberta.ca. Financial sup-
port from Carbon Management Canada and the Natural Sciences and
Engineering Research Council of Canada is gratefully acknowledged.

as homogeneous chaos. It is derived from the Cameron
Martin theorem which states that an expansion in Hermite
polynomials in Gaussian random variables converges in the
L2 sense for any arbitrary stochastic process with finite
second moment (Dutta and Bhattacharya (2010)). Xiu
and Karniadakis (2002) extended these results to represent
stochastic processes with an optimum trial basis from
the Askey family of orthogonal polynomials, that reduces
dimensionality of the polynomial chaos expansions and
leads to exponential convergence of error. This came to be
known as the Wiener-Askey polynomial chaos. It expands
a stochastic output X as,

X(θ) =

p∑
j=0

ajΨj(ξ)

where Ψj is the polynomial basis (in the random variable
ξ), belonging to a complete orthogonal basis. The best
choice of orthogonal polynomials for a PCE is related to
the probability distribution of the random source. Projec-
tion of the PCE onto each polynomial basis Ψj will result
in estimation of expansion coefficients aj and the expan-
sion error is orthogonal to the functional space spanned
by the basis functions (Ghanem and Dham (1998)).

PCE for an output variable is thus an effective way to
track uncertainty evolution. In this paper, we introduce
the input variable also into the PCE, thus developing a
robust proxy model that can significantly reduce compu-
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tational time in optimization studies. The main concern
in building the proxy model, however, is obtaining the un-
derlying functional relation between the input and output
in the presence of uncertainty. When the analytical struc-
ture of the relation is explicitly known, the Levenberg-
Marquardt algorithm (LMA) is used with PCE to generate
the stochastic proxy model.When this is not the case, we
suggest the use of orthogonal polynomials to weave the
input variable(s) into the PCE. Orthogonal polynomials in
the input variable will allow accurate evaluation of coeffi-
cients of the proxy model (by Gaussian quadrature rules)
using only a few simulations according to the dimensional-
ity. Thus, a robust proxy model can be built for a certain
output variable by expansion with two orthogonal basis
sets, the Legendre orthogonal polynomials corresponding
to the input (assuming uniform distribution for the input
to avoid any preferences while choosing collocation points)
and the Hermite orthogonal polynomials corresponding to
the random source from a known/assumed distribution or
a Bayesian estimate as suggested by Mandur and Budman
(2012). This technique would be computationally superior
to other robust optimization methods presented Mandur
and Budman (2012), Xiong et al. (2011) and Molina-
Cristobal et al. (2006), which evaluate metrics of the ob-
jective function (by constructing a PCE) at each decision
variable (input) value in the search space.

The approach to proxy model development is demon-
strated on coalbed methane production. Coalbed methane
is the gas naturally occuring in coalbeds due to thermo-
genic or biogenic processes, and is an important unconven-
tional source of natural gas. Geologic heterogeneity, the
existence of multiple porosity scales, coal matrix shrink-
age/swelling, varying pressure-temperature conditions and
many other phenomena lead to significant uncertainty in
assessing CBM production. For simplicity, a proxy model
for monthly coalbed methane gas production is built with
respect to the input parameter (well bottomhole pressure),
while considering uncertainty only in the micropore diffu-
sion time constant (τ).

2. CBM MODEL

Coalbed seams are highly heterogeneous with a wide range
in the scale of pore spaces occurring within coal. For
simulation purposes, coal seams are broadly assumed to
have two levels of porosity - micropores and macropores.
In this study, the production of gas from a hortizontal
well drilled into a coalbed seam containing only gas phase
is simulated by solving a 1D radial equation representing
the multi-step transport process described using a pseudo
steady-state sorption model for gas desorption, Fick’s law
for diffusion through micropores, Darcy’s law for gas flow
through open fractures (i.e., the macroporous spaces) and
gas slippage factor for surface diffusion through the surface
of solid coal (Wei et al. (2007), Jalal and Mohaghegh
(2004)). A cylindrical volume of coal reservoir, considered
for simulations with a horizontal well drilled at its center
is shown in Fig. 1. The other assumptions made in the
model are:

(1) Gas permeability through macropores, the gas dif-
fusion constant and geometry dependent factor for
diffusion through the micropore matrix are constant
throughout the spatial volume and over time.

Fig. 1. Gas production from horizontally drilled well in a
cylindrical reservoir volume

(2) Flow velocity is assumed to have only a radial com-
ponent.

(3) There is no change of temperature in the coal seam
during degasification. The gas compressibility factor
Z and viscosity µ are considered constant.

Consider a small cylindrical control volume dV in the
macroporous space consisting of micropores. The following
coupled governing equations are derived for radial gas flow
into a producer well operating at a constant pressure of
Pwf : ∫

Vbma

1

r

∂

∂r
(
rPg

Z
(
k

µ
+
Dma

Pg
)
∂Pg

∂r
)dV+∫

Vbma

PscT

Tsc

qt

Vbma
dV =

∫
Vbma

∂

∂t
(
Pgφma

Z
)dV

(1a)

qt

Vbma
=
dVmi

dt
− Lmiτ(VE(Pg)− Vmi);V 0

mi =
VlPg0

Pl + Pg0
(1b)

Production = 2πrwellhwell

(
λ+Dma/Pg)

dP

dr

)
well

(1c)

The partial differential equations were discretised at
equally separated time intervals and logarithmically spaced
spatial co-ordinates, and was solved using the IMPLICIT
method. The model variables and parameters are defined
in Table 1. The nominal values of all the parameters were
obtained by history matching the model against existing
CBM production data from Manville wells.
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Vmi
N+1
i = exp(−τδt)VmiNi + (1− exp(−τδt))VE(Pg)

N
i

(2b)

Production =

2πrwellhwell(λ+Dma/P
N
grwell

)

(
PNg(rwell−1) − Pwf
rwell − rwell−1

)
(2c)

A proxy to the above model is built with Pwf , the well
bottomhole pressure, as the input (u) and τ , the micropore
diffusion time constant, as the only source of uncertainty
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Table 1. Notations

λ = k/µ Mobility
Dma Gas Slippage

τ Micropore diffusion time constant
Lmi Geometry dependent factor for micropore diffusion
Pl, Vl Langmuir adsorption constants
φma Macropore porosity
Vbma Macropore volume

rwell, hwell Dimensions of producing well
r, t Continuous spatial and temporal coordinate
N Nth discrete spatial co-ordinate
i ith discrete time step

PFmai+1/2
2ri+1/2

(r2
i+1/2

−r2
i−1/2

)(ri+1−ri)

Pg Gas pressure at r, t
Vmi Volume of gas from micropores diffusing into the

macroporous space
VE Volume of gas adsorbed in micropore spaces

π1
Dmat0
R2

0
φ

π2
λP0
Dma

π3
PscTLmit0Z
P0Tscτφ

(ξ). The operating range of Pwf is assumed to lie between
1× 106 N/m2 to 1× 107 N/m2. τ is assumed to belong
to a Gaussian distribution with mean value of 5000 s and
standard deviation of 500 s. The output is the CBM gas
production in the first month (m3), denoted as Y . The
functional dependence of CBM production on time can be
estimated by aggregating proxy models built at different
time instants. It is to be noted here that including all
the input variables and uncertain sources into the proxy
model will increase dimensionality and consequently, the
computational expense.

3. PROXY MODEL DEVELOPMENT

The first step is to establish a functional relation between
the input (u) and the output (Y ). Any given function f(x)
can be approximated by minimizing the inner product,
〈f(x) − p(x), f(x) − p(x)〉 where p(x) is a combination
of a sequence of orthogonal polynomials, p0(x), ...., pk(x).
The chosen family of orthogonal polynomials represent an
orthogonal basis for the subspace of polynomial functions
of degree ≤ k. The inner product is defined as

〈g, h〉 =

∫ b

a

g(x)h(x)w(x)dx =

n∑
i=1

g(xi)h(xi)w(xi) (3)

where g(x), h(x) belong to the class of orthogonal polyno-
mials and w(x) is the weighting function.

Thus, Y can be expanded as

Y = a0 + a1L1(u) + a2L2(u) + a3L3(u) + .... (4)

where u is the input variable and L0, L1, .. belong to
the sequence of Legendre polynomials that are orthogonal
on the interval [−1, 1]. Legendre polynomials are chosen
because their weighting function is a constant (this will
prevent any bias in selection of input variable during
estimation or prediction). The range for Pwf is projected
on to a range of [−1, 1] for u.

Table 2. Orthogonal polynomials

Hermite Legendre

H0(ξ) = 1 L0(u) = 1

H1(ξ) = ξ L1(u) = u

H2(ξ) = ξ2 − 1 L2(u) = u2 − 0.33

H3(ξ) = ξ3 − 3ξ L3(u) = u3 − 0.6u

H4(ξ) = ξ4 − 6ξ2 + 3 L4(u) = u4 − 0.8571u2 + 0.0848

H5(ξ) = ξ5 − 10ξ3 + 15ξ L5(u) = u5 − 1.11u3 + 0.2372u

H6(ξ) = ξ6−15ξ4+45ξ2−15 L6(u) = u6−1.364u4+0.4549u2−
0.0214

The next step is uncertainty propagation on the orthog-
onal polynomials in the expansion of equation 4 using
Wiener-Askey chaos. To illustrate this, let Y be defined
as a second-order polynomial (in u) and the stochastic
process in each direction (i.e. the orthogonal basis used
to define Y ) be approximated by second order Hermite
polynomials in the standard Gaussian random variable, ξ.
Hermite polynomials are orthogonal on [−∞,∞] relative

to the weight function e
−x2
2 , which is similar to the prob-

ability density function of a Gaussian distribution.

Y = a0(b10 + b11H1(ξ) + b12H2(ξ))(L0(u))

+a1(b20 + b21H1(ξ) + b22H2(ξ))(L1(u))

+a2(b30 + b31H1(ξ) + b32H2(ξ))(L2(u))

(5)

The random variable τ in the CBM model and ξ are
linearly related as τ−5000

500 = ξ.

The first few Legendre and Hermite polynomials are
shown in Table 2. These are generated using ORTHOPOL
by Gautschi (1994).

At certain known values of the input, the expansion in
equation 5 reduces to

Y = (a0b
1
0L0(u) + a1b

2
0L1(u) + a2b

3
0L2(u))

+ (a0b
1
1L0(u) + a1b

2
1L1(u) + a2b

3
1L2(u))H1(ξ)

+ (a0b
1
2L0(u) + a1b

2
2L1(u) + a2b

3
2L2(u))H2(ξ))

(6)

The statistical moments (mean and variance) of the output
distribution would then be

µ = a0b
1
0 + a1b

2
0 + a2b

3
0 (7a)

var = (a0b
1
1 + a1b

2
1 + a2b

3
1)2 + (a0b

1
2 + a1b

2
2 + a2b

3
2)2

(7b)

The accuracy of this proxy model depends on the set of
basis polynomials chosen for the expansion and accurate
evaluation of the coefficients of the basis polynomials in
the proxy model.

4. ESTIMATING COEFFICIENTS OF BASIS
FUNCTIONS IN THE PROXY MODEL

The coefficients of the basis functions in the proxy model
are estimated using the orthogonal property of the expand-
ing polynomials. A simple model of Y expanded using first
order polynomials in u and ξ is considered to illustrate this.

Y = a0(b10 + b11(ξ)) + a1(b20 + b21(ξ))(u) (8)

The inner product of Y with each of the Hermite polynomi-
als and Legendre polynomials (according to the definition
in equation 3) give,
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∫ 1

−1

∫ ∞
−∞

Y

5
e
−ξ2
2 dξdu = a0b

1
0;

∫ 1

−1

∫ ∞
−∞

Y

5
ξe
−ξ2
2 dξdu = a0b

1
1 (9a)∫ 1

−1

∫ ∞
−∞

Y

1.67
e
−ξ2
2 dξudu = a1b

2
0;

∫ 1

−1

∫ ∞
−∞

Y

1.67
ξe
−ξ2
2 dξudu = a1b

2
1

(9b)

The parameters of the proxy model are estimated by
evaluating the above integrals. If an analytical expression
was available for Y , the integrals could be evaluated easily.
In its absence, non-intrusive methods characterised either
as Galerkin projection methods or least squares methods
are used. Galerkin projection evaluates the integrals in
equation 9 using sampling approaches or Gaussian quadra-
ture rules. The linear least squares method employed is a
regression approach, also known as point collocation or the
stochastic response surface method ( Eldred et al. (2008),
Kewlani and Iagnemma (2008)).

The sampling approach evaluates products in the integrals
of equation 9 at samples within the density of the weight-
ing function. The quadrature approach evaluates the inner
products as a summation of the product of basis functions
at the roots of the next higher order polynomials as de-
scribed by the Gaussian quadrature technique ( Webster
et al. (1996)). According to Gaussian quadrature rules,

if

∫ b

a

f(x)dx =

∫ b

a

w(x)g(x)dx; then

∫ b

a

f(x)dx '
∑
c

w(x)g(x)dx

where there are c roots of the next higher order orthogonal

polynomial h(x) (
∫ b
a
w(x)g(x)h(x)dx = 0). It is a very

useful method when the number of basis functions in the
proxy model are small, since the number of collocation
points exponentially increases with an increase in the
dimensionality of the expansion. The regression approach
uses a linear squares solution of the form Ψα = R to
solve for expansion coefficients that best matches a set
of response values R. However, it requires oversampling,
i.e., the number of samples needs to be at least twice the
number of parameters. In spite of this, the approach may
still be significantly more affordable than quadrature for
large problems.

Since there are only two variables in the proxy model de-
veloped in this study, the Gaussian quadrature approach is
chosen as it provides accurate results with a lower number
of samples. Fig. 2 represents the work flow for building
the proxy model. Along with the application of this tech-
nique, a nonlinear least squares method employing the
Levenberg-Marquardt algorithm for parameter estimation
is also used to estimate the proxy model, provided that
the structure of the functional relation between Y and u
is identified. For example,

Y = Y0(u) + Y1(u)H1(ξ) + Y2(u)H2(ξ) (11a)

if known that relation between Y and u is expontential

Y = aef(u) + beg(u)H1(ξ) + ceh(u)H2(ξ) + ... (11b)

Y0, Y1, Y2 for a set of collocation points in ξ are evaluated
at different values of u. These values are regressed against
the functions aef(u), beg(u), ceh(u) at the corresponding
values of u.

Start with
the lowest

order

Choose collocation points J,K as
zeroes of the next higher order

polynomials

Obtain response values Y at
c = J ×K

Estimate proxy model coefficients
c∑
i=1

Y.H0 =

c∑
i=1

H2
0a0b0

· · ·
c∑
i=1

Y.HmLn =

c∑
i=1

(HmLn)2ambn

(12)

Use model for prediction at zeroes of
next higher orderl polynomials
J ≡ J + 1 or/and K ≡ K + 1

Compute Adjusted covariance,

R2
a = 1−

∑c
i=1 (Ytrue − Yi)2fuξ/(c− p)∑c
i=1(Yi − Yavg)2/(c− 1)

(13)

where fuξ : Joint probability density and p:
No of parameters in proxy model

Error
large?

Update
model to

next higher
order

Accept
model

No

Yes

Fig. 2. Work flow for proxy model development

5. RESULTS AND DISCUSSIONS

Four different model orders - [1, 1], [2, 1], [3, 1], [3, 2] (de-
noting the model order in u and ξ, respectively) were
tested. The expansion coefficients of the basis functions for
all the four models are shown in Table 5. Collocation points
of prediction were chosen to be zeros of polynomials two or-
ders higher than the order of the model. Model predictions
were compared against data obtained from simulations of
the original model (equation 1), and the results are shown
in Fig. 3. The adjusted coefficient of determination (R2

a)
was computed in each case to test the goodness of fit.
Fig. 4 shows that, R2

a increases with an increase in model
order with respect to u but decreases when the order of
the polynomial in ξ is increased to 2. The decrease in R2

a
at this model order could indicate over-fitting. However,
computations of the expansion coefficients at this model
order ([u(3), ξ(2)]) also involved the division of very small
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Fig. 3. Comparing performances of models built with
Gaussian quadrature with simulation data from orig-
inal model, equation 1

Fig. 4. Adjusted coefficient of determination for different
models

Fig. 5. Comparing third order models built with Gaussian
quadrature and the Levenberg-Marquardt algorithm
for a large number of collocation points against sim-
ulation data

Fig. 6. Expectation & Variance of production

numbers which could have led to numerical issues. It is
to be noted that R2

a as a criterion discredits increase in
number of model parameters. Thus, the model of order
[u(3), ξ(1)] has the lowest prediction error. Thus, it is
accepted as the proxy model for Y = F (Pwf , τ(θ)) where
Y is the CBM production on first month, Pwf is the

Fig. 7. The two objective function formulations

Table 3. Coefficients corresponding to each polynomial in
proxy model

Polynomial Model order in u and ξ

[1, 1] [2, 1] [3, 1] [3, 2]

1 185215 200030 204450 204490
ξ 303 396 -436 -4976
u -174081 -228396 -244600 -244830
uξ 422 717 851 9709
u2 − 0.33 188730 245050 245160
u2 − 0.33.ξ -767 -1164 -13267
u3 − 0.6u -202320 -202270
u3 − 0.6u.ξ 1135.4 12991
ξ2 − 1 -4350
ξ2 − 1.u 1820
ξ2−1.u2−0.33u 38820
ξ2 − 1.u3 − 0.6u 34770

bottomhole pressure and τ(θ) represents the uncertain
value of the micropore diffusion time constant. Moments
of the distribution at a known value of input u obtained
from this proxy model are,

µ = 204450− 244600u+ 245050(u2 − 0.33)− 202320(u3 − 0.6u)

(14a)

σ =
√

4362 + 8512u2 + 11642(u2 − 0.33u)2 + 11352(u3 − 0.6u)2

(14b)

Since there is approximation in the way Gaussian quadra-
ture evaluates integrals, some inner products < ΨiΨj >
with i 6= j are not equal to zero. As a result, the error
of the estimated proxy model is not orthogonal to the
subspace spanned by the basis functions present in it.
Thus, the best values are not obtained for the coefficients
in the proxy model resulting in errors when using it for the
evaluation of higher order statistical moments of the out-
put distribution. The inaccurate approximation of inner
products also increases computational expense.

Nonlinear least squares regression was also applied for the

proxy model development. Plotting
∫∞
−∞Y e

−ξ2
2 dξ against

u revealed that the underlying functional relation between
Y and u is exponential. The proxy model was developed by
considering it to be second order in ξ. Model coefficients
were evaluated using just 16 collocation points (chosen as
roots of 4th order Legendre and Hermite polynomials for
a good sample space). The proxy model obtained is

Y = 7525e−4.305u + 129800e−0.7288u

− 7.648e−6.066uξ − 141.8e−1.398uξ

+ 3.639e−4.5625uξ2 − 1 + 6.604e−0.4735u(ξ2 − 1)

(15)

Fig. 5 compares the prediction (over a large number of
simulation points) based on models of order [u(3)ξ(1)],
[u(3), ξ(2)] and when the relation between Y and u is con-
sidered to be exponential. The model of order [u(3)ξ(2)]
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does not have adequate predictive capability whereas the
model considering an exponential input-output relation
displays more accurate prediction with Hermite polyno-
mials in ξ of the order 2. This indicates that the model
with order [u(3), ξ(2)] would perform better if interactions
between third order terms in u and second order terms in
ξ are omitted.

6. ROBUST OPTIMIZATION

Robust optimization is usually performed as a trade-off
between maximum performance and robustness (Mandur
and Budman (2012)). In this study, we intend to find
the optimum bottomhole pressure value for maximum gas
production with minimum variability (i.e., low variance in
production values in the presence of uncertainty). There-
fore the objective function is formulated as max

u
L = a ∗

E(Y, u, ξ)− b ∗V (Y, u, ξ), where E and V are the expecta-
tion and variance of production Y , at any input u and
a and b are the respective weights for these functions.
Equation 14 provides both E and V as functions of u
(Pwf ). As is seen in Fig 6, the expectation of the pro-
duction value increases with decreasing u, while variance
has a minimum at u = 0. Fig. 7 shows the results of two
objective function formulations with different values of a
& b. For a = 1, b = 1 (weighing both E and −V equally),
max
u

L is at the lowest value in the range of u (= −1),

whereas for a = 0.001, b = 0.999 (weighing −V heavily),
max
u

L is at u = −0.05, i.e., Pwf = 5.3× 106N/m2.

7. CONCLUSIONS

We have developed a stochastic proxy model that propa-
gates uncertainty in the micropore diffusion time constant
(random source) sampled from a Gaussian distribution,
to the monthly coalbed methane gas production (output)
at different well bottomhole pressures (input) using Leg-
endre polynomials and Hermite polynomial chaos. The
coefficients of the basis functions in the proxy model
are estimated by Galerkin projection using the Gaussian
quadrature technique. Trial and error evaluation of model
structures in increasing order shows that a model that is
third order in the input variable and first order in the
random source has the lowest relative sum square-root
error of prediction. Although Gaussian quadrature is an
efficient non-intrusive method of evaluating coefficients of
basis functions, the computational expense increases with
increasing dimension of the proxy model. The error of
approximation of inner products occurring from use of
Gaussian quadrature reduces accuracy of the higher order
statistical moments of distribution of the gas production
obtained from a proxy model that appears to predict well
at collocation points. Nonlinear least squares regression
was also tested for developing a proxy model, and can
be employed if the underlying functional relation between
the input and output variables is identifiable. The results
indicate that the least squares method gives better predic-
tions as compared to Galerkin projection of the expansion
of output in an orthogonal polynomial basis. However,
the input-output relation is not always easily identifiable.
The stochastic proxy model developed was then used for
robust optimization of gas production. It is seen that the

optimal point varies depending on whether performance
or robustness is weighed more in the objective function.
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