
A Novel Algorithm for Model-Plant
Mismatch Detection for Model Predictive

Controllers

Y. Tsai ∗ R. B. Gopaluni ∗∗ D. Marshman ∗∗∗ T. Chmelyk ∗∗∗∗

∗University of British Columbia, Vancouver, V6T1Z3 BC Canada
(e-mail: yttsai@chbe.ubc.ca).

∗∗University of British Columbia, Vancouver, V6T1Z3 BC Canada
(e-mail: gopaluni@chbe.ubc.ca).

∗∗∗ Spartan Controls, Burnaby, V5A4X5 BC Canada (e-mail:
marshman.devin@spartancontrols.com).

∗∗∗∗ Spartan Controls, Vancouver, V5A4X5 BC Canada (e-mail:
chmelyk.terry@spartancontrols.com).

Abstract: For Model Predictive Controlled (MPC) applications, the quality of the plant model
determines the quality of performance of the controller. Model Plant Mismatch (MPM), the
discrepancies between the plant model and actual plant transfer matrix, can both improve or
degrade performance, depending on the context in which performance is measured. In this paper,
we do not use performance metrics or “yes-no”-type tests to merely diagnose the presence or
absence of MPM in the plant matrix. Rather, we achieve the further goal of locating the exact
MPM-affected elements within the plant matrix. Our proposed detection algorithm consists of
two system identification experiments: the first experiment diagnoses the presence of MPM,
and the second experiment pinpoints the exact MPM-affected elements. We then exercise the
algorithm on artificial 3x3 and 5x5 plants suffering from sparse MPM, and demonstrate the
algorithm’s capability of correctly locating the MPM-affected entries.

Keywords: Modelling and Identification, Model-based Control, Process Applications

1. INTRODUCTION

Model-Predictive Control (MPC) is widely appreciated in
the chemical process industries, and its superiorities over
other types of controllers are as follows. First, MPC is
capable of handling constraints on both the rates and mag-
nitudes of the manipulated and output variables. More-
over, its predictive aspect allows for optimal control of
deadtime-dominant processes. Despite these advantages,
however, the performance of MPC depends critically on
the quality of the model. Modelling errors can arise due
to non-linear control behavior, time-varying plant param-
eters and dynamics, and drifting disturbance signals (Ma-
ciejowski, 2002). Since the real plant transfer matrix is
never known exactly, a discrepancy always exists between
the real plant and the plant model. This discrepancy is
known as “Model-Plant Mismatch” (MPM). MPM may
improve or degrade performance or control quality (Carls-
son, 2010), depending on how the user defines these terms.
Papers by Badwe et al. (2010) and Carlsson (2010) show
that if control error magnitudes are used as a measure of
“control quality,” then MPM can possibly improve perfor-
mance. Additionally, Jiang et al. (2012) has demonstrated
that, even in the absence of MPM, MPC performance
degradation can be caused by stringent MPC constraints,
which prevents sufficient controller action for performance
recovery. In light of these examples, performance degra-
dation and MPM are not always correlated. Therefore,

using the presence of performance degradation as an indi-
cation of MPM is unreliable. Nevertheless, in most cases,
the symptom of performance degradation is realized long
after significant MPM has occurred, which is why MPM
detection is so important for many control engineers.

In this paper, we present a Closed-Loop algorithm with the
following objectives: (1) Establish a quantitative metric
to detect the existence of MPM at any time during plant
operation, and (2) Identify the specific input-output model
causing the MPM. We achieve Objective 1 by adapting
the S∆ method developed by Badwe et al. (2010). This
test indicates the presence of MPM based on maximum
singular values of the transfer matrix between the con-
troller input and setpoint trajectories. The rows of the
model matrix suffering from MPM are identified, but the
specific MPM-affected elements remain unknown. If MPM
is sparsely distributed along the rows of the plant transfer
matrix, this experiment saves valuable time by quickly
eliminating the MPM-free rows from further consideration.
We accomplish Objective 2 by parameterizing an ARX
model between the prediction error and controller input
signals. Here, the rows marked by the S∆ test are subjected
to further experiments, in order to pinpoint the exact
MPM-affected elements. Our presented approach provides
significant computational savings, compared to calculating
sample cross-correlations between prediction errors and
controller inputs, as suggested by Webber and Gupta
(2008). Although Carlsson (2010) and Badwe et al. (2009)
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have suggested a partial-correlations technique which ac-
complishes Objectives 1 and 2, our work focuses on devel-
oping an algorithm that is more computationally friendly.
Finally, we test our algorithm on artificially-constructed
3x3 and 5x5 plants to demonstrate its efficacy. Note that
we only show the reliability of our algorithm under the
important assumptions of persistent setpoint excitation,
and a non-drifting disturbance sequence which resembles
first-order-filtered white noise. One of our future goals is
to develop a MPM detection algorithm that works reli-
ably under circumstances in which these assumptions are
relaxed.

2. MPM DETECTION ALGORITHM

2.1 Detecting the Existence of Row MPM: The S∆ Test

Consider an Internal Model Control (IMC) structure with
no measured disturbances at controller or plant inputs,
which resembles the structure of most MPC controllers:

Fig. 1. Internal Model Controller (IMC) Structure

The various signals of interest include Setpoint r(t), Con-
troller Input ε(t), Plant Input u(t), Real Output y(t),

Model Output ˆy(t), Gaussian White Noise w(t), First-
Order-Filtered White Noise v(t), and Prediction Error
d(t).

Moreover, the relevant transfer functions include Con-
troller C(q), Real Plant P (q), Plant Model P̂ (q), Model

Plant Mismatch ∆(q) = P (q) − P̂ (q), and First-Order
Noise Filter H(q).

The noise sequence v(t) can be of any form (white or
coloured). To easily simulate the signals, we take v(t) as
white noise w(t) (with zero mean and a specified covari-
ance) passed through a first-order filter. However, for real
industrial applications, any other noise form of v(t) can be
considered without any loss of generality, as long as it is
non-drifting (Maciejowski, 2002). Badwe et al. (2010) has
derived the relationships between the relevant signals for
both the Single-Input, Single-Output (SISO) and Multi-
Input, Multi-Output (MIMO) cases. The pertinent results
of the lengthy derivations are summarized as follows:

ε(t) = [I + ∆(q) · C(q)]−1 · r(t)− [I + ∆(q) · C(q)]−1 · v(t)
(1)

The term S∆(q) = [I + ∆(q) · C(q)]−1 is known as
the “Relative Sensitivity”. Consider the scenario of a
MPM-affected plant, and define the actual (MPM-present)
and design (MPM-absent) control errors ea(t) and ed(t),
respectively, as:

ea(t) = r(t)− y(t) =[I − P̂ (q) · C(q)][I + ∆(q) · C(q)]−1

(2)

· [r(t)− v(t)] (3)

ed(t) = [I − P̂ (q) · C(q)] · [r(t)− v(t)] (4)

For the sake of simplifying the manipulations, pre-filter

the two control errors by [I − ˆP (q) · C(q)]−1:

eaf
(t) = [I + ∆(q) · C(q)]−1 · [r(t)− v(t)] (5)

edf
(t) = r(t)− v(t) (6)

We can mathematically express the ratio of the relative
magnitudes of the actual error versus the designed error
in the vector 2-norm, measured in the frequency domain
and within the control-relevant frequency range Ω, as:

max
ω∈Ω,||edf (ω)||2 6=0

||eaf
(ω)||2

||edf
(ω)||2

= ||S4(ω)||∞ (7)

In order to physically interpret this ratio, notice that the
control error is a measure of deviation from perfect set-
point tracking. Therefore, it can be used as a loose measure
of quality of control. A large control error indicates a large
discrepancy between outputs and setpoints, which trans-
lates to an inferior quality of control, and vice versa. When
no MPM exists, the actual and designed control errors
will be equal; this is easily realized from Eq. 5 and Eq. 6,
by substituting in ∆(q) = 0. On the other hand, when
MPM is present, then the actual and designed control
error magnitudes will be different. The ratio of actual and
designed control errors is akin to a sensitivity measure
of variables compared against a best-case scenario, used
frequently in other engineering contexts. For this reason,
Badwe et al. (2010) terms this ratio, which is equivalent to
the H∞ norm of the S∆(q) transfer matrix, the “Relative
Sensitivity Index” (RSI):

RSI , ||S∆(ω)||∞, ω ∈ Ω (8)

Again, consider the case where no MPM is present (i.e.
∆(q) = 0), and refer to Eq. 1. In this case, S∆(q) = I,
and therefore ||S∆(ω)||∞ = ||I(ω)||∞ = 1. On the other
hand, if MPM is present, then S∆(q) 6= I and therefore
||S∆(ω)||∞ 6= 1. Therefore, a non-unity value of ||S∆(ω)||∞
indicates the existence of MPM. In light of Eq. 5 and Eq. 6,
if ||S∆(ω)||∞ > 1, then the actual control error is greater
than the designed control error magnitude, indicating a
degraded overall quality of control. The opposite is true
for cases where ||S∆(ω)||∞ < 1, which implies that the
actual control error magnitude is smaller than the designed
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control error magnitude, indicating an improved overall
quality of control.

Eq. 1 suggests that we can obtain S∆(q) by performing
Output-Error (OE) System Identification between the con-
troller inputs ε(t) and setpoints r(t), assuming that the set-
points r(t) and disturbance sequence v(t) are uncorrelated.
On the other hand, if r(t) and v(t) are correlated, then
we must use a high-order ARX model to obtain unbiased
estimates of S∆(q) (Ljung, 1999). In terms of a frequency-
domain interpretation of S∆(ω), ω ∈ Ω, the RSI represents
the peak gain on a SISO Bode plot, or the maximum
singular value on a MIMO singular value plot.

The individual rows of the S∆(q) matrix are the specific
models describing the relationship between each controller
input εi(t), i ∈ 1, 2, · · · , ny and setpoints r(t). Therefore,
we can compute the individual row ||S∆(ω)||∞ values.
Rows with non-unity ||S∆(ω)||∞ values are the ones af-
fected by MPM. Conversely, rows with ||S∆(ω)||∞ values
close to 1 indicate models affected by negligible MPM.

Note that the quality of the identified S∆(q) matrix is
affected by: (1) whether the setpoint signal r(t) is “suf-
ficiently exciting,” and (2) the nature of the disturbance
sequence v(t). According to Ljung (1999), “sufficient ex-
citation” implies a zero-mean excitation signal r(t) con-
taining the full frequency band of 0 to fN (where fN is
the Nyquist frequency). Obviously, this is unacceptable for
most industrial plants, which instead rely on infrequent,
mild setpoint changes for model identification. In these
cases, the frequency bands of the excitation signals no
longer contain the full range of 0 to fN , and the estimation
of S∆ becomes imperfect, consequently diminishing the
reliability of the MPM detection algorithm. Moreover, if
the disturbance v(t) cannot be assumed as zero-mean,
Gaussian noise, the quality of the estimated S∆ model
deteriorates. We will address the technical and practical
impacts of insufficient excitation and non-Gaussian dis-
turbances in a subsequent paper.

Although S∆ is a powerful yet simple metric which can
detect the existence of MPM-affected rows in a MIMO
plant matrix, it cannot exactly pinpoint the MPM-affected
elements in each affected row. We accomplish this second
objective using the method described in the following
section.

2.2 Pinpointing the Specific Locations of MPM:
Identifying the MPM Matrix ∆

After we detect the existence of MPM-affected rows in a
MPC-controlled, MIMO plant transfer matrix, the next
logical step is to correctly pinpoint the elements within
the MPM-affected rows. The most natural approach is
to identify the MPM matrix, ∆(q). Consider a MIMO
plant which has nu inputs and ny outputs. The plant
matrix is therefore ny rows by nu columns. Assume that
the S∆ test has determined the set of all MPM-affected
rows, denoted by R. The task is to pinpoint the exact
elements ∆i,j(q), i ∈ R, j ∈ 1, · · · , nu which are non-zero.
A possible method has been proposed by Webber and
Gupta (2008), who detected MPM using the presence of
significant cross-correlations between the prediction error
d(t) and an excitation signal ud(t) injected additively

to the plant input u(t). However, several pitfalls exist
with the correlation method. First, it is computationally
expensive. Correlations between each di(t) and uj(t) ,
∀i ∈ 1, 2, · · · , ny,∀j ∈ 1, 2, · · · , nu require a total of nu ·ny
checks. This total number may be feasibly small for plants
up to 5x5, but it would grow too quickly to be practical
for plants of the order of 10x10 or more. Moreover,
correlations are only perfect in systems operating within
linear ranges (Ljung, 1999). Non-linear situations, such
MPCs operating with active constraints, will cause the
correlations to become imperfect. This may result in false
positive or negative detections of MPM.

We present a different approach by considering the math-
ematical relationship between the prediction error d(t),
the plant input u(t) and disturbance v(t), which holds
regardless of whether MPM is present:

d(t) = ∆(q) · u(t) + v(t) (9)

To identify the transfer function ∆(q) between d(t) and
u(t), Kano et al. (2010) explored the possibility of obtain-
ing an unbiased FIR model of ∆ using routine, closed-
loop data. He concluded that this was impossible with
no setpoint or input excitation, but did not address the
case where setpoint or input excitation existed. If sufficient
setpoint excitation is present, then we can use d(t)-u(t)
data to obtain unbiased estimates of the elements inside
∆(q). First, we single out the MPM-affected rows using
the S∆ row test described in the previous section. If MPM
exists in the ith control variable, then i ∈ R, and at
least one ∆i,j(q), j ∈ 1, 2, · · · , nu must be non-zero. In
other words, dj(t) will have contribution from at least one
uj(t), j ∈ 1, 2, · · · , nu. Conversely, if no MPM exists in the
ith CV, then i /∈ R, and all of ∆i,j(q), j ∈ 1, 2, · · · , nu
will be entirely zero. However, in the no-MPM case, d(t)
and u(t) are not always uncorrelated. Carlsson (2010) pro-
vides several counter-examples that confound correlation
analysis between d(t) and u(t). Despite of this possible
pitfall, false positives are not a problem with this pro-
posed method. If a transfer matrix row is MPM-free, then
||S∆(ω)||∞ = 1 for that row, thus eliminating the need for
∆(q) to be identified for said row.

Due to feedback, u(t) is always correlated with v(t). There-
fore, we use a high-order, closed-loop ARX identification
experiment (Ljung (1999)) to identify the rows of ∆(q) in
which MPM exists. For each MPM-affected row, we use the
signals di(t),∀i ∈ R and u1(t), u2(t), · · · , unu

(t) to identify
the following ARX structure:

Ai(q) · di(t) = Bi,1(q) · u1(t) + · · ·+Bi,nu
(q) · unu

(t)+

erri(t), (10)

i ∈ R, t ∈ N. erri(t) is the noise term in the ARX
model for the ith prediction error (note that erri(t) is
unrelated to the ith disturbance, vi(t)). Each A(q) is an
ARX polynomial of pre-specified order nA:

Ai(q) = 1 + ai1 · q−1 + · · ·+ ainA
· q−nA (11)
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and each Bi,j(q), j ∈ 1, · · · , nu is an ARX polynomial of
pre-specified order nB :

Bi,j(q) = bi,j1 · q
−1 + · · ·+ bi,jnB

· q−nB (12)

Each Bi,j(q) polynomial containing significantly non-zero
coefficients indicate that di(t) contains a contribution from
uj(t), thus indicating that element ∆i,j(q) contains MPM.
A more mathematically rigorous definition of non-zero is
required and currently under development. For now, in
order to highlight the potential of this detection method,
non-zero is loosely defined as a coefficient significantly
greater in magnitude compared to all other coefficients
(see Section 3 for examples).

The following visual example illustrates the use of a
combination of S∆ and ∆ identification experiments to
pinpoint MPM.

Fig. 2. Suppose that ||S∆(ω)||∞ = 1 for Row 1, and
||S∆(ω)||∞ 6= 1 for Rows 2 and 3. Then, Eq. 1 implies
that Row 1 contains no MPM and can be eliminated,
and Rows 2 and 3 contain MPM. Eq. 10 can be used to
identify high-order ARX models for Rows 2 and 3 of
∆(q). If the polynomials B2,2(q) and B3,3(q) contain
significantly non-zero coefficients, ∆2,2(q) and ∆3,3(q)
are the MPM-affected entries.

In the worst-case scenario where MPM exists in every row,
this method requires ny experiments to identify S∆(q), and
another ny experiments to identify the ARX models be-
tween each di(t), i ∈ 1, · · · , ny and [u1(t) u2(t) · · ·unu(t)],
resulting in a total of 2·ny experiments. This is a consider-
ably smaller number compared to that required (ny ·nu) for
the correlation method suggested by Webber and Gupta
(2008). In cases where MPM is sparse (i.e. not every row is
MPM-affected), the proposed method results in even larger
computational savings. The specific numbers of reduced
computations are explored in more detail in the following
sub-section.

2.3 Computational Savings

In our proposed, combined S∆ and ∆ identification ex-
periments for MPM detection, the main advantage is the
significantly reduced number of calculations required for
large plants. Consider Fig. 1 for a plant with ny setpoints,
and nu inputs.

In terms of the number of excitations required, we must
excite nu plant inputs to re-identify the plant model, if
no MPM detection algorithm were to be used. On the
other hand, if MPM detection were used, then we require
ny setpoint excitations to identify S∆, and another nR

excitations( nR = total number of MPM-affected rows) to
identify ∆. If nu > ny + nR, then the proposed algorithm
requires less excitation than plant re-identification, and
vice-versa.

In terms of computational power required, however, we
require ny · nu calculations to obtain all transfer matrix
elements. If we use the MPM detection algorithm based
on cross-correlations Webber and Gupta (2008), then we
require the same number of calculations (ny · nu). On
the other hand, the algorithm that we propose requires
only ny calculations to identify S∆, and an additional
nR · nu calculations to identify ∆, for the MPM-affected
rows (nR = number of MPM-affected rows). This results
in a total of ny + nR · nu calculations for the proposed
algorithm, compared to ny ·nu calculations for the available

alternatives. Obviously, if the plant is small, ny ·nu
∼
= ny +

nR·nu. However, if the plant is large, then ny·nu >>> ny+
nR · nu, resulting in a dramatic reduction in required
calculations. Nevertheless, if most elements in the plant
matrix are believed to be affected by MPM, then complete
plant re-identification should be considered.

3. SIMULATION EXAMPLES AND RESULTS

We demonstrate the feasibility and reliability of the previ-
ously proposed algorithm for MPM detection by applying
it to simulation examples. First, we conduct the S∆ test on
a 3x3 plant containing no MPM, to demonstrate the ab-
sence of any false diagnosis of MPM. Then, we conduct the
S∆ test on a 3x3 plant containing sparse MPM entries, and
identify ∆ for the MPM-affected rows, to demonstrate the
ability to correctly pinpoint all MPM-affected elements.
For the final example, we exercise the algorithm on a 5x5
plant which also contains sparse MPM entries. Altogether,
we show that the algorithm retains its reliability when
tested on large systems, under the assumptions of sufficient
setpoint excitation and non-drifting disturbance signals.

3.1 3x3 Plant: Case of No MPM

We first demonstrate the algorithm on a 3x3 (nu = ny = 3)
plant artificially constructed in Matlab. The plant uses
similar transfer functions as that of the famous Shell
Benchmark problem, with reduced delays:

P (s) =



4.05 · e−6s

50s+ 1

1.77 · e−7s

60s+ 1

5.88 · e−6s

50s+ 1

5.39 · e−4s

50s+ 1

5.72 · e−3s

60s+ 1

6.9 · e−3s

40s+ 1

4.38 · e−5s

33s+ 1

4.42 · e−5s

44s+ 1

7.2

19s+ 1


(13)

In this case, no MPM is present, therefore P̂ (s) = P (s).
The goal is to observe whether the algorithm falsely
identifies the presence of MPM, when none actually exists.

We simulate a completely unconstrained MPC controller
with a sampling time of 1 sec, a prediction horizon of 100
sec, and a control horizon of 30 sec. The input weights
are contained in a diagonal matrix diag[1 1 1] (zero for
all off-diagonal elements), the input weight rates diag[0.1
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0.1 0.1], and the output weights diag[1 1 1]. We corrupt
the plant output by a zero-mean measurement noise of
standard deviation 5.0·10−3, and a zero-mean unmeasured
disturbance of standard deviation 7.5·10−3 passed through
a first-order filter of diag[ z

z−0.95
z

z−0.95
z

z−0.95 ]. Finally, we
excite all setpoint channels using Pseudo-Random Binary
Sequence (PRBS) of frequency band 0 to fN , where fN is
the Nyquist frequency.

We identify the S∆(q) matrix using Matlab’s arx function,
choosing 4th-order polynomials (i.e. nA = nB = 4). The
B(q) polynomials contain delays of [nk,B1

nk,B2
nk,B3

], es-
timated by Matlab’s delayest function. Then, the singular
values of S∆(q) are plotted in the frequency domain for
each row. Observe that since no MPM is present, both the
overall and row ||S∆(ω)||∞ values are essentially one (zero
on a log plot).

Fig. 3. Overall and row S∆(ω) plots for the no-MPM case.
Since ||S∆(ω)||∞ = 1 for every row, the S∆ test has
correctly diagnosed that every element in the model
matrix is MPM-free.

Since the S∆ test shows that no MPM is present anywhere
within the plant, we need not identify ∆.

3.2 3x3 Plant: Case of Sparse MPM

Here we simulate a 3x3 plant suffering from sparse MPM,
using the same MPC controller and tuning parameters
as for the no-MPM case. To create the sparse MPM-
affected elements, we introduce specific modelling errors on
transfer matrix elements P̂12(s), P̂13(s), and P̂21(s). The
plant transfer matrix remains the same as in the previous
no-MPM case, while the plant model matrix now suffers
from MPM (affected elements indicated in bold):

P̂ (s) =



4.05 · e−6s

50s+ 1

1.77 · e−4s

45s + 1

3.5 · e−6s

50s + 1

5.39 · e−4s

70s + 1

5.72 · e−3s

60s+ 1

6.9 · e−3s

40s+ 1

4.38 · e−5s

33s+ 1

4.42 · e−5s

44s+ 1

7.2

19s+ 1


(14)

In the MPM (∆(q)) matrix, ∆12(q) is a combination of
time constant and delay mismatch, ∆13(q) a severe gain
mismatch, and ∆21(q) a time constant mismatch. After
applying the S∆ test, we observe non-unity values of
||S∆(ω)||∞ in Rows 1 and 2, indicating the presence of
MPM for these rows. For Row 3, ||S∆(ω)||∞ = 1, meaning
that this row is MPM-free.

Fig. 4. Overall and row S∆(ω) plots for the sparse MPM

case, with modelling errors in P̂12(s), P̂13(s), and

P̂21(s). ||S∆(ω)||∞ 6= 1 for Rows 1 and 2, and
||S∆(ω)||∞ = 1 for Row 3. Therefore, the S∆ test has
successfully diagnosed the presence of MPM in Rows
1 and 2, and the absence of MPM in Row 3, in the
model matrix.

The question now is whether the non-zero elements of
the MPM Delta(q) matrix, namely ∆12(q),∆13(q), and
∆21(q), can be correctly located. To confirm this, we
identify the rows of the ∆ matrix using signals d1, [u1

u2 u3], and d2, [u1 u2 u3], again choosing 4th order ARX
polynomials (nA = nB = 4) for the models. A delay of
k units simply indicates a multiplication of each ARX
coefficient with q−k:

Table 1. ARX model between d1 and u

Polynomial q−1 q−2 q−3 q−4 Delay Fit(%)

A(q) −9.534 · 10−1 −1.877 · 10−2 −4.068 · 10−3 −2.605 · 10−3 0 91.06
Bu1 (q) −2.084 · 10−4 6.264 · 10−4 1.047 · 10−4 4.149 · 10−4 7
Bu2 (q) −3.923 · 10−2 −1.595 · 10−3 −8.174 · 10−4 2.856 · 10−2 5
Bu3 (q) −6.525 · 10−4 −3.240 · 10−4 4.667 · 10−2 9.816 · 10−4 5

Table 2. ARX model between d2 and u

Polynomial q−1 q−2 q−3 q−4 Delay Fit(%)

A(q) −9.969 · 10−1 −3.565 · 10−2 −4.611 · 10−2 −9.971 · 10−3 0 93.07
Bu1 (q) −6.943 · 10−3 −1.945 · 10−4 1.300 · 10−4 −5.290 · 10−4 5
Bu2 (q) 6.211 · 10−4 2.838 · 10−4 2.922 · 10−4 7.952 · 10−4 5
Bu3 (q) 6.971 · 10−4 1.867 · 10−4 −1.914 · 10−4 2.671 · 10−4 2

In each table, we highlight significantly non-zero coeffi-
cients in bold. Notice that the quality of the ARX model
fits are extremely high. In the ARX model between d1(t)
and u(t) (Table 1), the polynomials Bu2(q) and Bu3(q)
contain significantly non-zero coefficients, compared to all
other coefficients. Similarly, in the model between d2(t)
and u(t) (Table 2), the polynomial Bu1(q) contains a
significantly non-zero coefficient compared to all others.
These results indicate that ∆12(q), ∆13(q), and ∆21(q) are
the non-zero elements in the ∆(q) matrix, which means

that P̂12(s), P̂13(s), and P̂21(s) have been correctly identi-
fied as the MPM-affected elements.

3.3 5x5 Plant: Case of Sparse MPM

For the final simulation example, we exercise the al-
gorithm on a 5x5 plant suffering from sparse MPM.
Specifically, we introduce modelling errors in elements
P̂11(s), P̂21(s), P̂23(s), P̂42(s), and P̂45(s). Suppose all 25

elements of the true plant transfer matrix are 5·e−5s

50s+1 ,
without loss of generality. The model matrix contains
the following elements (with the MPM-affected elements
highlighted in bold):
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P̂ (s) =



5 · e−8s

50s + 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

4 · e−5s

60s + 1

5 · e−5s

50s+ 1

5 · e−5s

25s + 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

3.5 · e−5s

50s + 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−3s

75s + 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1

5 · e−5s

50s+ 1


(15)

We use similar MPC controllers and reference signals as
in the two previous 3x3 plant examples. To detect MPM,
we perform the S∆ test on the plant. Rows 1, 2, and 4
yield non-unity values of ||S∆(ω)||∞, showing the correct
diagnosis of MPM within these rows. In Rows 1 and
2, the MPMs consist of severe time constant and delay
mismatches, while the gain mismatches are mild. Therefore
the peaks of S∆(ω) are smaller in these rows, compared to
Row 4 where a severe gain mismatch exists in element
∆42. Rows 3 and 5 yield ||S∆(ω)||∞ values of 1, showing
the correct diagnosis of absence of MPM in these rows.

Fig. 5. Overall and row S∆(ω) plots for a 5x5 plant
suffering from sparse MPM. ||S∆(ω)||∞ 6= 1 for Rows
1, 2, and 4, and ||S∆(ω)||∞ = 1 for Rows 3 and 5.
Therefore, we correctly detect the presence of MPM
in Rows 1, 2, and 4, and the absence of MPM in Rows
3 and 5.

Next, we identify the rows of ∆(q) between each MPM-
affected prediction error d1(t), d2(t), and d4(t), and inputs
u1(t) · · ·u5(t). The 4th-order ARX polynomial coefficients
are tabulated below, again with the significantly non-zero
elements highlighted in bold:

Table 3. 5x5 plant: ARX model – d1, u

Polynomial q−1 q−2 q−3 q−4 Delay Fit(%)

A(q) −9.802 · 10−1 −8.626 · 10−7 2.902 · 10−7 2.810 · 10−6 0 99.98
Bu1 (q) 9.901 · 10−2 1.501 · 10−7 1.452 · 10−6 −9.901 · 10−2 6
Bu2 (q) 4.441 · 10−6 1.210 · 10−6 −6.071 · 10−7 −9.904 · 10−6 0
Bu3 (q) −2.929 · 10−7 1.675 · 10−7 −7.289 · 10−9 2.825 · 10−7 0
Bu4 (q) 4.946 · 10−6 1.550 · 10−6 −5.482 · 10−7 −1.046 · 10−5 0
Bu5 (q) −8.064 · 10−6 −2.030 · 10−6 1.444 · 10−6 1.870 · 10−5 0

Table 4. 5x5 plant: ARX model – d2, u

Polynomial q−1 q−2 q−3 q−4 Delay Fit(%)

A(q) −2.924 2.851 −9.262 · 10−1 −1.426 · 10−6 0 93.32
Bu1 (q) 6.365 · 10−9 3.289 · 10−2 6.417 · 10−2 3.129 · 10−2 5
Bu2 (q) 1.774 · 10−6 −2.009 · 10−6 −1.048 · 10−6 −1.458 · 10−6 0
Bu3 (q) −7.731 · 10−8 −9.705 · 10−2 1.925 · 10−1 −9.544 · 10−2 5
Bu4 (q) 2.023 · 10−6 −2.440 · 10−6 −1.154 · 10−6 −1.517 · 10−6 0
Bu5 (q) −3.422 · 10−6 3.997 · 10−6 1.994 · 10−6 2.690 · 10−6 0

Table 5. 5x5 plant: ARX model – d4, u

Polynomial q−1 q−2 q−3 q−4 Delay Fit(%)

A(q) −1.967 9.672 · 10−1 6.931 · 10−7 −2.757 · 10−7 0 95.78
Bu1 (q) −4.219 · 10−7 1.023 · 10−5 −1.302 · 10−5 2.554 · 10−6 0
Bu2 (q) 1.272 · 10−7 −4.88 · 10−9 2.970 · 10−2 −2.931 · 10−2 4
Bu3 (q) −3.961 · 10−7 9.853 · 10−6 −1.225 · 10−5 2.561 · 10−6 0
Bu4 (q) 7.261 · 10−7 −1.877 · 10−5 2.380 · 10−5 −5.191 · 10−6 0
Bu5 (q) −6.622 · 10−2 6.491 · 10−2 9.901 · 10−2 9.770 · 10−2 4

In the ARX model between d1(t) and u(t) (Table 3),
the polynomials Bu1

(q) contain significant non-zero co-
efficients, compared to all others. This is also the case
in the model between d2(t) and u(t) (Table 4) for the
polynomials Bu1

(q) and Bu3
(q), and in the model between

d4(t) and u(t) (Table 5) for the polynomials Bu2
(q) and

Bu5
(q). These results indicate that by identifying ∆(q), we

have correctly located the MPM (∆) matrix entries that
are non-zero, namely ∆11(q), ∆21(q), ∆23(q), ∆42(q), and
∆45(q).

4. LIMITATIONS

In this final section, we outline the main theoretical and
practical limitations that this MPM detection algorithm
possesses, with respect to the control engineers who will
be the likely users of this algorithm.

The first two important assumptions are sufficient set-
point excitation and zero-mean, first-order-filtered noise
disturbance. If any of these assumptions are relaxed, the
proposed algorithm may fail to detect MPM reliably.
False positives and missed negatives may be observed,
since the S∆(q) and ∆(q) matrices are no longer fully
identifiable. Iqbal et al. (2014) and Badwe et al. (2009)
have both suggested MPM detection approaches using
partial correlations between prediction errors d and inputs
u. For these methods, the amount of excitation required
does not exceed that provided by typical bump tests.
Therefore, we will consider adapting these methods in
future work concerning the relaxation of previously stated
assumptions. Moreover, we use the presence of non-zero
ARX polynomial coefficients in the ∆(q) matrix to detect
whether the prediction errors d(t) contains a contribution
from an input uj(t), j ∈ 1, · · · , nu. Currently, we define
non-zero by a magnitude that is greater than all other
coefficients. However, when the plant becomes corrupted
by non-white or non first-order-filtered noise, the qualities
of the ARX models will deteriorate, and a more reliable
measure of non-zero is required. One preliminary idea is
to use the mean and covariances of each estimated ARX
coefficient to generate a confidence interval, which will help
determine whether said coefficient is non-zero. Finally, in
order to obtain high-quality fits for the S∆ and ∆ models,
we require accurate estimates of delays (between ε and r,
and between d and u, respectively). This justifies the need
for a computationally inexpensive delay estimation tech-
nique for plants larger than 5x5. We are focusing present
efforts on using constrained 1-norm (L1) minimization
procedures, which determine signal input delays using FIR
coefficients.
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From a practical perspective, our proposed method only
diagnoses the exact locations of MPM-affected elements.
However, if the type (gain, time constant, time delay)
corresponding to each MPM, as well as the relative sever-
ity of each type were also determined, then the control
engineer could make educated decisions on the effort in-
volved in controller re-tuning. For instance, delay and time
constant mismatches can be more malignant compared to
gain mismatches. The reason behind this is that MPM
contributions to performance degradation are rectified by
changing model gains incrementally, in order to recover
performance. However, the same cannot be done easily
with time constants and delays, making these types of
MPM more undesirable than gain MPMs. Additionally,
the type and severity indices can also provide physical
insight to the causes behind the observed MPM. For exam-
ple, if only a gain MPM exists, the MPM can be safely as-
sociated with process parameter changes over time, while
the process remains in a linear range of operation (Olivier
and Craig, 2013). The controller can be easily re-tuned
by incrementally re-adjusting the gain without having to
re-identify the entire plant model. On the other hand,
time constant and delay MPMs indicate process dynamic
changes over time, which are significantly more difficult
to rectify. A severity index comparison would allow an
educated decision on whether the re-tuning of few transfer
elements is feasible, as opposed to re-identifying the entire
plant model.

5. CONCLUSION

In this paper, we have presented the mathematical details
behind the proposed 2-step algorithm of MPM detection,
which pinpoints the exact elements in a plant transfer
matrix that are affected by MPM. In the first step, we di-
agnose the presence (or lack) of MPM in each plant matrix
row using the S∆ test, a metric which measures the H∞
norm of the ratio between the actual and designed control
errors. The S∆(q) matrix is identified between the plant’s
controller inputs ε(t) and setpoints r(t). In the second step,
the MPM-affected rows of the plant matrix are singled
out, and the ∆(q) identification experiment is performed.
Specifically, we conduct ARX experiments between the
MPM-affected prediction errors d(t) and all inputs u(t). By
doing so, we identify the non-zero entries in the MPM ma-
trix ∆(q), and hence the specific inputs causing MPM. The
most important underlying assumptions of the proposed
algorithm are that the setpoint be sufficiently exciting
(either white noise or PRBS with frequency range 0-fN ,
Nyquist frequency), and that the disturbance sequence be
first-order filtered, zero-mean, non-drifting white noise. If
these assumptions no longer apply, then the reliability of
the proposed algorithm becomes questionable. We will ex-
plore the consequences of these scenarios in a future paper,
as well as develop new, reliable identification techniques
under these circumstances. Finally, we have demonstrated
efficacy of this algorithm on artificial 3x3 and 5x5 plants
suffering from sparse MPM. In every case, the S∆ test
has correctly identified the MPM-affected CVs, and the
∆ identification experiment has correctly pinpointed the
exact MPM-affected elements in every MPM-affected row
of the plant matrix.
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