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Abstract: In this paper, the problem of optimal crude oil procurement combined with refinery
operations is addressed to obtain an ε−global optimal solution. Rather than the traditional
planning and scheduling methodologies relying on linear programming (LP), a nonlinear model
using Geddes fractional index (FI) is employed to describe the behavior of the crude distillation
unit (CDU) and integrated with the entire plant-wide model. Although this representation
provides more accurate prediction of the real production of the refinery than the conventional
fixed yield approach, its global optimization becomes more difficult owing to the existence of
many nonlinear, non-convex terms. To overcome this challenge, advanced interval reduction
techniques are developed and combined with state-of-the-art global optimization software to
obtain an ε−global optimal solution more efficiently. The optimization and comparison are
conducted to show the effectiveness of the proposed approach.
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1. INTRODUCTION

The refining industry is capital intensive such that even
one percent improvement can increase the profit signifi-
cantly. Two important elements that impact profitability
of a refinery are crude oil purchases and plant operations.
Due to the variation of oil properties, including yields,
sulfur concentration and density, the price of crude oils
can vary significantly. Usually, low sulfur and low density
oil, also called light crude oil, is easier to process and
generates more valuable products, but its price is higher
compared with the heavy crude oil. Thus, how to design
a suitable crude oil procurement recipe according to the
crude properties and specific refinery operations to achieve
a global optimum is always attractive to academia and the
petroleum industry.

Modern refinery optimization schemes rely on an accu-
rate model of the entire plant and efficient mathematical
programming technique to achieve a local or global op-
timal solution. In the early stage, a purely linear model
based on material balance is employed to simulate the
refinery production process and solved to a global optimal
solution nearly instantly. However, with the introduction
of more complex units and processes, the inaccuracy of
linear model becomes more serious and finally renders
this method inappropriate for most real applications. In
view of this, it is necessary to develop nonlinear process
model based optimization schemes. A common nonlinear-
ity considered in refinery optimization is pooling, which
represents multiple flows mixing and distributing to pro-
duce several products. Nevertheless, the more important
nonlinearity actually lies in the process units. Among all
units in the refinery, we are mainly concerned with the
crude distillation unit (CDU) because it separates the
crude into several fractions and determines the possible

quantities of products directly. Traditionally, a short-cut
method is used for distillation column design based on
the Fenske-Underwood-Gilliland equations, which are very
complex and not suitable for optimization purposes. Lang
et al. (1991) combined the bubble-point and sum-rate
methods to achieve a good matching between calculations
and experimental results. Alhajri et al. (2008) used a
high-order polynomial function to represent the volume
percent of all fractions based on true boiling point (TBP)
temperature. Li et al. (2005) proposed a simplified empir-
ical nonlinear process model for CDUs based on the cut
point temperature which takes operating conditions into
account. However, this method assumes the CDU can only
work in several discrete modes to bypass the difficulty of
determining the optimal cut point in the entire tempera-
ture domain. Recently, a fractional index (FI) model for
CDUs was proposed by Alattas et al. (2011). This model is
independent of the crude and enables the solver to decide
the cut point temperatures more flexibly, thus obtaining
a better solution than other methods. A drawback of this
FI model is that it requires the solution of a number of
highly nonlinear equations with continuous and integer
variables, and thus is computationally intensive. In this
paper, we will revisit and simplify this model to make it
more practical for real applications.

Since the decision process of crude oil purchase involves
integer variables and unit operations incorporate contin-
uous variables, an efficient mixed-integer nonlinear pro-
gramming (MINLP) algorithm is highly desirable for re-
finery optimization problems to ensure that a global op-
timum is obtained with acceptable solution time. Most
MINLP algorithms consist of convexification and branch
& bound procedures, which generate sequences of lower
and upper bounds on the solution values. Once the gap
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between upper and lower bounds is smaller than a pre-
defined threshold ε, then we say an ε−global optimal
solution is identified. State-of-the-art commercial soft-
ware, BARON, by Tawarmalani and Sahinidis (2005),
is based on the branch-and-reduce method. If the con-
straints and objective function are convex, the outer ap-
proximation method presented by Duran and Grossmann
(1986) can reach the global optimum. This has been
extended to nonconvex constraints and objective func-
tion by Kesavan et al. (2004). Recently developed soft-
ware, ANTIGONE, by Misener and Floudas (2014), is
able to detect special structures of the formulation, such
as reformulation-linearization technique (RLT) equations,
convexity/concavity, edge-convexity/edge-concavity, αBB
relaxations introduced by Androulakis et al. (1995), term-
specific under-estimators, and use them in the branch-
and-cut procedure. Even though these cutting-edge global
optimization techniques have already gained great success,
we need to point out that a problem specific preprocessing
procedure is still often necessary to speed up the solution
process. Through case studies, we noticed that the variable
bounding step is highly important for global optimization
software because the convex relaxation gap is dependent
on the size of variable intervals. In fact, by using feasibility
and optimality based interval reduction methods proposed
in this paper, both the solution gap and solution time can
be decreased considerably.

The paper is organized as follows: the nonlinear represen-
tation of the refinery consisting of a FI model and a pooling
model is built in Section 2; the interval of variables derived
from constraint propagation, feasibility based interval re-
duction (FIR) and optimality based interval reduction
(OIR) are presented in Section 3; the optimization results
for a simplified refinery with FI model are given in Section
4; the paper ends with conclusions and remarks.

2. REFINERY MODEL

2.1 CDU Model
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Fig. 1. A simplified refinery model flow chart in Favennec
(2001).

A simplified refinery flow chart is used in this paper and
shown in Fig. 1. In the refining process, the crude oil
flows into the distillation and is separated into several
cuts including refinery gas (RG), liquefied gas (LG), light
naphtha (LN), heavy naphtha (HN), kerosine (KE), gas
oil (GO), vacuum gas oil (VGO) and vacuum residue

(VR) for future processing. A CDU model developed
by Alattas et al. (2011) is adopted and revised in this
paper to calculate the weight fraction of each cut except
LG and RG due to the lack of light end data (Fig. 2).
Although there are actually thousands of molecules in the
crude oil, we usually group the molecules with similar
properties to generate a much smaller number of so-called
pseudo-components for design and optimization purposes.
In each cut, some pseudo-components will be distributed
into distillate and bottoms. The distillate part will go to
the higher trays for further separation and the bottoms
part is the output of the CDU. Thus, we denote the mole
fraction of ith pseudo-component as xi. Its distribution in
the distillate and bottoms are represented by xdis,i and
xbot,i, respectively.
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Fig. 2. The separation process.

Geddes (1958) derived the relationship between compo-
nent composition ratio versus relative volatility on a loga-
rithmic scale as straight lines and the slope of these lines
is named the fractionation index (FI), which can be calcu-
lated from column tests. Moreover, the TBP data analysis
for FI evaluation was conducted on the performance data
from three commercial units, Gilbert et al. (1966). The
resulting Thiele Geddes method for component i is

xdis,i
xbot,i

= (αi,o)FI xdis,o
xbot,o

, (1)

where subscript o represents the reference component
and αi,o is the relative volatility. Further assume that
in cut j, we have cut point temperature Tj , relative
volatility αj,i,o(Tj) and equilibrium constant Kj,i(Tj),
then according to Jakob (1971), we can replace the relative
volatility in (1) by equilibrium constant for simplification.
As a result, the FI equation is:

xdis,j,i

xbot,j,i
=
(
Kj,i(Tj)

)FI
. (2)

It is worthwhile to note that the FI of a pseudo-component
may change if the cut point temperature varies. Specifi-
cally, we have

FI =

{
FIr,j if ITj 6 Tbi < Tj
FIs,j if ETj > Tbi > Tj

where FIr,j and FIs,j are two different FI parameters
for the cut j; Tbi is the true boiling point temperature
of that pseudo-component; ITj and ETj are initial and
end boiling points for the cut j. If the true boiling point
of a pseudo-component is smaller than ITj , then this
component will only exist in the overhead and if the true
boiling point of a pseudo-component is larger than ETj ,
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then this component will only exist in the bottoms. Here
we assume that the interval Uj := [ITj , ETj ] does not
overlap between the cuts. This implies that a pseudo-
component will only distribute into bottoms and distillate
at one cut and it will be solely gas or liquid at other cuts.
Moreover, we restrict the cut point temperature within
a sub-domain of Uj , namely, Tj ∈ Ωj := [T j , T j ] ⊂ Uj ,
such that there is only one pseudo-component for each
cut whose FI parameter cannot be determined in advance.
In order to model the switching of the FI parameter, we
introduce the binary variable vi for pseudo-component i if
Tbi ∈ Ωj :

vi(ETj − ITj) > Tj − Tbi, (3)

(vi − 1)(ETj − ITj) < Tj − Tbi. (4)

Then FI equation (2) for these components becomes:
xdis,j,i

xbot,j,i
=
(
Kj,i(Tj)

)FIr,j
vi +

(
Kj,i(Tj)

)FIs,j
(1− vi). (5)

Based on the FI equations (5), (3) and (4), we can
formulate the mole balance for the pseudo-component. For
cut j and pseudo-component i satisfying Tbi ∈ Uj , we
have

Ni = Pdis,jxdis,j,i + Pbot,jxbot,j,i, (6)

Pbot,j =
∑

i:Tbi∈Uj

Pbot,jxbot,j,i +
∑

i:Tbi∈Uj−1

Pdis,j−1xdis,j−1,i,

(7)

Pdis,j =
∑

i:Tbi∈Uj

Pdis,jxdis,j,i +
∑

i:Tbi<ITj

Ni, (8)

∑
i

Ni = 1, (9)

where Ni is the mole number of the pseudo-component i
in the feed and we can only consider 1 mole crude input
for modeling purposes. Pdis,j and Pbot,j are the total mole
number of cut j in distillate and bottoms, respectively.
Given the mole fraction, we can calculate the weight Wj
of each cut:

Wj =
∑

i:Tbi∈Uj

Pbot,jxbot,j,iMi +
∑

i′:Tbi′∈Uj−1

Pdis,j−1xdis,j−1,i′Mi′ ,

where j ∈ Cut = {LN,HN,KE,GO, V GO, V R} and the
yield weight fraction Yj is:

Yj =Wj/
∑
i

NiMi (10)

where Mi is the molecular weight of pseudo-component i.
The remainder work of CDU modeling is to write equations
for the equilibrium constant Kj,i. Assuming ideal behavior
and according to Raoult’s law:

Kj,i =
V Pi(Tj)

P
(11)

where V Pi(Tj) is the vapor pressure which can be cal-
culated according to the state equation proposed by Twu
et al. (1994) and P is the column’s pressure. However,
note that this state equation is an exponential function
with high order signomial terms, which is very difficult
to handle with current global optimization software, thus
we use the quadratic function in (12) to approximate the
original state equation. The parameters γ0, γ1, γ2 are esti-
mated by using least squares to fit the data generated by
the state equation. This approximation is accurate enough
because the decision variable Tj is only within a small
interval instead of the entire temperature domain. The
approximation can be verified by Fig. 3.

V Pi(Trj,i) = γ2(Trj,i)
2 + γ1Trj,i + γ0 (12)

where Trj,i is the reduced temperature defined by the
ratio of cut point temperature and critical temperature
of pseudo-component i: Tj/Tci. When modeling, the true
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Fig. 3. The comparison of state equation data and
its quadratic function approximation for different
pseudo-components.

boiling point (TBP) data from the crude oil assay is used
as the input to ASPEN to generate the pseudo-components
and their parameters Tci, Mi, Tbi and Ni.

2.2 Pooling Process

Once the yield fractions are obtained, we can follow Faven-
nec (2001) to write linear equations for mass balance,
capacity limitation, demand, importation, quality con-
straints and so on. However, we notice that at least two
factors will make the problem more complex. First, the LG
produced from the CDU, reformer and cracker are mixed
in the pipeline and distributed to the different gasoline
tanks PG98 and ES95. Second, the cracker can work in two
production modes: Mogas and AGO. The products of these
two modes are mixed and distributed to the desulfurization
unit, HGO and HF tanks. This mixing and distributing
of flows is called pooling in the refinery model and this
process will introduce bilinear terms in the final quality
expressions even under linear mixing rules.

Let H denote the flow, f denote the flow fraction, q̃
denote the known property of inflow and q denote the
unknown property of outflow. Here we employ the classical
pq-formulation proposed by Tawarmalani and Sahinidis
(2002) to model this pooling process. Suppose that there
are I inflows, then we have

I∑
n=1

fn = 1, (13)

I∑
n=1

Hmfnq̃n = qmHm, ∀m (14)

I∑
n=1

Hmfn = Hm, ∀m (15)

where n is the subscript of inflow and m is the subscript
of outflow. Even though (15) is redundant in the nonlinear
model, it is very useful to tighten the convex relaxation of
the model.
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2.3 Sulfur Model for Fluid Catalytic Cracker

One of the most important qualities of refinery products is
the sulfur concentration. Hence, it is worth constructing a
more accurate sulfur model to characterize the impact of
sulfur in the crude on the final products. Here we further
consider the sulfur in the Fluid Catalytic Cracker (FCC)
because one of its outputs, catalytic cracked gasoline (CN),
is the major source of sulfur for gasoline95 (ES95) and
gasoline98 (PG98).

According to Sadeghbeigi (2000), sulfur in CN is approx-
imately an affine function of the feed sulfur content in
VGO:

sCN = 0.054

(∑
i

fV GOi
s̃V GOi

)
− 0.0024 (16)

where sCN is the unknown sulfur fraction of CN; s̃V GOi

is the known sulfur fraction in VGO of crude i; fV GOi
is

the flow fraction of VGO from crude i. Parameters 0.054
and 0.0024 are identified from the figure on page 193,
Sadeghbeigi (2000). Let the maximum permissible sulfur
fraction in gasoline to be 0.025 and assume that the sulfur
fraction in the imported high quality gasoline is negligible.
Then the equations for sulfur in the produced gasoline are:

HCN,95sCN 60.025(HCN,95 +HLN,95 +HISO,95+ (17)

HLG,95 +HR95,95 +H100,95 +Himp,95)

HCN,98sCN 60.025(HCN,98 +HLN,98 +HISO,98+ (18)

HLG,98 +HR95,98 +H100,98 +Himp,98)

where the subscript imp denotes the importation.

2.4 Objective Function

The aim of the refinery optimization is to maximize the
economic return from crude purchase and refinery opera-
tions. Thus the objective function incorporates the crude
purchase cost, operation cost, importation expense and
final products sales. The price of the crude is mainly de-
termined by its API gravity, but also related to the sulfur
concentration and yield. In order to address situations in
which the production of the refinery cannot meet market
demands or quality specs, we allow the refinery to import
high quality products by paying a higher price than its
sales. A linear form of the objective function is:

obj = CsaleHproducts − CcrudeHcrude (19)

− Coperation

∑
H − CimpHimp

where C represents the price and H represents the flow.
In the optimization, we need to maxH obj, subject to the
refinery model.

3. GLOBAL OPTIMIZATION

Even though several global optimization software packages
can be used for models containing continuous variables,
integer variables and non-convex terms, a well-designed
pre-processing procedure is still the key step to obtain
the ε−global optimum in a short time. Considering that
the convex relaxation is one of the most important parts
of global optimization and its relaxation gap is highly
dependent on the variable intervals, ways to reduce the
variable bounds attract considerable attentions in global
optimization research. Given the refinery model, the vari-
able interval derived from the physical limitations such as

unit capacity may not be tight enough to yield a tight re-
laxation. Thus, in this paper, we mainly consider three ap-
proaches for interval reduction, including interval analysis
(IA), feasibility-based interval reduction and optimality-
based interval reduction, to speed up the algorithm.

3.1 Forward/Reverse Interval Analysis

Given an equation F (x) = 0, forward interval analysis
derives its interval [F , F ] bounds based on the initial range
for each variable. Then by setting the equation interval
as [0, 0], the reverse interval analysis will contract the
domain for each variable sequentially, Jaulin et al. (2001).
Similarly, we can also set interval as [0,+∞] or [−∞, 0]
for inequalities. Here this methodology is implemented by
using the interval analysis package MC++ and directed
acyclic graph (DAG) representation from Schichl and
Neumaier (2005) to reduce the range for variables in the
refinery model. The interval analysis takes very short
processing time without solving an optimization problem.
But its drawback is that the resulting bounds may not be
tight enough.

3.2 Feasibility based interval reduction (FIR)

The FIR method is a pre-processing step for global opti-
mization. To acquire a tighter bound on a variable, say
x, the direct way is to solve the optimization problem:
min /max x, subject to the refinery model. This method
does not exclude any feasible points of the original problem
and can be very effective when the initial interval is much
larger than the feasible region according to Balendra and
Bogle (2009).

However, solving such an optimization problem subject to
the refinery model actually has the same computational
burden as the original problem, thus also slow. One way
to address this issue is to limit the solving time of the
software and employ its best estimation as the variable
bound. An alternative way is to construct convex and
concave relaxations of the original problem and solve the
relaxed formulation to get the variable bounds. In this
paper, we utilize the second way because it provides more
flexible and faster solution. Generally, this refinery model
contains four kinds of non-convex terms which should be
relaxed: bilinear terms, trilinear terms, signomial terms,
and integer variables.

Bilinear term For bilinear terms, the McCormick relax-
ation proposed by McCormick (1976) is the best way to
construct its convex and concave hulls.

Trilinear term It has been shown by Rikun (1997) that
the convex and concave envelopes of a trilinear term are
still the polyhedral and we employ the procedure provided
by Myer and Floudas (2003) to construct such polyhedron.

Signomial term Since the FI parameter can be an
arbitrary real positive number derived from the column
test, (Kj,i)

FI is a signomial term. According to Lundell
et al. (2009), the power transformation and piecewise
linear functions can be used to convexify signomial terms.
However, this scheme will introduce more binary variables
and render the entire formulation more complex. Note that
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(Kj,i)
FI is either convex or concave and the bound on Kj,i

is known, its convex and concave relaxation can be built
by using an affine function:

If FI > 1 : Convex: (Kj,i)
FI

Concave:
(Kj,i)

FI − (Kj,i)
FI

Kj,i −Kj,i

(Kj,i −Kj,i)

If FI 6 1 : Concave: (Kj,i)
FI

Convex:
(Kj,i)

FI − (Kj,i)
FI

Kj,i −Kj,i

(Kj,i −Kj,i)

Integer variables The integer variables vi are introduced
to model due to the switching of the FI parameter. Given
the assumptions made before, only one pseudo-component
for each cut should be decided by optimization solver. In
this paper, we simply relax the integer requirement to
obtain a nonlinear convex problem for FIR.

After relaxation, the resulting nonlinear convex problem
can be solved by the software CONOPT to obtain the up-
per and lower bounds of variables quickly. It is worthwhile
to note that the convex and concave relaxation is based
on the interval of variables involving in the bilinear or
trilinear terms. The initial guess for these variable intervals
can be obtained by using forward/reverse interval analysis.
Once the variable interval is contracted by solving the
convex optimization, the relaxation also becomes tighter
and we may repeat this optimization procedure to generate
stronger bounds.

3.3 Optimality based interval reduction (OIR)

Different from the FIR, the OIR method cuts off part of the
feasible region of the original formulation but still retains
the global optimum. By solving OIR, we expect to obtain
much tighter bounds for variables, thereby accelerating the
branch & bound procedure. The prerequisite of OIR is
a feasible solution, say obj′ found by local optimization
software. Then it is clear that the global optimum obj∗

should be no smaller than the current feasible solution,
namely, obj∗ > obj′. This cut can be integrated into
the optimization formulation of FIR to yield the OIR
formulation, which is still convex and can be solved by
CONOPT to get tighter interval for the variables. The
OIR is triggered when the incumbent solution is updated
significantly and can be combined with the FIR in the
optimization algorithm.

4. OPTMIZATION STUDY

Based on the refinery model proposed in this paper, we
optimize the refinery profits with four sources of crude
using an Intel Xeon CPU 3.07GHZ with 4GB memory
assigned for Ubuntu-64 bit operating system. All algo-
rithms in this study are implemented in GAMS 24.2.1 with
LP solver CPLEX, NLP solver CONOPT and MINLP
solver ANTIGONE. In order to make the optimization
study more practical, we limit the crude purchase either
to be zero or within the interval [40, 200]. In such setting,
integer decision variables should be introduced for each
crude. The price of crude, importation and products are
shown in Tables 1-3 and we use the approximate con-
version 1 tonne = 7.14 barrels of crude oil for objective

function calculation. The sulfur fraction data from the
crude oil assay are shown in Table 4. Other parameters
can be found in Favennec (2001). The suggested model
includes 687 continuous variables, 10 binary variables,
91 inequalities and 693 equalities before pre-processing.
There are 303 bilinear terms and 204 signomial/trilinear
terms. The solution time is limited as 24 hours to obtain
an ε−global optimal solution, where the relative gap is
ε = 1%. The resulting profit is 31.8 million $/month
and the purchase amounts of each crude are shown in
the Table 5. The purchase recipe indicates that the high
sulfur crude oil is not favorable to the profitability because
the sulfur constraints may be violated and high quality
products should be purchased to recover the sulfur spec.
The resulting cut point temperatures are shown in the
Table 6. It is not surprising that the importation is zero
because the optimal solution always guarantees the market
demands and quality of products due to the high penalty of
importation price and hard constraints on quality indexes.

We also test different interval reduction techniques and
evaluate their impacts on the solution time. Although
solving the FIR and OIR for a single variable is cheap,
there are a number of variables involved in the nonlinear
terms and bounding all of them will be time consuming.
Therefore, we only use OIR and FIR to calculate the
bounds of selected variables: xbot,j,i, xdis,j,i, Pbot,j , Wj , Yj ,
crude purchase and all flow variables related to bilinear
terms. The parameter used for cut obj∗ > obj′ is set as
obj′ = −1$ because the refinery should make profits and
then obj′ = 29.86 million $ by solving the problem and
obtaining a feasible solution within 120s. Even though
the same optimal feasible solution is obtained based on
these approaches, the solution times are very different. The
results are shown in Fig. 4 and Table 7 for comparison. It
is clear that the OIR and FIR combined methodology is
superior because it only takes 347s for range reduction
and totally 2340s to obtain the solution with relative
gap 1% whereas the pure interval analysis method takes
24 hours to reach the gap 3%. In fact, the OIR and
FIR combined method is also the fastest way to find the
optimal feasible solution in 1261s. The FIR based method
finds this solution in 2440s and the interval analysis (IA)
based method takes 6544s. It is also worthwhile to note
that the ANTIGONE also does the variable bounding
without using obj∗ > obj′, at nodes of the branch & bound
tree.

Table 1. Crude price $/barrel

Crude1 Crude2 Crude3 Crude4
112.85 103.19 99.58 98.18

Table 2. Product price $/tonne

ES95 PG98 JET HGO HF LG LN
1120 1216 923 921 397 860 914

Table 3. Importation price $/tonne

ES95 PG98 JET HGO HF LG LN
2240 2432 1846 1842 794 946 1005.4

5. CONCLUSION

A simplified crude distillation unit model is developed
based on the fractional index theory and embedded into a
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Table 4. Crude sulfur wt%

Yield Crude1 Crude2 Crude3 Crude4
GO 0.209 0.2 1.003 1.826

VGO 0.65 0.5 2.0 3.60

Table 5. Crude purchase KT

Crude1 Crude2 Crude3 Crude4
40.0 200.0 200.0 0.0

Table 6. Cut point temperature K

LN HN KE GO VGO VR
320.0 373.4 465.0 525.0 660.0 850.0

Table 7. Convergence

IA FIR FIR+OIR
Time 24 hours 3891s 2340s
Gap% 3 1 1
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Fig. 4. The comparison of relative gap based on different
interval reduction techniques

simplified refinery model to determine the optimal crude
purchase and plant operations. Due to the existence of
many non-convex terms and integer variables, the resulting
mixed-integer nonlinear programming problem should be
solved by integrating specific interval reduction techniques
with state-of-the-art commercial software to achieve an
ε−global optimum within a short time. An optimization
study is conducted to show the effectiveness of the pro-
posed global optimization scheme.
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