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Abstract: Due to ever-challenging global market conditions, plant economic optimization is
becoming more critical. Recent advances have transformed the traditional steady-state real-time
optimization (RTO) system of plant economic optimization to dynamic real-time optimization
(DRTO) based on a dynamic prediction model. DRTO strategies that have been proposed
perform economic optimization in an open-loop fashion without taking into account the presence
of the plant control system. In this work, we propose a bilevel programming formulation for
DRTO that includes effects of the closed-loop dynamics of an underlying constrained model
predictive controller (MPC). The bilevel program is subsequently reformulated and solved as a
single-level mathematical program with complementarity constraints (MPCC). We investigate
the economics and control performance of the proposed strategy under varying MPC controller
design parameters, and compare them to open-loop DRTO and rigorous multilevel closed-loop
DRTO approaches.

Keywords: real-time optimization, economic optimization, model predictive control,
complementarity constraints, back-off mechanism.

1. INTRODUCTION

Real-time optimization (RTO) is a supervisory strategy in
the multilevel plant automation hierarchy that computes
the best economics of continuous process operations at a
time-scale slower than the lower level process automation
activities (Marlin and Hrymak, 1997; Darby et al., 2011).
RTO interacts with the lower level plant control system in
a cascade fashion by providing optimal set-point targets
for tracking purposes. The traditional RTO strategy is
designed based on a steady-state model, which suffers from
a limited execution frequency for processes with frequent
transitions and long transient dynamics because the op-
timizer can only be executed if the process has satisfied
the conditional steady-state requirement. Recent advances
have transformed the steady-state RTO to dynamic real-
time optimization (DRTO) based on a dynamic predic-
tion model, thus substantially increasing the frequency at
which economic optimization can be performed.

Proposed DRTO strategies that follow a two-layer archi-
tecture (Tosukhowong et al., 2004; Würth et al., 2011)
perform economic optimization in an open-loop fashion
without taking into account the presence of the plant
control system, which we denote here as an open-loop
DRTO strategy. In this approach, the set-points prescribed
to the underlying control system are based on the op-
timal open-loop trajectories under an expectation that
the closed-loop response dynamics at the plant level will
follow the economically optimal trajectories obtained at
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the DRTO level. An alternative to the multilevel configu-
ration is a single-level, economic model predictive control
(EMPC) approach that optimizes the plant economics at
the controller sampling frequency. Such a strategy aims to
address the issues of model inconsistencies and conflicting
objectives between the traditional RTO system and the
MPC control layer. In this case, the objective function
could be based purely on economics (Amrit et al., 2013),
or a hybrid between cost and control performance (Ellis
and Christofides, 2014).

In this work, we propose a closed-loop DRTO strategy
in the form of a bilevel programming problem with the
inclusion of a constrained model predictive control (MPC)
optimization model. Therefore, it optimizes the closed-
loop response dynamics of the process where the optimal
control inputs are computed by the inner MPC optimiza-
tion subproblem. Specifically, we are computing the MPC
set-point trajectories that determine the best economics of
the predicted closed-loop response, under the assumption
that the process follows the trajectory calculated by MPC
until the next DRTO execution. The closed-loop DRTO
formulation may be viewed as an EMPC approach due to
explicit consideration of control performance while mak-
ing economic decisions. However, it has the flexibility to
be implemented less frequently at the supervisory level
because controller set-point trajectories are the primary
decision variables of the economic optimization problem.
This allows the existing plant automation architecture to
be unaltered, and the higher frequency control calculation
remains less complex and computationally inexpensive.
This paper extends the previous work by Jamaludin and
Swartz (2014) that investigates a rigorous inclusion of the
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min
ûDRTO

ΦOL

s.t. h
DRTO

(x̂DRTO, ŷDRTO, ûDRTO) = 0 (1)

g
DRTO

(x̂DRTO, ŷDRTO, ûDRTO) ≤ 0

min
ŷsp, ûsp

ΦCL

s.t. h
DRTO

(x̂DRTO, ŷDRTO, ûDRTO, ŷsp, ûsp) = 0 (2a)

g
DRTO

(x̂DRTO, ŷDRTO, ûDRTO, ŷsp, ûsp) ≤ 0

s.t. min
ûMPC

φ

h
MPC

(x̂MPC, ŷMPC, ûMPC, ŷsp, ûsp) = 0 (2b)

g
MPC

(x̂MPC, ŷMPC, ûMPC, ŷsp, ûsp) ≤ 0

MPC closed-loop dynamics at the DRTO level in the form
of a multilevel programming formulation.

In the following sections, general discrete formulations
of the open-loop and closed-loop DRTO strategies will
be presented, and a reformulation approach to trans-
form the bilevel closed-loop DRTO problem to a single-
level, mathematical program complementarity constraints
(MPCC) will be described. The effectiveness of the pro-
posed bilevel closed-loop DRTO strategy, in comparison to
the open-loop and rigorous multilevel closed-loop DRTO
approaches, will be demonstrated through case studies
involving variation in the MPC design parameters.

2. PROBLEM FORMULATION

In this study, we utilize the state-space formulation of
a standard input-constrained MPC controller with a
quadratic objective function, details of which can be found
in Maciejowski (2002). In addition to the output tracking
and move suppression terms in the regular MPC objective
function, we also include control input tracking term that
is useful for nonsquare systems with more inputs than
outputs. Output constraints are included at the upper level
economic optimization in order to avoid control infeasibil-
ity or closed-loop instability (Zafiriou, 1990).

2.1 Open-loop DRTO

We formulate the open-loop DRTO problem similar to
those found in the literature. The objective is to minimize
a prescribed economic criterion, and the control inputs are
optimized based on the open-loop response of the process.
For a discrete-time dynamic system, the open-loop DRTO
formulation may be written as (1), with the corresponding
variables defined as,

x̂DRTO =
[
x̂DRTO1

T, x̂DRTO2
T, . . . , x̂DRTOJ

T
]T

ŷDRTO =
[
ŷDRTO1

T, ŷDRTO2
T, . . . , ŷDRTOJ

T
]T

ûDRTO =
[
ûDRTO0

T, ûDRTO1
T, . . . , ûDRTOJ−1

T
]T

ΦOL represents a purely economic objective function.
h

DRTO
is an equality constraint set that includes the

dynamic prediction model, whereas g
DRTO

is an inequality
constraint set that consists of hard constraints on the
manipulated inputs and controlled outputs. x̂DRTO ∈
Rnx×J is a vector of open-loop DRTO model states and

ŷDRTO ∈ Rny×J is a corresponding vector of open-loop
DRTO model outputs over the optimization horizon J ;
ûDRTO ∈ Rnu×J is a vector of DRTO input trajectories.
In the open-loop DRTO strategy, the set-points prescribed
to the lower-level control system are based on the resulting
optimal open-loop trajectories, with the output at the end
of each DRTO interval used as the set-point for all MPC
sample intervals contained within it.

2.2 Closed-loop DRTO

Closed-loop DRTO takes the form of a multilevel optimiza-
tion problem, since the control input variables at each time
step correspond to the solution of an MPC optimization
calculation. In this study, we consider at the DRTO level
a single MPC calculation over the DRTO optimization
horizon as an approximation of the closed-loop response.
Mathematically, we have an outer DRTO optimization
problem to predict the closed-loop response (2a), and an
inner MPC optimization subproblem (2b) to calculate the
optimal control input trajectories.

The controller set-point trajectories, ŷsp and ûsp, become
the decision variables for the outer problem whereas the
controller input trajectories, ûMPC, become the decision
variables for the inner subproblem. The equality con-
straint, h

DRTO
, also enforces the MPC set-point trajec-

tories to be constant over each DRTO sampling interval,
while constraints on the outputs are enforced through
inequalities, g

DRTO
. In this formulation, there is a di-

rect correspondence between the DRTO variables x̂DRTO,
ŷDRTO, and ûDRTO with the MPC variables x̂MPC,
ŷMPC and ûMPC, respectively. However, we utilize no-
tation that differentiates between the DRTO variables in
the outer problem and the MPC variables in the inner
subproblem as the direct correspondence does not carry
over to the multilevel formulation.

x̂MPC ∈ Rnx×J is a vector of MPC model states and
ŷMPC ∈ Rny×J is a corresponding vector of MPC model
outputs over the DRTO optimization horizon J ; ûMPC ∈
Rnu×J is a vector of MPC inputs over the the DRTO
optimization horizon J ; ŷsp ∈ Rny×J and ûsp ∈ Rnu×J

are vectors of MPC set-point trajectories for the controlled
outputs and manipulated inputs, respectively. The vectors
of set-point trajectories are defined as follows,
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ŷsp =
[
ŷsp1

T, ŷsp2
T, . . . , ŷspJ

T
]T

ûsp =
[
ûsp0

T, ûsp1
T, . . . , ûspJ−1

T
]T

The closed-loop DRTO strategy optimizes the set-point
trajectories directly to be prescribed to the MPC controller
at the lower level. The set-point trajectories are held
constant based on the DRTO sample time, which is an
integer multiple of the MPC sampling interval, using
equality constraints to provide consistency with the open-
loop DRTO formulation in constructing the set-point
trajectories. At the lower level, these set-point trajectories
are shifted in time to account for the moving horizon of
the MPC controller.

We remark that the bilevel programming formulation can
be extended to a multilevel approach by repeating the
inner MPC subproblem at every DRTO prediction step. In
such a formulation, an exact MPC controller model imple-
mented at the lower level can be embedded over the DRTO
optimization horizon. However, the computational cost is
significantly higher than that of the bilevel approximation.

Problem reformulation In this study, we employ a si-
multaneous solution approach by transforming the in-
ner MPC subproblem to a constraint set using its first-
order, Karush-Kuhn-Tucker (KKT) optimality conditions.
For a constrained MPC problem formulated as a convex
quadratic programming (QP) problem as considered in
this study, such a transformation is valid as the KKT
conditions are necessary and sufficient for optimality. The
MPC subproblem at each DRTO prediction step may be
represented as a QP of the form,

min
u

1

2
uTHu + gTu

s.t. Au = b (3)

u ≥ 0

with the corresponding KKT condition is given by,

Hu−ATµ+ g − η = 0

Au = b (4)

uiηi = 0 i = 1, ..., nc

(u,η) ≥ 0

Details of the KKT conditions of the MPC (QP) subprob-
lem can be found in Baker and Swartz (2008). Replace-
ment of the inner MPC-QP subproblem gives rise to a
single-level, mathematical program with complementarity
constraints (MPCC).

Handling complementarity constraints Complementar-
ity constraints, which take the form uiηi = 0, are generally
hard to solve due to violation of constraint qualifications
in the nonlinear programming (NLP) problem (Baum-
rucker et al., 2008). Handling complementarity constraints
requires reformulation of the MPCC, or an alternative
NLP algorithm that internally treats the complementarity
constraints.

In this study, the complementarity constraints are handled
using an exact penalty formulation (Ralph and Wright,
2004). They are moved from the constraint set of the

original MPCC problem represented in (5) to the objective
function as an additional penalty term with a penalty pa-
rameter ρ, as given in (6), with the resulting problem posed
to a standard NLP solver. Tuning of the complementarity
penalty parameter ρ starts from a small value, roughly of
the same order of magnitude as the decision variables, and
increased until it exceeds a critical value, i.e. ρ > ρc, at
which point the original complementarity constraints will
be approximately satisfied. However, choosing too large a
penalty parameter may lead to scaling issues and longer
solution times.

min
u,x,y,µ,η

φ(x,y,u,µ, η)

s.t. h(x,y,u,µ, η) = 0

g(x,y,u,µ, η) ≥ 0 (5)

Hu−ATµ+ g − η = 0

Au = b

uiηi = 0 i = 1, ..., nc

(u,η) ≥ 0

min
u,x,y,µ,η

φ(x,y,u,µ, η) + ρ

nc∑
i=1

uiηi

s.t. h(x,y,u,µ, η) = 0 (6)

g(x,y,u,µ, η) ≥ 0

Hu−ATµ+ g − η = 0

Au = b

(u,η) ≥ 0

At the optimum, the value of the complementarity penalty
function will be nearly zero, and the optimal solution
recovers the original objective function of the MPCC
problem due to negligible contribution of the penalty term.

2.3 Economic Objective Function

In general, any appropriate economic objective function
suitable for process optimization may be used. However,
our case study is specifically motivated by product grade
transition problems, such as those arising in the polymer
and bioprocess industries. The DRTO objective function
is formulated to minimize the input cost while at the
same time taking into account the revenue when the
product quality is within the desired target tolerance. The
revenue is continuously tracked using a hyperbolic tangent
function,

R(x) =
1

2
tanh(γx) +

1

2
≈

{
0, x < 0

1, x > 0
(7)

where γ is a weighting parameter used to define the steep-
ness of the switching function that produces a function
value either smoothly or sharply approaching 0 or 1. The
function is used as a continuous approximation of a switch-
ing function constructed to indicate when the variable
enters a specification tolerance band. These may be used
in combination to capture specification bands with upper
and lower limits around a desired target, and included in
the objective function in order for revenue to apply only
when the product quality falls within specification limits.
Details on the formulation of this construct and its use
may be found in Lam et al. (2007).
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3. CASE STUDY

The problem considered here is a nonsquare system with
one output and two manipulated inputs represented as

y(s) =
1

750s2 + 65s+ 1
u1(s) +

1

400s2 + 40s+ 1
u2(s)

Output y responds faster to input u2, and the cost of input
u2 is higher than input u1. Since input u2 has a significant
impact on the transition dynamics and the overall process
economics, we include it as a manipulated variable and
enforce set-points for input u2, in addition to the set-points
for output y. The economic objective is formulated in (8)
and the problem constraints are given in (9).

min Φ =

J∑
j=1

(
2u1,j + 10u2,j − 100R1

jR
2
j

)
(8)

0 ≤ y, ysp ≤ 1.1

0 ≤ u1, u2, u2,sp ≤ 1.5 (9)

The system is discretized based on an MPC sample time
of 2 min. The nominal MPC design parameters are as
follows: prediction horizon p = 30, control horizon m = 3,
output tracking weight Q = 1, move suppression weight
R = diag(1, 1), and control tracking weight S = diag(0, 1).
Reoptimization at the DRTO level is carried out for every
20 min of sampling interval and the DRTO optimization
horizon J = 150 steps. An appropriate penalty parameter
for the complementarity constraints is found to be 80.
The system is brought from the initial steady-state to
the desired target of 1.0 ± 0.1 in output y. R1 and
R2 are outputs of hyperbolic tangent switching function
approximations that indicate satisfaction of the lower and
upper output specification tolerances respectively.

In this study, MATLAB R2012b is chosen as the super-
visory computational platform to solve the MPC problem
using a quadprog solver, and also to perform plant sim-
ulation. The DRTO problem, which can be significantly
larger in size than the MPC problem, is modelled in AMPL
and is solved using IPOPT (version 3.12.0). Computation
is performed using a 3.4GHz INTEL CORE-i7 with 8GB
RAM running Windows 7.

3.1 Effect of MPC move suppression weight

A key parameter that significantly affects the MPC closed-
loop performance is the weighting parameter for the con-
trol move suppression penalty in its algorithm. This pa-
rameter controls the speed of the closed-loop response
during set-point tracking and disturbance rejection. It
also affects the stability properties of the MPC controller
(Garćıa et al., 1989). We investigate the effect of detuning
the MPC controller by increasing the move suppression
weight R in the MPC objective function from diag(1, 1)
to diag(20, 20). The system closed-loop performance is
compared for the open-loop DRTO, bilevel closed-loop
DRTO and multilevel closed-loop DRTO strategies.

Closed-loop responses of output y for various values of
weighting parameter R are depicted in Fig. 1. Implemen-
tation of the open-loop DRTO strategy at the upper level
results in a gradual adjustment of the set-point trajecto-
ries as they are constructed based on the optimal DRTO

open-loop responses. In the open-loop DRTO strategy, we
expect that the closed-loop response at the plant level will
replicate the optimal trajectories obtained at the upper
level but this cannot be achieved due to the presence of
the control move suppression penalty that is not being
recognized by the open-loop DRTO formulation.
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g(
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,2
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time (min)
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Bilevel CL−DRTO strategy

Fig. 1. Closed-loop response of output y (solid lines:
output; dashed lines: set-point)

In contrast, the output set-point trajectories based on the
closed-loop DRTO strategy are more agile in order to assist
a fast transition to the desired target, even under detuned
controller settings. The set-point trajectories are driven
to the upper bound during the initial transition phase
and then enforced to the desired target as the output is
approaching the target tolerance. The set-point trajecto-
ries are sustained at the upper bound for much a longer
period for detuned controller settings, for example with
R = diag(10, 10), due to large penalization of control input
moves that results in slow closed-loop dynamics. Although
the set-point trajectories and the closed-loop dynamics
tend to be aggressive when the magnitude of the move sup-
pression weight is smaller, such as when R = diag(1, 1), a
back-off mechanism that arises naturally in the closed-loop
DRTO formulation prevents output constraint violation at
the plant level. This back-off mechanism has the ability
to identify at which juncture potential output constraint
violation (due to overshoot) might occur under closed-loop
implementation and thus moves the set-points away from
the constraints.

If we examine the set point trajectories for input u2 in Fig.
2, the open loop DRTO enforces the input set-point u2,sp
to the upper bound for only one time interval, which is
insufficient to drive the output to the desired target. The
subsequent DRTO executions do not hold this set point at
the maximum. On the other hand, the closed-loop DRTO
strategy holds the input set-point u2,sp for a longer period
in comparison to the open-loop DRTO strategy, which
is over two DRTO intervals in this particular example,
in order to assist a rapid tradition of the output to the
desired target. The closed loop DRTO has the ability to
do this because it has information on the MPC prop-
erties, specifically the MPC move suppression weight R
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that enforces gradual input changes. Therefore, the best
economic performance is achieved by making appropriate
adjustments to the controller set-point trajectories that
accommodates the MPC design parameters.
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Fig. 2. Closed-loop response of input u2 (solid lines: input;
dashed lines: set-point)
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Fig. 3. Effects of MPC move suppression penalty (with
Q = 1, S = diag(0, 1), p = 30, m = 3)

The economic return of the closed-loop process response
over a 200 min simulation time frame is illustrated in Fig.
3. Economic performance of the closed-loop system reg-
ulated by the closed-loop DRTO strategies is remarkably
higher than the open-loop approach, even under detuned
controller settings. The bilevel closed-loop DRTO formula-
tion gives a good approximation to the rigorous multilevel
DRTO formulation as the average economic gap is only
2.7%, as compared to 13.3% for the open-loop DRTO,
from the rigorous multilevel DRTO implementation. The
proposed bilevel formulation also significantly reduces the
problem size and computation time of the rigorous mul-
tilevel formulation, from 57,743 decision variables and
average 5 CPU(s), to 5,077 decision variables and average

0.9 CPU(s). In comparison, the open-loop DRTO formu-
lation poses an optimization problem with 1,039 decision
variables and an average 0.3 CPU(s) solution time.

3.2 Effect of MPC control horizon

In addition to the move suppression weight, the control
horizon m also influences the tracking capability of the
MPC controller. In general, control becomes aggressive
as the horizon m increases. However, the implicit back-
off mechanism that arises naturally in the closed-loop
DRTO formulation prevents constraint violation of the
output, as illustrated in Fig. 4, at the junctures where
overshoot might occur. The agility of the output set-point
trajectories ysp based on the open-loop DRTO formulation
slightly increases as the control horizon m increases. The
input set-point u2,sp based on the closed-loop DRTO
calculations, on the other hand, are held at the upper
bound over two DRTO interval when the control horizon
m is 3 or less, but this is not needed when the controller
is tuned to become more aggressive, as shown in Fig. 5.

The overall closed-loop responses based on the open-loop
and closed-loop DRTO calculations become close to each
other as the control horizon m increases while the other
MPC design parameters are fixed. This is primarily due
to the fact that increasing control horizon m will reduce
the discrepancy between the MPC closed-loop dynamics
at the plant level and the dynamics at the upper level
for both DRTO strategies where optimizations are carried
out without limiting the number of input moves, i.e. a full
degrees-of-freedom is available to manipulate the input
moves based on the length of the optimization horizon.
However, the difference remains significant if the MPC
controller uses a move suppression weight larger than
R = diag(2, 2).
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Fig. 4. Closed-loop response of output y (solid lines:
output; dashed lines: set-point)
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Fig. 5. Closed-loop response of input u2 (solid lines: input;
dashed lines: set-point)

We observe that the economic return for all DRTO strate-
gies improves as the MPC control horizon m increases,
as illustrated in Fig. 6. The closed-loop DRTO strate-
gies result in more favorable economics than that of the
open-loop approach. A shorter control horizon m results
in significant economic differences between the open-loop
DRTO, bilevel closed-loop DRTO and the rigorous multi-
level closed-loop DRTO strategies. However, these gaps are
reduced with longer control horizons. The bilevel closed-
loop DRTO strategy presents of an average economic gap
of 1.4% relative to the rigorous multilevel DRTO strategy,
and is 5.5% for the open-loop DRTO case.
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Fig. 6. Effects of of MPC control horizon (withQ = 1, R =
diag(2, 2), S = diag(0, 1), p = 30)

4. CONCLUSION

In this study, the performance of two closed-loop DRTO
strategies and an open-loop DRTO approach is compared.
The bilevel closed-loop DRTO strategy is shown to offer
advantages through assisting a rapid process transition
and also keeping the process feasible through a back-off

mechanism of the set point trajectories. It also decreases
the problem size and solution time of the rigorous mul-
tilevel DRTO approach while retaining the economics to
some degree. Based on the case studies carried out, the
control move suppression weight R affects the economics
to a much larger extent than the control horizon m when
the controller is detuned. In future work, other techniques
for approximating the MPC closed-loop dynamics will be
investigated. In addition, the closed-loop DRTO strategy
will be applied as a centralized supervisory controller in a
distributed MPC environment.
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