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Abstract: Well placement optimization aims to determine optimal well locations so that the economic 

benefit from oil production can be maximized. Geological uncertainty has a significant impact on the 

optimal well placement plan and therefore has to be considered in the well placement optimization 

problem. A geological realization reduction framework for well placement under geological uncertainty 

is proposed in this work. The objective is to optimally select a small subset of realizations and 

incorporate them into the well placement optimization problem, so as to reduce the computational efforts. 

A reservoir case study demonstrates that the selected smaller subset of realizations is a very good 

representation of a larger superset of realizations and can significantly decrease the computational time 

associated with the well placement optimization problem. 

Keywords: geological uncertainty, well placement, optimization, uncertainty reduction 



1. INTRODUCTION 

For oil reservoir operations, the production amount of oil 

greatly depends on the well locations and the geological 

property of the reservoir. To achieve the maximum economic 

benefit, well placement optimization is necessary for 

determining the best locations for placing wells in a reservoir. 

Reservoir flow simulation is commonly used in well 

placement optimization problems. The well positions are 

determined by maximizing the output variable of interest 

such as the cumulative oil production (COP) or net present 

value (NPV) generated by a reservoir flow simulator. The 

objective function for the well placement optimization 

problem is evaluated by running the reservoir flow simulator 

with given well positions. As a result, the computational time 

for the flow simulator significantly increases with the size of 

the reservoir grid and the number of wells to be placed. In the 

literature, various methods have been used in well placement 

optimization to determine optimal well positions of a 

reservoir. In most cases, the objective function for the well 

placement optimization problem is to maximize the NPV or 

COP (Nasrabadi et al., 2012). Optimization methods used in 

well placement include: mixed integer programming 

(Rosenwald and Green, 1974), gradient-based optimization 

using finite difference method (Bangerth et al., 2006), genetic 

algorithms (Bittencourt and Horne, 1997), simulated 

annealing (Beckner and Song, 1995) and particle swarm 

optimization (Onwunalu and Durlofsky, 2010), etc.  

The complexity of the well placement optimization problem 

is further increased by incorporating uncertainty associated 

with geological properties of the reservoir. Geological 

uncertainty in well placement optimization is generally 

considered by incorporating multiple geological realizations 

of the reservoir in the optimization model. Hence, the 

calculation of COP or NPV is based on the flow simulation 

on multiple geological realizations. However, since flow 

simulation for a large number of realizations is a very 

computationally demanding task and impractical for larger 

realistic reservoirs with multiple wells, a smaller subset of 

realizations are generally selected and used in the well 

placement optimization model to account for geological 

uncertainty. Thus, reducing the number of geological 

realizations for flow simulation becomes an important step in 

well placement optimization. Yeten et al. (2003) used 

multiple equiprobable geological realizations in the 

determination of objective function of well placement 

optimization to account for the geological uncertainty 

associated in a reservoir. Wang et al. (2012) selected a 

smaller subset of realization to quantify geological 

uncertainty in well placement optimization using k-means 

clustering. K-means clustering uses cumulative field oil 

production which requires to be calculated for every possible 

locations of well and therefore is computationally intensive. 

Yasari et al. (2013) used robust well placement optimization 

under uncertainty using a risk weighted objective function for 

multiple realizations. They selected a subset of realization 

from a superset by calculating the NPV for all the realizations 

using base case well position and then used ranking to select 

the small subset of realization. Similarly, Yang et al. (2011) 

combined Steam Assisted Gravity Drainage (SAGD) well 

production and placement optimization under uncertainty by 

selecting a subset of realizations using traditional ranking 

method based on the NPV of all the realizations for a base 

case scenario.   

In this study, reservoir well placement optimization 

considering geological uncertainty is studied based on a 

novel method for geological uncertainty reduction. The well 

placement optimization problem is solved using derivative 

free optimization method. Geological uncertainty is 

considered by using a reduced subset of geological 

realization from a superset of realization in the well 

placement optimization model. An optimal realization 

reduction method using geological property of the reservoir 

and static measures is used in selecting the subset of 
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realization. The well placement optimization was applied 

using the subset of realizations obtained from the optimal 

realization reduction method on a reservoir with a fixed 

number of wells. Comparison studies with other geological 

realization selection method are performed to demonstrate the 

effectiveness of the proposed method. 

The rest of the paper is organized as follows. Section 2 

discusses the well placement optimization model. Section 3 

provides the model used to select a smaller subset of 

realizations from a larger superset of realizations. Results and 

discussions of applying the well placement optimization 

model under geological uncertainty are provided in Section 4. 

The paper is concluded in section 5.  

 

2. WELL PLACEMENT OPTIMIZATION UNDER 

GEOLOGICAL UNCERTAINTY  

Well placement optimization is a computational intensive 

task. To evaluate the performance of a certain well placement 

plan (i.e., the decision variables), a reservoir flow simulation 

is performed for multiple geological realizations. So it is a 

simulation based optimization problem. Since there is no 

explicit objective function of the decision variables, 

derivative free optimization method is desired. Specifically, 

the derivative free optimization solver NOMAD is used in 

this work. NOMAD implements the Mesh Adaptive Direct 

Search (MADS) algorithm for constrained blackbox 

functions. The MADS algorithm is an extension of the 

pattern search method for nonlinear constrained optimization 

problems and therefore is a derivative free method (Audet et 

al., 2009). In this work, the objective function for the well 

placement optimization problem is designed as maximizing 

the risk averted expected cumulative oil production from a set 

of realizations as given by (1). 

Max 
2

xp

1

( )
RN

risk Expected i i E ected

i

COP COP p COP COP


  

      (1) 

where the expected COP is given by  

1

RN

Expected i i

i

COP p COP



      (2) 

In (1) and (2), NR is the number of realizations used to 

determine the geological uncertainty, pi is the probability of a 

geological realization i, COPi is the cumulative oil 

production of realization i, γ is the risk averted factor (set as 

0.1 in this work). The blackbox function is the reservoir 

simulator which determines the COP value based on the 

positions of the producer wells. 

The robust well placement optimization used in this study is 

summarized in a flow diagram as given in Fig. 1. The steps in 

the well placement optimization under uncertainty are: 

 Generate a large number of geological realizations 

using geostatistical method. 

 Select a smaller subset of those realizations using 

realization reduction. The proposed realization 

reduction model minimizes the probability distance 

between the discrete distribution represented by the 

superset of realizations and the reduced discrete 

distribution represented by the selected realizations. 

 Using the selected subset of realizations, perform 

well placement optimization by maximizing the 

objective function as given by (1). Each function 

evaluation calls on the reservoir simulator to 

calculate the COP. 

 The optimal well locations using the subset of 

realizations are obtained when the stopping criteria 

for the optimizer are satisfied. 

 

Robust well placement optimization is also performed using 

all the realizations in the superset to obtain optimal well 

locations for all the realizations. The well placement plan 

using the reduced subset of realizations obtained from the 

proposed method is compared to the well placement plan 

using all the realizations in the superset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Workflow for well placement optimization under 

uncertainty 

 

3. GEOLOGICAL UNCERTAINTY REDUCTION 

Geological uncertainty exists because it is not possible to 

know the exact geological properties of every section of a 

realistic reservoir. Techniques such as well exploration and 

core holes can give an idea of the geology property of that 

particular area of the reservoir. However, the geological 

parameters of the area between the exploration wells or core 

holes will still be unknown. As a result, geological 

uncertainty will always exist for a reservoir. Reservoir 

performance can be quantified by flow simulation, which 

provides production parameters of interest such as the COP 

and the NPV, etc. All the production parameters depend on 

the geological properties of the reservoir. It is very important 

to incorporate geological uncertainty in a reservoir model; 
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otherwise it may result in an incorrect prediction of 

production parameters. To represent the geological 

uncertainty, multiple geological realizations are usually 

generated using geostatistical tool so as to obtain a broad 

range of possible geological properties for a reservoir. 

However, reservoir flow simulation cannot be run for all the 

possible realizations due to significant computer processing 

times. Therefore, in practice only a small number of 

geological realizations are chosen to perform reservoir 

simulation, so as to obtain a reservoir performance model 

which incorporates geological uncertainty. 

An optimal realization reduction model based on mixed 

integer linear optimization (MILP) technique is used to select 

a smaller subset of realizations from the superset of 

realizations (Rahim et al., 2014). The proposed algorithm 

uses reservoir geological properties and static measures to 

quantify the dissimilarity between realizations, and uses 

Kantorovich distance to quantify the probability distance 

between the superset and the subset of realizations. The 

objective is to find out the optimal subset which has a similar 

statistical distribution characteristic to the superset of 

realizations. The MILP model which selects the subset of 

realizations from a superset of realization is given by the set 

of equations below.  

The objective function of the realization reduction algorithm 

is to minimize the Kantorovich distance between the original 

distribution and the reduced distribution 

 min
orig

Kan i i

i I

D p d



       (3) 

where di represents the cost of removing a realization i (i.e., 

transporting and distributing its probability mass to preserved 

realizations). This cost is quantified by a weighted 

summation of the transported probability mass,  

, ' , '

'

   
i i i i i
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
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where the weight is the dissimilarity 
, 'i i

c  between realizations 

i and i’ given by 
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The dissimilarity between realizations is computed using the 

geological properties and the static measures. 
ik

m  is the 

value of the k type static measure for realization i, 
ic t

  is the t 

type geological property value of cell c in the reservoir grid 

for realization i, λ is a weight parameter (set as 0.01) which 

reflects the contribution of geological property data in the 

dissimilarity calculation. The static measures used in the 

calculation of the dissimilarity between realizations include 

the average net permeability, the average net porosity, the 

average net irreducible water saturation, the fraction of net 

cells, the net pore volume, and the original oil in place and 

net oil in place. For example, the average net permeability is 

calculated as 
net

K =
net net

c c cc c
k I I  , where binary 

indicator parameter net

c
I  is used to denote whether a cell c in 

the reservoir grid is net ( 1
net

c
I  ) or not ( 0

net

c
I  ), 

c
k  

denotes the permeability of cell c. The idea of net cell stems 

from the fact that if a section of the reservoir rock has very 

low porosity and permeability value, then that section of the 

rock will be unable to carry any oil through it. For a complete 

definition of the other static measures, the reader is referred 

to (Rahim et al., 2014). All the static measures used in the 

realization reduction method are properties of the reservoir 

and independent of the location of wells within the reservoir.  

The following constraints are also included in the proposed 

MILP model for optimal geological realization 

reduction/selection. First, if a realization i is removed (yi=1), 

then all of its probability mass should be transported 

(
, ''

=1
i ii I

v
 ). If a realization i is selected/preserved (yi =0), 

then its probability mass should not be transported to any 

realization (
, ''

=0
i ii I

v
 ). 

, '

'

=      
i i i
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v y i I


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Furthermore, if a realization 'i  is removed (
'i

y =1), then no 

probability mass can be transported to it (
, '

=0
i i

v  for any i). If 

a realization 'i  is selected (
'i

y =0), then probability mass can 

be transported to it (
, '

0 1
i i

v  ). 

, ' '
0 1     , '

i i i
v y i i I        (7) 

If the total number of realizations to be removed is given by 

R then the following equation ensures that R  realizations are 

removed 

  
i

i I

y R i I



       (8) 

The next set of equations ensure that at least 2 realizations are 

selected from the subset 
SB

I  and subset 
SW

I  

 1 2    

SB

i SB

i I

y i I



        (9) 

 1 2   
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i SW

i I

y i I


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where the subset 
SB

I  has 2 realizations which is identified 

using the following steps. For each static measure, the 

realizations corresponding to the top 3 highest static measure 

values are identified. Those identified realizations ID are 

combined into a superset, and from which the 2 most frequent 

realizations are selected to from the set 
SB

I . Same idea is 

used to identify the subset 
SW

I  which has top 2 most frequent 

realizations which represent the potential worst performance. 

The idea behind incorporating these constraints is to ensure 

the potential worst and best case realizations from the 

superset of realizations is included in the selected subset of 

realizations. With the selected realizations (i.e., 
i

y ) and the 

probability mass transportation plan (i.e., 
, 'i i

v  ), the new 

probability of realizations in the reduced distribution new

i
p  

can be evaluated as follows: 

' ' ' , '
(1 )      '

new orig orig

i i i i i i

i

p y p v p i I       (11) 

Finally, the complete optimization model is composed of (3) 

to (11) and it is a mixed integer linear optimization problem. 

This problem can be solved using MILP solver such as 

CPLEX (IBM, 2010).  
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4. CASE STUDY 

To illustrate the proposed geological realization reduction 

method and demonstrate its application in well placement 

optimization, a two dimensional reservoir model with 50 × 50 

grid size (2500 cells) and 5m × 5m cell size is investigated in 

this section. The reservoir has 5 fixed vertical injector well 

placed at grid positions: [8 45], [16 45], [24 45], [32 45] and 

[40 45]. The number of vertical producer wells was fixed as 

5. The objective function for the well placement optimization 

was evaluated using Matlab Reservoir Simulation Toolbox 

(MRST) (Lie et al., 2012) on different geological realizations. 

MRST provided the COP for each Producer well location 

plan. The simulation time horizon for the simulator was set as 

3000 days divided into 10 equal periods. The case study 

parameters used by MRST are provided in Table 1.  

 

Table 1. Case study parameters 

 

In this study, a superset of 100 realizations were generated 

for realization reduction. For each realization, porosity values 

of the reservoir grid were generated in MRST using a built-in 

function ‘GaussianField’ with a range parameter of [0.1, 

0.5]. The function creates an approximate Gaussian random 

field by convolving a normal distributed random field with a 

Gaussian filter with a standard deviation of 2.5 (Lie et al., 

2012). Permeability values were further generated from the 

porosity values using Karmen-Cozeny relationship (Lie et al., 

2012)  
3

2 2

1

2 (1 )

c

c

v c

k
A



 



    (12) 

In (12), kc is the permeability of cell c, ϕc is the porosity of 

cell c, Av is the surface area of spherical uniform grains with 

a constant diameter of 10 and τ is tortuosity with value 0.81 

(Lie et al., 2012). In the case study, the well placement 

optimization results using a subset of realizations from the 

proposed method are compared to subset of realizations 

obtained using static measure based ranking method and 

random selection.10 realizations were selected for the subset 

of realizations. In random selection, 10 realizations are 

arbitrarily selected from the superset of realizations.  

To evaluate the static measures for different geological 

realizations, the threshold porosity is set as ϕo = 0.3 and 

threshold permeability is set as ko = 3×10
-13 

m
2 

to determine 

whether a cell is a net or non-net cell. Static measure based 

ranking method was applied next to obtain a subset of 10 

selected realizations from the superset of 100 realizations. In 

the ranking based methods, all the 100 realizations in the 

superset are sorted in ascending order based on the static 

measure values. 10 realizations are evenly selected from the 

sorted list with ranks 1, 12, 23, 34, 45, 56, 67, 78, 89, 100. In 

this study, static measures of Net Pore Volume (PVnet) and 

Original Oil in Place (OOIP) were used to perform realization 

reduction using the ranking based method. Equations for 

PVnet and OOIP are provided as follows: 

net

net c c c

c

PV V I      (13) 

(1 )
c c c

c

OOIP V S      (14) 

where, Vc is the volume of reservoir cell c, ϕc is the porosity 

of cell c, Sc is the irreducible water saturation of cell c and 

Ic
net

 is an indicator to see if cell c is a net cell (Ic
net

=1) or non-

net cell (Ic
net

=0).  

 

 
Fig. 2. (top) Well placement plan using selected realizations 

from proposed method; (bottom) Well placement plan using 

full set of realizations 

 

The decision variables for the case study were the X and Y 

locations of the producer wells to be placed. The objective 

was to maximize the risk averted expected cumulative oil 

production after 3000 days of the simulation period. The well 

Parameter Value 

Initial pressure po 5080 psi 

Oil viscosity μo at po 1.18 cp 

Water viscosity μw at po 0.325 cp 

Oil density ρo 865 kg/m
3
 

Water density ρw 929 kg/m
3
 

Relative permeability exponent for oil no 2 

Relative permeability exponent for water nw 2 

Residual phase saturation for oil Sro 0 

Residual phase saturation for water Srw 0 

Relative permeability for oil  kwmo at Sro 1 

Relative permeability for water  kwmw at  Srw 1 
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placement optimization problem was simulated using a 

system with 3.2GHz Intel Core i5 processor and 8 GB 

memory. Well placement plans obtained from the 

optimization on the case study using the subset of realizations 

and the superset of realizations are provided in Fig. 2. In Fig. 

2, the fixed injector wells are denoted by blue dot and the 

producer well locations are denoted by red dot.  

It is evident from Fig. 2 that the producer well placement 

plan using a subset of realizations from the proposed 

realization reduction method is very similar to the producer 

locations used from the well placement optimization using all 

the realizations. The computational time for the well 

placement optimization and the mean and variance of the 

COP from the final prodcuer well location of using the subset 

of realizations using different methods and the original 

superset of all the realizations are given in Table 2.  

 

Table 2. Case study results 

 

Mean 

COP 

(m
3
/day) 

COP 

standard 

deviation 

(m
3
/day) 

Simulation 

time 

(hours) 

All realizations 11529 1000.4 25 

Selected 

realizations from 

proposed method 

11537 940.3 2.5 

Selected 

realizations from 

PVnet ranking 

11554 1402.5 2.5 

Selected 

realizations from 

OOIP ranking 

11472 1474.9 2.5 

Selected 

realizations from 

random selection 

11310 1235.4 2.5 

 

 

Table 2 shows that the well placement optimization results 

using the subset of realizations selected by the proposed 

realization reduction method has the closest mean and 

variance values of COP when compared to the mean and 

variance COP obtained using all the realizations in the well 

placement optimization method. More importanlty, the well 

placement optimization problem using a subset of realization 

takes one-tenth of the computational time with the same 1000 

iterations of optimization.  

 

Fig. 3 provides the expected COP versus the number of 

iterations used by the NOMAD optimizer for the different 

realization reduction methods. It is clear that the expected 

COP of the well placement plan using the subset of 

realizations comes closest to the expected COP of the well 

placement plan using all the realizations as the number of 

iterations increases. The expected COP error is the absolute 

difference between the expected COP of the well plans using 

different realizations reduction methods with the expected 

COP of the well plan using all the realizations in the superset. 

It is clear from Fig. 3 that as the number of iterations 

increases, the expected COP of the proposed method 

becomes very close to the expected COP from the full set of 

realizations.  

 

Similarly, Fig. 4 provides the plot of standard deviation of 

COP and error in the standard deviation of COP versus the 

number of iterations used by the NOMAD optimizer for the 

different realization reduction methods. Fig. 4 further 

confirms that the amongst the realization reduction methods, 

the proposed method has a standard deviation of the COP 

closest to the standard deviation of the COP calculated with 

all the realizations in the superset. 
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Fig. 3. (top) Expected COP versus number of iterations using 

different realization reduction methods; (bottom) Error in 

expected COP versus number of iterations using different 

realization reduction methods 

 

5.  CONCLUSION 

In this study, a framework for well placement optimization 

with geological uncertainty reduction was proposed. The well 

placement optimization was formulated as a risk averted 

optimization problem by considering geological uncertainty. 

The optimization problem is solved using the derivative free 

optimization method. Geological uncertainty was 

incorporated into the robust optimization model which is 

formulated based on a set of optimally selected realizations. 

The subset of realizations was selected from a superset of 
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realizations using a mixed integer linear optimization model 

with an objective of finding out the optimal subset which has 

a similar statistical distribution characteristic to the superset 

of realizations. The realization reduction model is 

independent of well positions and depends on the reservoir 

geology. Results from case studies show that the well 

placement optimization problem using the proposed 

realization reduction method is very efficient. The well 

placement plan obtained using the small subset of realizations 

and the well placement plan for the superset of realizations 

are very similar and have similar mean COP values. 

Significant reduction in the computational time was achieved 

by using a subset of realizations in the well placement 

optimization problem. Comparison studies show that the 

results of the proposed method are also superior to the 

traditional ranking method and the random selection method. 
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Fig. 4. (top) Standard deviation of COP versus number of 

iterations using different realization reduction methods; 

(bottom) Error in standard deviation of COP versus number 

of iterations using different realization reduction methods 
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