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Abstract: One of the challenges of utilizing soft sensors is that their prediction accuracy
deteriorates with time due to multiple factors, including changes in operating conditions. Once
soft sensors are designed, a mechanism to maintain or update these models is highly desirable
in industry. This paper proposes an index that can monitor the prediction performance of
soft sensor models and provide guidance about when to update these models. In the proposed
approach, a Kalman filter based model mismatch index is developed to monitor the prediction
performance of soft sensors with the support of traditional process monitoring indexes, T 2 and
SPE. Then, the soft sensor model can be updated through partial least squares (PLS) regression
by using samples from the off-line training set and new process conditions. The proposed online
update method is applied to an industrial process case study and the effectiveness of the proposed
approach is demonstrated by comparing with traditional recursive partial least squares (RPLS).
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1. INTRODUCTION

In industry, accurate and reliable measurement and pre-
diction of quality variables play an important role in pro-
cess control, monitoring, stability and improving product
quality (Sharmin et al., 2006; Zhang et al., 2010). Soft
sensors are widely used to predict quality variables that
are difficult to measure online by using real-time plant
data (Bosca and Fissore, 2011; Yu, 2012). An advantage
of utilizing soft sensor models is that hardware analyzers
can be replaced for these models (Fortuna et al., 2007; Lin
et al., 2007).

Soft sensors are traditionally based on first principle mod-
els as well as Kalman filter and observers (de Assis and
Maciel Fiho, 2000; Heineken et al., 2007; Mangold, 2012).
Nevertheless, model based soft sensors require in-depth
process knowledge and significant effort for model devel-
opment. Data-driven techniques can also be utilized to
develop soft sensors, which rely mainly on plant data
and knowledge of the process (Dufour et al., 2005; Facco
et al., 2009). The well-known multivariate statistical meth-
ods such as principal component regression (PCR) and
partial least squares (PLS) gain some success in building
linear inferential models for quality estimates from high-
dimensional data with collinearity (Kano and Nakagawa,
2008; Kadlec et al., 2009; Lu et al., 2014). However, the
prediction accuracy of soft sensors tends to degrade after
a period of their online operation due to process fouling,
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abrasion of mechanical components, drifted operating con-
ditions, process faults and others (Kadlec et al., 2011). The
degradation of soft sensor models may result in a series
of issues in process operation with undesirable quality of
final products. Therefore, solutions for degradation of soft
sensor models are highly desirable in industrial practice.
The main contribution of this paper is to provide a mech-
anism to properly update soft sensor models once they are
deployed to online operation.

Various techniques are developed for online adaptation to
cope with the issue of degradation in soft sensor models.
Block-wise moving window techniques are employed to
update the soft sensor model sequentially by retraining the
model periodically when a given number of new data sam-
ples are collected, such as fast moving window principal
component analysis and moving window kernel principal
component analysis (Wang et al., 2005; Liu et al., 2009).
More recently, a PLS based local learning algorithm is
developed to construct an adaptive soft sensor model by
using the data in a moving window with different pro-
cess states (Kadlec and Gabrys, 2011). Nevertheless, the
effectiveness of moving window based methods is based
on the assumptions that the window size and the inter-
vals between updates are set correctly and the process
dynamics do not change within the span of one moving
window. If the assumptions do not hold, it is very likely
that the soft sensors adapt to noise or have very weak
adaptation capabilities. Meanwhile, the recursive partial
least squares (RPLS) model is developed by updating
the model structure recursively at each sampling instance
when the new process and quality measurements are avail-
able (Helland et al., 1992; Mu et al., 2006). In addition, re-
cursive methods for PLS are further modified by using the
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new process data in either a sample-wise or a block-wise
manner to update the current soft sensor model in the form
of covariance matrices (Dayal and MacGregor, 1997; Qin,
1998). Compared with moving window techniques, the
computational efficiency of recursive adaptation methods
is much higher because only covariance or kernel matrix
is updated in model adaptation. Nevertheless, choosing an
appropriate forgetting factor for previous models is not
a trivial task in recursive adaptation methods. Another
alternative of performing online parameter estimation of
soft sensor models is by utilizing Kalman filters, in which
coefficient estimates are calculated by minimizing the noise
effects (Rutan, 1990; Teppola et al., 1999). Some effort has
been made to employ just-in-time learning (JITL) strategy
to construct a local model based on a number of nearest
neighbors of the test sample (query data) for adaptive
predictions (Ge and Song, 2010). However, JITL methods
cannot model the brand new process dynamics between
process and quality variables if corresponding data are not
stored in the database. The aforementioned dynamic and
recursive modeling approaches are not desirable in some
industrial applications because the soft sensor model is
updated at each sampling instance or each block of sam-
pling instances without considering the necessity of model
update. As long as the soft sensor model provides accu-
rate quality predictions, updating the soft sensor model
is an unnecessary effort in industry. In addition, updating
the soft sensor model at each sampling instance or each
block of sampling instances could lead to unstable model
parameters with poor interpretability and generalization
capabilities.

Table 1. Soft sensor degradation scenarios

Quality error Soft sensor degradation Process faults

Lab analysis issue
for quality

Normal operation con-
dition with drifted pro-
cess correlation

Process under ab-
normal condition

No effective index Proposed index T 2 & SPE

Not considered Model Update No update

Three relevant scenarios that could lead to soft sensor
degradation are listed in Table 1. In this study, it is
assumed that quality measurement is correct because iden-
tifying abnormalities in quality measurements is a chal-
lenging task (Kaneko and Funatsu, 2013). A Kalman filter
based model mismatch index is proposed to monitor the
soft sensor degradation and provide guidance about when
to update the model. The difference from Kalman filter
based model update methods (developed in the 90’s) is
that Kalman filter is utilized to derive a model mismatch
index to monitor the soft sensor model performance. With
the assistance of traditional T 2 and SPE process mon-
itoring indexes, the soft sensor model will not be up-
dated under abnormal process conditions. After the model
update decision is made based on the model mismatch
index, the regression coefficients can be updated through
PLS regression using samples from the training set and
the current process conditions. Compared with the model
parameters from recursive/block-wise updating or Kalman
filtering, the updated soft sensor model parameters up-
dated by the proposed method are more stable with better
interpretability.

The remainder of the paper is organized as follows. Section
2 gives preliminaries about PLS regression. Then the
proposed online update method is developed in Section 3.
The effectiveness of the proposed method is demonstrated
in Section 4 utilizing an industrial case study. Finally,
concluding remarks are drawn in Section 5.

2. PRELIMINARIES

2.1 Partial least squares

In this study, the case of a single quality output is con-
sidered (PLS1). Given a regressor matrix X ∈ RN×D

consisting of N samples with D selected process variables
per sample, and the response matrix Y ∈ RN×1 of quality
outputs, PLS projects X and Y onto a lower dimen-
sional subspace defined by a number of latent variables
[t1, . . . , tA] as follows:{

X = TPT + E

Y = TQT + F
(1)

where T ∈ RN×A (A is the number of latent variables)
is the score matrix representing the projections of the
variables on the subspace, P ∈ RD×A represents the
loading matrix for X, and Q ∈ R1×A defines the loading
matrix for Y (Dayal and Macgregor, 1997; Li et al., 2010).
E and F denote the modeling residuals. Both X and Y
matrices are scaled to zero mean and unit variance. The
projection matrices in PLS are calculated in an iterative
way by solving the following optimization problem:

max waX
T
aYaqa (2)

s.t. ||wa|| = 1, ||qa|| = 1

where wa and qa are loading vectors for Xa and Ya,
respectively. Denoting W = [w1, . . . ,wA], T cannot be
calculated directly from X using W because X is deflated
in each iteration. Instead, T can be computed from X
directly as follows:

T = XR (3)
where weighting matrix R = [r1, . . . , rA]. Each column of
R can be computed in a recursive manner as follows:

r1 = w1

ra = wa − pT
1 war1 − . . .− pT

a−1wara−1, (a > 1) (4)

where pa is the column vector in P. Based on Eqs. (1) and
(3), the PLS regression coefficients βPLS between X and
Y are given by:

βPLS = RQT (5)
In addition, the number of latent variables for PLS regres-
sion is usually determined by cross-validation in order to
achieve the optimal prediction performance.

2.2 Recursive partial least squares

Recursive partial least squares (RPLS) is one of the
most commonly used methods for adaptive online process
modeling, especially when the process variables are highly
correlated (Qin, 1998; Wang et al., 2003). In RPLS, the
old data X and Y can be discounted by updating the
covariance matrices as new data become available

(XTX)k = λ(XTX)k−1 + xT
k xk (6)

(XTY)k = λ(XTY)k−1 + xT
k yk (7)

where xk and yk are the new process and quality variables
observed at sampling instance k, (XTX)k and (XTY)k are
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the updated covariance matrices at time k. λ (0 < λ ≤ 1)
is a forgetting factor that discounts the old data in each
sampling instance and λ = 1 means no discounting of the
old data. The widely-used kernel algorithm based RPLS
method is employed in this study for comparison purpose
(Dayal and MacGregor, 1997).

3. ONLINE UPDATE OF THE SOFT SENSOR
MODEL

3.1 Mismatch detection of the soft sensor model by
Kalman filter

In literature, the decision for soft sensor model update is
based on prediction errors. However, having large predic-
tion errors do not necessarily indicate mismatch between
the current soft sensor model and actual process dynamics
because of faulty conditions or uncertainty in processes.
Since the process is subjected to noises and unknown dis-
turbances, the regression parameters may need adjustment
to adapt to the current process conditions. As such, the
current optimal regression parameters can be treated as
hidden states that can be estimated by the Kalman filter.
If the difference between the filtered and actual regression
parameters (coming from the current soft sensor model) is
within a certain range, the soft sensor model can still char-
acterize the variable correlation well and model update
is not necessary. Otherwise, the mismatch between the
soft sensor model and current variable correlation is severe
and the soft sensor model needs to be updated. Note that
the regression parameters estimated by the Kalman filter
are virtually computed for detection of soft sensor model
mismatch and the model updating mechanism of PLS
models will be discussed in Section 3.2. The state space
model for recursive Kalman estimates can be formulated
as follows:

βk = Fkβk−1 + wk−1 (8)

yk = Hkβk + vk (9)

where βk is the regression parameter at time k, Fk is the
state transition matrix, wk is the Gaussian state noise, yk

is the quality measurement at time k, Hk is the observation
matrix and vk is the Gaussian measurement noise. In
this study, the regression parameters in the next sampling
instance are assumed to be similar with the regression
parameters in the last sampling instance, in addition with
some disturbance so that Fk = I in Eq. (8). Hk in the
measurement equation is given by xT

k , where xk is the
process measurement at time k. With the initial guess for
the state being βc (βc is the regression coefficient vector
of the current soft sensor model), the Kalman filter can
perform a recursive estimate for the states (Rutan, 1990;
Chen, 2003). A prior state estimate based on Eq. (8) can
be expressed as:

β̂k = Fkβ
KF
k−1 (10)

where βKF
k−1 is the filtered regression parameters in the

last step. Then the prior covariance Pk|k−1 of the state
is updated as follows:

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (11)

where Qk is the covariance of state noise and Pk−1|k−1 is
the posterior covariance of the state in the last step. The
residual ỹk is computed by:

ỹk = yk −Hkβ̂k (12)

Then the posterior state is given by:

βKF
k = β̂k + Kkỹk (13)

where Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1 is the opti-

mal Kalman gain and Rk is the covariance of measurement
noise. Finally, the posterior covariance Pk|k of the state is
updated as follows:

Pk|k = (I−KkHk)Pk|k−1 (14)

Based on the recursive update procedure of the Kalman
filter, the filtered regression parameters are affected by
the residual ỹk, computed in Eq. (12). In this study,
the quality measurement yk is assumed to be correct or
fault free. If the current soft sensor model can predict the
quality variable well, the variation of filtered regression
parameters in the next time step will be small. On the
other hand, the change of filtered regression parameters
in the next time step can be significant based on Eq.
(13). If the residual prediction of the current soft sensor
model is large, the filtered regression parameters tend to
be different from the actual regression parameters βc and
the soft sensor model cannot characterize the relationship
between process and quality variables well. Given the
filtered regression parameters βKF

k by Kalman filter at
time k, the residual between the estimated and actual
regression parameters β̃k is given by:

β̃k = βKF
k − βc (15)

Then, the model mismatch index is computed as follows:

Ik = β̃T
k Λ−1β̃k (16)

where Λ is the sample covariance of β̃k. With the developed
model mismatch index, a control limit is derived to decide
whether the soft sensor model mismatch is severe or not.
The probability density of the model mismatch index can
be estimated through kernel density estimation using the
computed model mismatch index in the training set as
follows:

p̂(I) =
1

Nh

N∑
k=1

κ(
I − Ik
h

) (17)

where p̂(I) denotes the estimated probability density, N
is the number of samples in the training set, h > 0 is
a smoothing parameter called bandwidth and κ(·) repre-
sents a Gaussian kernel function (Bowman and Azzalini,
1997). For a given significance level, the control limit for
the model mismatch index can be obtained using the
estimated probability density. In the test set, the model
mismatch index can be calculated every sampling instance
when a quality measurement is available. Maximum tol-
erated alarms are predefined to quantify the necessity of
model update and an illustrative diagram is shown in
Fig. 1. Once the number of model mismatch index values
that are consecutively above the control limit reach the
maximum tolerated alarms, the model update shall be
performed to recover the mismatch between the current
PLS soft sensor model and the actual process variable
correlation. However, the Kalman filter based model mis-
match index is insufficient to update the soft sensor model,
because abnormal conditions in the process can also re-
sult in performance degradation of the soft sensor model.
Therefore, T 2 and SPE indexes are selected to monitor the
abnormality in the process. The process is in an abnormal
condition if either index exceeds the control limit and
the soft sensor model update cannot be performed even
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Fig. 1. Illustrative diagram of detecting model mismatch

in the case that the model mismatch index is above the
control limit consecutively. Meanwhile, actions should be
taken to address the detected process faults. If the model
mismatch index is still above the control limit after the
process is recovered from the abnormal condition, the soft
sensor model will be updated. To summarize, only under
the condition that the model mismatch is severe and the
process is under normal conditions will the soft sensor
model be updated.

3.2 Online model update

When it is time to update the soft sensor model based
on the criteria described in Section 3.1, M process mea-
surements Xnew ∈ RM×D, and quality measurements
Ynew ∈ RM×1 in the new condition are collected and
combined with M samples in the training data to update
the regression coefficients (M � N). In order to make sure
that the samples from the training data, Xold ∈ RM×D

and Yold ∈ RM×1, represent the distribution of the whole
model generation data set, those samples can be obtained
through equidistant sampling of the whole training data
set. For the industrial case study, multiple values of M
were tested and 20 was found to lead to best prediction
performance. The actual value ofM depends on the change
rate of process. In parallel, Xnew is automatically val-
idated online through the PLS monitoring model while
Ynew is validated through the quality control procedure
in lab analysis. Given the combined input process data
matrix Xu = [XT

old XT
new]T and output data matrix

Yu = [YT
old YT

new]T , the linear regression model in the
new process condition can be described as follows:

Yu = Xuβu + E′ (18)

where βu is the updated regression coefficient vector com-
puted via PLS regression and E′ denotes the prediction
residual. Then, the quality will be predicted through the
updated soft sensor model.

4. AN INDUSTRIAL PROCESS CASE STUDY

A simplified process diagram of the industrial process is
shown in Fig. 2. The industrial process has three unit
operations and 61 measurable process variables. Units A,
B and C are distillation columns, in which temperatures,
pressures, flows and calculated variables are measured and
stored. This industrial process has one quality variable,
which is associated with the final product of Unit C. The
process variables are measured online every hour while
the quality variable is measured through off-line labora-
tory analysis approximately every six hours. The main

Unit A 

Output 1 Unit A 

Output 2 
Unit A 

Unit B 

Output 1 Unit B 

Output 2 
Unit B 

Unit C 

Output 1 Unit C 

Output 2 
Unit C 

Fig. 2. Process diagram of the industrial process

objective is to build and maintain a reliable soft sensor
model by using some of the 61 process measurements to
predict the quality variable. 735 samples collected from
January 2011 to February 2012 are used for training the
soft sensor model while another 750 samples collected from
February 2012 to May 2013 are employed as an online test
to demonstrate the effectiveness of the proposed online
update method. The process undergoes different operat-
ing conditions with various disturbances during the 29
months. The training data does not include all possible
scenarios in the online test so that the online update for
the soft sensor model is necessary. The PLS soft sensor

Table 2. Comparison of computational results
between RPLS and the proposed method in

the online test for the industrial process

Method RMSE MAPE R2

No Update 0.7499 15.78% 0.6110
The proposed method 0.6443 12.86% 0.7093

RPLS (λ = 0.9) 0.6297 11.57% 0.7220

model is built upon 4 process variables (25, 42, 51 and
52), where those variables are chosen based on engineering
knowledge and an optimization procedure. The model mis-
match index is shown in Fig. 3(b), where the PLS model
is updated 10 times during the online test. Note in Fig.
3(a) that the predicted quality values of the updated PLS
model properly follow the actual quality values. Utilizing
T 2 and SPE indexes, Figs. 3(c) and (d) show that an
abnormal condition happens between the 140th and 160th
sampling instances. Though the model mismatch index
also exceeds the control limit between the 140th and the
160th sampling instances, the soft sensor model is not
updated during that period because it is experiencing an
abnormal condition. The original PLS model predictions
and the PLS model with an online update are depicted
in Fig. 4. The quality predictions from the original soft
sensor model cannot characterize the trend in the quality
variable, while the predicted values of the soft sensor model
with an online update closely follow the actual trend of
the quality variable. A strong offset between the actual
quality measurements and the predicted values from the
1st to the 320th sampling instances is observed, indicating
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Fig. 3. Online test for the industrial process

that the soft sensor model is not well suited to predict
the quality variable under the current process conditions.
The prediction accuracy metrics are also listed in Table 2,
where the RMSE and MAPE values without model update
are as high as 0.7499 and 15.78% and R2 value is as low
as 0.6110. In comparison, the soft sensor with an online
update leads to more satisfactory prediction results, with
the RMSE and MAPE values being 0.6443 and 12.86% and
R2 value of 0.7093. Such comparison demonstrates that the
proposed update method can make the soft sensor model
adaptive with improved prediction accuracy.

The PLS model with the proposed online update method
is compared against the RPLS model with the optimal
forgetting factor λ = 0.9, which is determined through
a grid search. Although the RPLS model with λ = 0.9
achieves slightly better performance than the proposed
method (as shown in Fig. 4 (b)), the oscillation in its re-
gression coefficients in Fig. 5 is strong. The RPLS method
updates regression coefficients at each sampling instance,
while the majority of updates in RPLS are not necessary.
Furthermore, there is not a reasonable explanation for the
sign changes of the regression coefficients of the RPLS
model. If a process variable is positively correlated to the
quality variable based on statistical analysis of historical
data, they should not be negatively correlated for several
samples in the online operation. Hence, the regression
coefficients of RPLS lack consistency and interpretabil-
ity. In contrast, the signs of regression coefficients in the
proposed method never change, which leads to a stable
model structure and better interpretability. Consequently,
the proposed method provides a desirable advantage in
industrial practice.

5. CONCLUSIONS

With the objective of detecting soft sensor degradation
in industrial processes, a Kalman filter based soft sensor
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(a) Time−series plot of actual versus predicted Y values without online update
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(b) Time−series plot of actual versus predicted Y values with online update
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Fig. 4. Comparison of soft sensor prediction performance
for the industrial example
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Fig. 5. Comparison of regression coefficients between the
proposed approach and RPLS method

model mismatch index and a corresponding contribution
plot for diagnosis are developed in this paper. Benefiting
from filtering capabilities of the Kalman estimates, the
mismatch index provides accurate information on whether
the soft sensor model is in need of maintenance. Based
on the statistical properties of the model update index in
the training set, the control limit (denoting the red line
for severe model mismatch) is obtained through kernel
density estimation. Integrated with the process monitoring
indexes, the Kalman filter based model mismatch index
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is employed to determine when to update the soft sensor
model. With the decision to update the soft sensor model,
the new regression parameters are computed by using
samples in the training set and the current conditions.
Consequently, the soft sensor model is updated only when
significant degradation occurs, improving prediction per-
formance of the soft sensor model.

The proposed approach is applied to an industrial process
case study and compared against the RPLS method. The
computational results indicate that the proposed index
can capture the model mismatch of the soft sensor model
in the early stages and the online updated soft sensor
model leads to accurate quality predictions. In addition,
the comparison with the RPLS method demonstrates that
the proposed approach is more desirable in industrial
applications because model degradation can be tackled
without frequently updating the model parameters.
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