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Abstract: The adaptive output feedback control problem of chemical distributed parameter systems is
investigated while the process parameters are unknown. Such systems can be usually modeled by semi-
linear partial differential equations (PDEs). A combination of Galerkin’s method and proper orthogonal
decomposition is applied to generate a reduced order model which captures the dominant dynamic
behavior of the system and can be used as the basis for Lyapunov-based adaptive controller design.
The proposed control method is illustrated on thermal dynamics regulation in a tubular chemical reactor
where the temperature spatiotemporal dynamic behavior is modeled in the form of a semi-linear PDE.
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1. INTRODUCTION
Distributed parameter systems frequently appear in a wide
range of chemical processes where the transport phenomena
and reactions take key roles [Adomaitis (2003); Christofides
(2000); Lin and Adomaitis (2001); Ray (1981)]. Such sys-
tems can be usually described by a set of semi-linear partial
differential equations (PDEs) whose infinite dimensional rep-
resentation can be decomposed to two subsystems; slow and
fast, where a time scale separation can be recognized between
these subsystems. The slow subsystem contains slow modes
of the original system that can possibly be unstable and the
fast subsystem includes fast modes of the original system that
are stable. Using such decomposition most of the dissipative
distributed parameter systems in the chemical process indus-
tries where the transport-reaction mechanisms play the essen-
tial role can be approximated by a low-dimensional reduced
order model (ROM) which contains the dominant dynamics
[Adomaitis (2003); Balas (1991); Bentsman and Orlov (2001);
Christofides (2000); El-Farra et al. (2003)]. Then the ROM
can be applied as the basis for the controller design [Balas
(1991); Christofides (2000); Lao et al. (2014); Liu et al. (2014);
Pourkargar and Armaou (2013a,b, 2014a,b,c, 2015a,b)].

A practical approach to obtain such ROMs is via weighted
residual methods like Galerkin projection, however the bot-
tleneck of such methods’ applications is the computations of
basis functions required to discretize the governing PDEs. An-
alytical techniques have been widely applied to compute the
basis functions of linear and semi-linear DPSs by solving the
eigenproblem of linear part of spatial differential operators
[Christofides (2000); El-Farra et al. (2003); Lao et al. (2014);
Liu et al. (2014)]. However the analytical approaches can not
be used directly to compute the set of basis functions when
(a) the spatial differential operator is nonlinear, (b) the process
is defined over irregular domains and (c) there are unknown
parameters in the spatial differential operator. Such restrictions
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can be circumvented by employing statistical techniques to
compute the empirical basis functions from an ensemble of the
system solution data instead of solving the eigenproblem of the
spatial operator.

Proper orthogonal decomposition (POD) is one of the indus-
trially used statistical methods to find the dominant compo-
nents of the system dynamic behavior. POD-type approaches
have been widely applied in model order reduction (MOR)
based monitoring, optimization and control of DPSs [Armaou
and Christofides (1999); Izadi and Dubljevic (2013); Sirovich
(1987)]. All POD-based algorithms employ an ensemble of spa-
tially distributed system solutions (snapshots) to construct the
basis functions. Such snapshots can be computed using either
off-line (before the process starts) or on-line (in parallel to when
the process operates) high fidelity simulators when all of the
process parameters are known. Such limiting condition is not
satisfied for a large class of transport-reaction processes in the
chemical industries when the diffusion-dispersion-convection
parameters and reaction mechanisms are unknown. In such case
the snapshots can be measured directly by a set of sensors
which are spatially distributed in the process domain for a
rich set of system inputs and initial conditions before closed-
loop process operations. After basis function computation by
applying POD to the ensemble of collected snapshots, the ROM
that contains the unknown parameters can be obtained by em-
ploying Galerkin’s projection to the PDE model. Such ROM
then may be used as the basis for traditional adaptive controller
designs tailored for the systems governed by ordinary differ-
ential equations (ODEs) [Âström (1983); Bentsman and Orlov
(2001); Khalil (1996); Sastry and Isidori (1989)].

In this paper we focus on the POD-based low-dimensional
adaptive output feedback control of transport reaction processes
to bypass the limitations of direct control of PDE systems
[Demetriou and Rosen (2001); Hong and Bentsman (1994);
Smyshlyaev and Krstic (2010)] and to extend the MOR-based
controller designs [Armaou and Christofides (1999); Balas
(1991); Christofides (2000); El-Farra et al. (2003); Lao et al.
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(2014); Liu et al. (2014)] in the presence of unknown system
parameters. The mathematical model of semi-linear DPSs with
unknown parameters and their mathematical properties is pre-
sented in Section 2. We briefly discuss the MOR steps in Sec-
tion 3; it includes short descriptions for Galerkin’s method and
POD. An adaptive output feedback control structure is formu-
lated in Section 4 which is a combination of a stable Lyapunov-
based adaptive controller and a static observer to estimate the
system modes. The proposed low-dimensional adaptive output
feedback controller is finally applied to regulate the thermal
spatiotemporal dynamics in a tubular chemical reactor in Sec-
tion 5.

2. SEMI-LINEAR DISTRIBUTED PARAMETER
SYSTEMS AND THEIR PROPERTIES

We consider chemical distributed parameter systems with un-
known transport-reaction parameters which can be described
by the following set of semi-linear PDEs,

∂x(z, t)
∂t

= A(z,ϑ)x(z, t)+F
(
z, x(z, t)

)
+G

(
z, x(z, t)

)
Θ

+B(z)u(t),

y(t) =
∫

Ω

δ(z−Ls)x(z, t) dz,

Γ

(
t, x(z, t),

∂x(z, t)
∂z

)
∂Ω

= 0, x(z,0) = x0(z),

(1)

where x ∈ Rn denotes the vector of spatiotemporal states, t
is time and z ∈ Ω is the vector of spatial coordinates. The
process domain is presented by Ω ⊂ R3 with the process
boundary of ∂Ω and A denotes the second order linear spatial
differential operator. The terms F n×1 and Gn×q present the
smooth nonlinear vector and matrix functions, respectively. We
also consider ϑ ∈ Rp and Θ ∈ Rq as the vectors of unknown
transport and reaction parameters, respectively. The vector of
manipulated inputs is denoted by u ∈ Rl where B ∈ Rn×l

describes their spatial distributions, y∈Rr is the vector of point
measurements where the vector of Ls presents location of the
sensors and δ is standard Dirac function. The initial spatial
profile of the system state is denoted by x0 and Γ is the vector
of homogeneous boundary conditions.

In the PDE system of (1), the term A(z,ϑ)x(z, t) presents trans-
port phenomena where the diffusion, dispersion and convection
parameters may be unknown. F

(
z, x(z, t)

)
describes the known

part of nonlinear reaction dynamics and G
(
z, x(z, t)

)
Θ presents

the unknown-affine (linear in terms of unknown parameters)
dynamics of the reaction. Note that the boundary conditions
don’t have to be homogeneous necessarily. To homogenize
the non-homogeneous boundary conditions, we can include
the non-homogeneous parts in the PDEs using standard Dirac
functions.

We can represent the above PDE system as the following
infinite-dimensional system [Curtain and Zwart (1995)]

˙̄x(t) = A(ϑ)x̄(t)+F
(
x̄(t)
)
+G

(
x̄(t)
)
Θ+Bu(t),

x̄(0) = x̄0,
(2)

in the Sobolev subspace of W,

W(Ω) =
{

H ,
∂H
∂z
∈ L2(Ω) : Γ

(
H ,

∂H
∂z

)
∂Ω

= 0
}
,

endowed with inner product

(H1,H2) =
∫

Ω

H1(z)∗H2(z)dz

by defining the infinite-dimensional state of x̄(t) ∈W,
x̄(t) = x(z, t),

the linear operator with unknown parameters,
A(ϑ)x̄(t) = A(z,ϑ)x(z, t),

the nonlinear vector and matrix functions,
F
(
x̄(t)
)
= F

(
z, x(z, t)

)
, G

(
x̄(t)
)
Θ = G

(
z, x(z, t)

)
Θ,

and the manipulated input operator,
Bu(t) = B(z)u(t).

We can discretize the infinite-dimensional system of (2) to
infinite and countable modal set of ODEs by applying Galerkin
projection to individual PDEs of the components of the spa-
tiotemporal state vector while we also capture the interactions
between the PDEs of such components. To employ such dis-
cretization we need the system basis functions which are the
solution of the eigenproblem of the linear differential operator,

A(ϑ)φi = λiφi, ∀i = 1, . . . ,∞ (3)
subject to

Γ

(
φi,

dφi

dz

)
∂Ω

= 0,

where φi and λi denote the i th basis function and eigenvalue,
respectively, and W, span{φi}∞

i=1, i.e., the linear operator is a
strong generator of the defined Sobolev subspace.

For the majority of chemical DPSs, specifically the transport-
reaction processes, we can assume that the eigenspectrum of
the linear operator, {λ1,λ2, . . .}, can be decomposed to the
following subsets;

(1) finite subset of first m eigenvalues, {λ1,λ2, . . . ,λm}, which
indicate the slow and possibly unstable dynamics of the
infinite-dimensional system,

(2) complement countable subset of the remainder eigenval-
ues, {λm+1,λm+2, . . .}, which indicate the fast and stable
dynamics of the infinite-dimensional system,

when we order Re(λ1)≥ Re(λ2)≥ ·· · ≥ Re(λm)≥ Re(λm+1)≥
·· · , and require Re(λm+1)< 0; here Re(·) denotes the real part.
In addition, a time scale separation can also be recognized
between the subsets by σ = |Re(λ1)|

|Re(λm+1)|
, where σ is a small

positive number.

Note that the eigenproblem of (3) can not be solved due to
the unavailability of the unknown parameters vector of ϑ, that
clearly shows the limitation of the analytical approach even for
the system with linear dominant operator defined over simple
domains. To bypass the solution of such problem we can apply
POD that will be briefly discussed in the next section. However,
to continue the analysis and illustrate the system properties let’s
assume the basis functions are available for the remainder of
this section. This assumption will be lifted when the proposed
method will be presented.

By considering the set of basis functions, {φi}∞
i=1, and eigen-

spectrum decomposition, the Sobolev subspaces for the subsets
can be defined as follows;

(1) slow subspace, Ws , span{φi}m
i=1,

(2) complement fast subspace, W f , span{φi}∞
i=m+1,

where W =Ws ∪W f . Then by considering the vector of slow
and fast basis functions as

Φs = [φ1 φ2 · · · φm]
T , Φ f = [φm+1 φm+2 · · · ]T ,
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and the corresponding integral Galerkin projectors of

P : W→Ws, P (·) =
∫

Ω

(·)Φ
∗
s dz,

Q : W→W f , Q (·) =
∫

Ω

(·)Φ
∗
f dz,

(4)

where ϕT and ϕ∗ denote the transpose and adjoint of ϕ, we can
derive the modal representation of the system as partitioned sets
of ODEs,
ẋs = Asxs(t)+Fs

(
xs(t),x f (t)

)
+Gs

(
xs(t),x f (t)

)
Θ+Bsu(t),

xs(0) = P x̄0,

ẋ f = A f x f (t)+Ff
(
xs(t),x f (t)

)
+G f

(
xs(t),x f (t)

)
Θ+B f u(t),

x f (0) = Q x̄0,
(5)

where x̄ = xs⊕ x f , As = P A, A f = Q A, Fs = P F, Ff = Q F,
Gs = P G, G f = Q G, Bs = P B, B f = Q B.

According to singular perturbation analysis [Christofides (2000)]
and considering Tykhonov’s theorem for solution convergence
of systems include slow and fast subsystems [Lobry et al.
(2014)], the partitioned infinite-dimensional system of (5) can
be reduced to

ẋs = Asxs(t)+Fs
(
xs(t),0

)
+Gs

(
xs(t),0

)
Θ+Bsu(t),

xs(0) = P x̄0, (6)

when x f → 0 after a short period of time, tb. Such required
relaxation time, tb, can be identified form singular perturba-
tion arguments [Christofides (2000); Pourkargar and Armaou
(2013a, 2015a)].

3. MODEL ORDER REDUCTION
In this section, we derive the finite-dimensional approximation
of the PDE system of (1) by applying Galerkin’s projection
while the optimal required empirical basis functions are com-
puted by employing POD to the ensemble of snapshots cap-
tured from spatially distributed measurement sensors during the
open-loop process evolution.

3.1 Proper orthogonal decomposition
Let w(z)= [w1(z)w2(z) · · · wK(z)]T be the ensemble of K snap-
shots of the system, where wi(z) = x(z, ti). The basis functions
can be obtained by an optimization problem,

max
(φ,w)2

(φ,φ)
,

s.t. (φ,φ) = 1, φ ∈ L2(Ω),

(7)

where (·) denotes the ensemble average. The solution of the
minimization problem of (7) takes the following integral eigen-
problem form, ∫

Ω

(
w(z)w(ξ)

)
φ(ξ)dξ = λφ(z). (8)

An efficient approach to solve the above integral eigenproblem
is via method of snapshots [Sirovich (1987)] wherein the op-
timal set of required basis functions are presented by a linear
combination of the snapshots,

φ(z) = vw(z). (9)
where v is the matrix of eigenvectors obtained from the solution
of the following eigenvalue-eigenvector problem,

CKv = λv, (10)
where the elements of the positive semidefinite covariance
matrix can be constructed by

CK(i, j) :=
1
K

∫
Ω

wi(ξ)w j(ξ)dξ. (11)

We obtain K non-negative real eigenvalues and their corre-
sponding eigenvectors by solving the eigenproblem of (10),
however we only require the dominant eigenvalues and eigen-
vectors. To obtain the dominant eigenelements, we order the
eigenvalues by size and only consider the first m eigenvalues
and their corresponding eigenvectors such that

λm+1

∑
m
i=1 λi

≥ ε, (12)

where ε denotes the desired fraction of the energy of the
ensemble. The key steps of the POD algorithm are presented
in Table 1.

Table 1. POD algorithm
1) Collect the available snapshots in an ensemble, w.
2) Compute the covariance matrix of CK using (11).
3) Solve the eigenvalue-eigenvector problem of (10).
4) Order the eigenvalues and eigenvectors.
5) Keep the dominant eigenvalues and their corresponding eigenvectors.
6) Compute the dominant empirical basis functions using (9).

3.2 Galerkin projection

We consider a general form of a one-dimensional (z ∈ Ω ⊂ R)
transport-reaction process with a single state (n = 1) described
by the following semi-linear PDE that is abstractly represented
by (1),

∂x(z, t)
∂t

= ϑ2
∂2x(z, t)

∂z2 +ϑ1
∂x(z, t)

∂z
+F

(
z, x(z, t)

)
+θG

(
z, x(z, t)

)
+B(z)u(t),

(13)

in the presence of unknown convection, diffusion and reaction
parameters which are denoted by ϑ1, ϑ2 and θ, respectively
(i.e., p = 2 and q = 1).

By employing the set of empirical basis functions from POD
algorithm described in previous section, we can approximate
the spatiotemporal state as

x(z, t)≈
m

∑
i=1

xs,i(t)φi(z). (14)

Then by substituting such state approximation in the PDE
system of (13), we obtain

m

∑
i=1

ẋs,iφi = ϑ2

m

∑
i=1

xs,i
d2φi

dz2 +ϑ1

m

∑
i=1

xs,i
dφi

dz
+F

(
z,

m

∑
i=1

xs,iφi
)

+θG
(
z,

m

∑
i=1

xs,iφi
)
+B(z)u(t),

(15)
Then we can obtain the ROM by employing Galerkin projection
to equation (15) as

ẋs =
(
ϑ1As,1 +ϑ2As,2

)
xs +Fs(xs)+θGs(xs)+Bsu, (16)

where

[As,1] j,i =
∫

Ω

φ j(z)
dφi(z)

dz
dz, [As,2] j,i =

∫
Ω

φ j(z)
d2φi(z)

dz2 dz,

[Fs] j =
∫

Ω

φ j(z)F
(
z,

m

∑
i=1

xs,iφi
)
dz,

[Gs] j =
∫

Ω

φ j(z)G
(
z,

m

∑
i=1

xs,iφi
)
dz, [Bs] j,k =

∫
Ω

φ j(z)Bk(z)dz

Note that xs ∈ Rm, As,1,As,2 ∈ Rm×m, Fs,Gs : Rm → Rm, Bs ∈
Rm×l , u ∈ Rl and ϑ1,ϑ2,θ ∈ R. Such ROM can be used as the
basis for the adaptive output feedback controller design.
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4. ADAPTIVE OUTPUT FEEDBACK CONTROL
In this section we address the synthesis of the low-dimensional
adaptive output feedback controller structure which is a com-
bination of a Lyapunov-based adaptive controller and a static
observer.
4.1 Controller design
We assume that the identification errors remain bounded under
the proposed adaptive controller design,

eϑ1 = ϑ1− ϑ̂1, |eϑ1 |< α1
eϑ2 = ϑ2− ϑ̂2, |eϑ2 |< α2
eθ = θ− θ̂, |eθ|< β

(17)

where ϑ̂1, ϑ̂2 and θ̂ denote the estimated values for unknown
transport and reaction parameters. To synthesize the controller
we consider the following standard quadratic control Lyapunov
function (CLF),

Vc(xs) =
1
2

xT
s xs, (18)

where Vc(xs)> 0 and Vc = 0 only for xs = 0. Then we can obtain
the time derivative of the CLF as
V̇c = xT

s ẋs = xT
s
(
ϑ1As,1xs +ϑ2As,2xs +Fs(xs)+θGs(xs)+Bsu

)
.

Then by considering
ϑ1As,1xs +ϑ2As,2xs +Fs(xs)+θGs(xs)+Bsu
=−Coxs−

(
α1‖As,1‖2 +α2‖As,2‖2

)
xs−β‖Gs(xs)‖2 sign(xs),

(19)
where Co > 0 and sign denotes the sign function, we conclude

u =−B⊥s
[(

Co +ϑ1As,1 +ϑ2As,2 +α1‖As,1‖2 +α2‖As,2‖2
)
xs

+Fs(xs)+θGs(xs)+β‖Gs(xs)‖2 sign(xs)
]
,

(20)
where B⊥s = BT

s (BsB
T
s )
−1 is the Moore-Penrose pseudo-inverse

[Penrose (1955)]. Note that B⊥s = B−1
s for m = l and the

controller of (20) is implementable when the parameters are
known. Then the time derivative of the CLF can be derived by

V̇c =−
(
Co +α1‖As,1‖2 +α2‖As,2‖2

)
xT

s xs

−β‖Gs(xs)‖2 xT
s sign(xs)≤ 0,

(21)

which shows the closed-loop stability of the controller in the
Lyapunov sense [Khalil (2002)].

We obtain the controller formula in the presence of unknown
parameters by the applying certainty equivalence principle
Âström (1983),

u =−B⊥s
[(

Co + ϑ̂1As,1 + ϑ̂2As,2 +α1‖As,1‖2 +α2‖As,2‖2
)
xs

+Fs(xs)+ θ̂Gs(xs)+β‖Gs(xs)‖2 sign(xs)
]
.

(22)

By considering the closed-loop Lyapunov function as a com-
bination of the CLF and the identification Lyapunov function
(ILF),

V =Vc(xs)+Vi(eϑ1 ,eϑ2 ,eθ)

=
1
2

xT
s xs +

1
2P1

e2
ϑ1

+
1

2P2
e2

ϑ2
+

1
2Z

e2
θ,

(23)

where P1,P2,Z > 0, we conclude

V̇ = V̇c +V̇i = xT
s ẋs +

1
P1

eϑ1 ėϑ1 +
1
P2

eϑ2 ėϑ2 +
1
Z

eθėθ. (24)

We assume that the unknown parameters of ϑ1, ϑ2 and θ do
not change sharply as process evolves however it may change
step-wise. According to such assumption,

Fig. 1. Closed-loop process.

ėϑ1 = ϑ̇1− ˙̂
ϑ1 =− ˙̂

ϑ1, ėϑ2 = ϑ̇2− ˙̂
ϑ2 =− ˙̂

ϑ2,

ėθ = θ̇− ˙̂
θ =− ˙̂

θ.
(25)

If we employ the following identification laws to estimate the
unknown parameters,

˙̂
ϑ1 = P1 xT

s As,1xs,
˙̂
ϑ2 = P2 xT

s As,2xs,
˙̂
θ = Z xT

s Gs(xs), (26)

we obtain

V̇ =−
(

C0 +α1‖As,1‖2 +α2‖As,2‖2

)
xT

s xs

−β‖GS(xs)‖2xT
s sign(xs)≤ 0.

(27)

Therefore V =Vc+Vi is a decreasing positive definite Lyapunov
function which indicates the closed-loop system stability in the
Lyapunov sense [Khalil (2002)].

4.2 State estimation
To implement the proposed adaptive control structure we must
have access to full measurements of the system slow modes,
xs, to compute the control action of (22) and estimate the
parameters from (26). We employ the following static observer
design to estimate the slow modes based on continuous point
measurements from limited number of sensors,

x̂s(t) =
(

Φs(Ls)Φ
T
s (Ls)

)−1
Φs(Ls)y(t), (28)

where Φs = [φ1 φ2 · · · φm]
T , y∈Rr. Note that the number of re-

quired continuous measurement sensors has to be supernumer-
ary to the number of slow modes, i.e. r ≥ m. Such requirement
can be circumvented using dynamic observer design which
conceptually needs only one measurement output Pourkargar
and Armaou (2013b, 2014a, 2015b).

Figure 1 presents the block diagram of the closed-loop process
operation under the proposed adaptive output feedback con-
troller structure.

5. APPLICATION TO THERMAL DYNAMICS
REGULATION

5.1 Process description
We consider a tubular flow reactor with a cooling jacket where
an irreversible exothermic zero-th order reaction takes place
(Figure 2). The reaction rate is considered to be temperature
dependent, then it varies with time and location of the reactor.
The cooling jacket and feed temperatures are chosen as the
manipulated variables for control purposes. The thermal spa-
tiotemporal dynamics can be derived from the energy balance
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Fig. 2. Tubular flow reactor with a cooling jacket.

inside the reactor and can be presented as the following PDE
with initial and boundary conditions,
∂T
∂t

=
k

ρCp

∂2T
∂z2 − v

∂T
∂z

+
(−∆H)

ρCp
ro exp

(−E
RT

)
− hAc

ρCp
(T −Tc),

∂T
∂z

(0, t) =
ρCpv

k
(T (0, t)−Tf ),

∂T
∂z

(L, t) = 0,

T (z,0) = T0(z),
(29)

where T is the stream temperature inside the reactor, t is time
and z ∈ [0,L] denotes spatial coordinate where L is the reactor
length. The terms k, ρ, Cp, v, (−∆H), r0, E and h are used
for thermal conductivity, density, heat capacity, axial velocity,
heat of reaction, pre-exponential reaction constant, activation
energy, and heat transfer coefficient between reactor and cool-
ing jacket, respectively. The cooling surface area is denoted by
Ac and Tc, Tf and T0 present the cooling jacket temperature,
feed temperature and initial temperature profile, respectively. In
above PDE system, k, (−∆H) and r0 are considered as unknown
transport-reaction parameters of the system.

To generalize the governing equation we reformulate (29) us-
ing dimensionless variables and parameters, and homogenize
the first boundary condition by inducing the non-homogeneous
part in the governing PDE using standard Dirac function. The
dimensionless form of the PDE with respect to initial tempera-
ture, T0, takes the following form,

∂T̄
∂t̄

= ϑ
∂2T̄
∂z̄2 −

∂T̄
∂z̄

+θexp
(

γT̄
1+ T̄

)
+BC(ū1− T̄ )+δ(z̄−0)ū2,

∂T̄
∂z̄

(0, t̄) =
1
ϑ

T̄ (0, t̄),
∂T̄
∂z̄

(1, t̄) = 0, T̄ (z̄,0) = 0,

(30)

where t̄ =
tv
L
, z̄ =

z
L
, T̄ =

T −T0

T0
, ϑ =

k
ρCpvL

,

γ =
E

RT0
, ū1 =

Tc−T0

T0
, ū2 =

Tf −T0

T0
,

BC =
hAcL
ρCpv

, θ =
(−∆H)ro exp(− E

RT0
)L

ρCpT0v
,

where ϑ and θ are the unknown parameters of the system due
to unavailability of thermal conductivity, heat of reaction and
pre-exponential reaction constant. We consider the jacket and
feed stream temperatures as the manipulated inputs for control
purposes.

5.2 Simulation results
The known parameters of the system are set at the following
practical values, γ = 7 and BC = 2, we also consider the follow-
ing nominal values for unknown transport-reaction parameters
of the system, ϑ = 0.18 and θ = 0.25. Note that the con-
troller structure does not have access to such nominal values.

Fig. 3. Open-loop dimensionless temperature (a) spatiotemporal profile and
(b) spatial second norm temporal profile.

Fig. 4. Closed-loop dimensionless temperature (a) spatiotemporal profile and
(b) spatial second norm temporal profile.

Figure 3 presents the open-loop spatiotemporal profile of the
stream dimensionless temperature and the temporal profile of
its spatial second norm. We can observe that the dimensionless
temperature converges to a nonuniform steady state profile. The
controller objective is to regulate the dimensionless temperature
profile at the origin, i.e., keeping the stream temperature at the
uniform reference profile of T0. To construct the ROM required
by the adaptive control structure we collect the snapshots of
the system state profile from spatially distributed measurement
sensors during the open-loop process operation, tol = [0 3],
while the controllers are inactivated (ū1 = ū2 = 0). By applying
the POD to the ensemble of open-loop snapshots, we obtain
only 1 basis function. The controller actions (ū1 and ū2 = 0) and
identification laws ( ˙̂

ϑ and ˙̂
θ) were derived based on adaptive

output feedback control approach which presented in details in
Section 4. Note that in this case study we have one unknown
reaction parameter and only one unknown transport parameter.
To design the control structure we considered the system tuning
parameters as follows, Co = 2, α = 0.5, β = 0.2 and P = Z = 1.
To estimate the system dominant mode using the static observer
of (28), we consider r = 2 temperature continuous point mea-
surements at Ls = [0.3 0.7]T .

Fig. 5. Required control actions.

After the open-loop process
operation time period, tol =
[0 3], we activated the con-
troller and identifiers to reg-
ulate the system for tcl > 3.
Figure 4 illustrates the closed-
loop spatiotemporal profile
of dimensionless temperature
and its spatial second norm
temporal profile. We observe
that the controller successfully stabilizes the dimensionless
temperature at the uniform zero profile. The temporal profiles
of required control actions are shown in Figure 5. The con-
troller actions converge to the steady state values corresponded
to the desired zero dimensionless temperature profile without
any chattering. Figure 6 presents the temporal profiles of the
estimated unknown transport-reaction parameters. It can be
observed that the estimated parameters converge to the final
values of ϑ̂ = 0.485 and θ̂ = 0.09 which indicate the adaptation
strategy did not correctly identify the parameters since for that
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Fig. 6. Estimated (a) transport and (b) reaction parameters.

the required condition of persistent excitation [Âström (1983)]
was not satisfied and also because the initial guesses were
poor. Note that the objective of the proposed output feedback
adaptive control strategy was only regulation not system iden-
tification. The open-loop process operation, tol = [0 3], can be
easily identified in Figures 5-6 while during such time period
the controllers and identifiers were inactivated.

6. CONCLUSION
We focused on adaptive output feedback control of chemical
distributed parameter systems in the presence of unknown pa-
rameters via model order reduction. The reduced order model
which used as the basis for the Lyapunov-based adaptive con-
troller design is obtained by applying Galerkin’s method to the
governing partial differential equations. The basis functions re-
quired by the Galerkin projection was computed via employing
proper orthogonal decomposition to the set of spatiotemporal
profiles of the system states obtained from open-loop process
operation. The effectiveness of the proposed control structure
was successfully illustrated on thermal dynamics regulation in
a flow reactor.
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