
Detection of Stiction in Level Control
Loops ?

Ana S. R. Brásio ∗,† Andrey Romanenko †
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Abstract: Stiction is a persistent control valve problem in the process industry responsible
for oscillations and, consequently, losses of productivity. Its early detection and separation
from other oscillation causes is an important issue in the industrial context. One of simple
and effective approaches to detect stiction has been proposed by Yamashita that employed a
pattern recognition principle. While its performance is good in flow control loops, it fails to
properly diagnose other types of processes.
The present work details a new approach that enables the application of the Yamashita pattern
recognition principle to level and other integrating process control loops. A simulation study
demonstrates its capabilities in clean and noisy environments and analyzes the impact of the
noise on the diagnostic performance.
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1. INTRODUCTION

Stiction is an enduring problem of control loops in process
industry. When it occurs, the real position of the valve
stem can differ substantially from the controller output
(see Fig. 1) deteriorating the performance of the control
loop. The stiction phenomenon is responsible for losses of

Fig. 1. Industrial control loop with stiction, where ysp is
the variable setpoint, u is the controller output, x is
the real valve position, and y is the controlled variable.

productivity and considerable research efforts have been
devoted to its mitigation (Brásio et al., 2014a). These
include stiction modelling (Choudhury et al., 2005; Chen
et al., 2008), detection and quantification (Zabiri and
Ramasamy, 2009; Brásio et al., 2014b), and compensation
(Xiang Ivan and Lakshminarayanan, 2009; Alemohammad
and Huang, 2012).

Stiction is one of the common root-causes for oscilla-
tions of the controlled variable (approximately 20%-30%
of the oscillating process loops). Therefore, its early de-
tection and separation from other oscillation causes is
an important issue in an industrial context (Nallasivam
et al., 2010). Stiction diagnosis approaches may be based

? This work was developed under project NAMPI, reference
2012/023007, in consortium between Ciengis, SA and UC, with
financial support of QREN via Mais Centro operational regional
program and European Union via FEDER framework program.

on the signal shape (Yamashita, 2006a; Kalaivani et al.,
2014)), on system identification using the Hammerstein
model (Babji et al., 2012; Brásio et al., 2014b) and the
Hammerstein-Wiener model (Wang and Wang, 2009; Ro-
mano and Garcia, 2010). Other approaches have also been
considered (Farenzena and Trierweiller, 2012; Arumugam,
2014). Shape based methods are the simplest approaches.

Yamashita (2006a) proposed a shape based method that
identifies typical patterns in the graphical representation
of the controller output signal versus the real valve position
signal.

By applying the method to a considerable number of
industrial flow control loops, Manum and Scali (2006) con-
cluded that Yamashita’s method diagnoses the presence of
stiction in half of the occurrences. However, this method
presents the disadvantage of requiring valve stem position
data. Even though this data is often unavailable, it is
nevertheless possible to apply the method in flow control
loops with the assumption of linearity and fast dynamics.
Indeed, in such case the controlled variable is proportional
to the real valve position. Later, that disadvantage was
addressed (Yamashita, 2006b) by developing a new index
for systems with slower dynamics, namely level control
loops, based on the detection of a two-peak distribution in
the signal. However, this approach tends to produce false
positive stiction detection, which undermines the method
credibility.

The present work develops a new approach to detect valve
stiction in level control loops that is based on the prepro-
cessing of the variable profiles prior to the application of
the pattern recognition of Yamashita (2006b).
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2. YAMASHITA’S METHOD

Yamashita’s method is designed for control loops with
pneumatic actuators. The algorithm is based on the quali-
tative description of the changes suffered by the signals to
and from the valve and showed excellent performance in
the detection (Yamashita, 2006a).

Yamashita’s method describes the typical patterns in the
graphical representation of the real valve position versus
the controller output (x-u phase plot) associated with
the stem movement. Fig. 2 shows those idealized typical
patterns of a sticky valve.

Fig. 2. Typical patterns of a sticky valve.

The qualitative changes of a signal may be represented
using a sequence composed by the symbolic values I, S, D
meaning increasing, steady and decreasing, respectively,
and represented in Fig. 3 (top). The identification of the

Fig. 3. Symbols used to represent a signal (top) and typical
qualitative shapes found in sticky valves (bottom).

symbols is based on the time derivatives of the signals for
each sampling point. For instance, at a given sampling
point where the signal u increases while the signal y is
steady, the symbolic representation is IS. For detecting
stiction, Yamashita’s method uses two main indexes: ρ1

and ρ3. The index ρ1 counts the periods of sticky move-
ments by finding IS and DS shapes in the phase plot. The
index ρ3 takes into account the fact that some fragments
of the stiction patterns may be represented by several
sequences of two shapes (IS II, DS DD, . . . as shown
in Fig. 3 (bottom)). Those indexes are calculated by

ρ1 =
τIS + τDS

τtotal − τSS
, (1)

ρ3 =ρ1 −
τIS DD + τIS DI + τIS SD + τIS ID + τIS DS

τtotal − τSS

+
τDS DI + τDS SI + τDS ID + τDS II + τDS IS

τtotal − τSS
, (2)

where τtotal is the width of the time window and τp is
the time periods for pattern p (with p = IS, IS DD, . . . ).
Varying between 0 and 1, these indexes get higher if the
valve has severe stiction. The authors inferred that the
loop is likely to have valve stiction if the index values are
greater than 0.25.

Later, Yamashita (2006b) developed a new index for sys-
tems with slower dynamics based on the detection of a two-
peak distribution in the signal . It is based on the idea that
the distribution of the difference between consecutive level
measurements contains two separate peaks. To monitor
valve stiction, the author uses the excess kurtosis statis-
tical index to verify the distribution peaks. The excess
kurtosis is defined as

γ =
1

n

n∑
i=1

(∆yi − µ∆y)4

σ4
∆y

− 3 , (3)

where ∆y is the differential of y, µ∆y and σ∆y are the mean
and the standard deviation of ∆y, and n is the number of
observations of ∆y. A loop with stiction will present a two
peaked distribution which means a negative large value of
excess kurtosis.

3. PROPOSED APPROACH

The amount of the liquid stored in a vessel may be found
by measuring the level of the liquid, y. The dynamics
of a container filled with liquid is defined through the
mass balance for constant density, ρ, and constant cross-
sectional area, A, of the container as

ρ A
dy

dt
= Fin − Fout , (4)

where Fin and Fout are the input and output mass flow
rates, respectively. Considering linear installed flow char-
acteristic F = a x, the balance shows that the valve
position is directly proportional to the time variation of
the vessel level, that is,

dy

dt
∝ x . (5)

As mentioned above, Yamashita’s method performs well
in flow rate control loops because it assumes that the
controlled variable y is almost proportional to the real
valve position x. However, such assumption is not valid
for level loops and Yamashita’s method fails because the
dynamic patters are different from those expected in flow
control loops.

The rationale behind the present approach consists in
applying a transformation function to the data to obtain a
direct relation to the real valve position and only then ap-
ply the well-known Yamashita’s method. Different trans-
formation is required for self-regulating and integrating
processes. In the later, which is the subject of this work,
the transformation function f(y) is defined by (5) using
the finite difference approximation

f(y) =
y(t+ 1)− y(t)

∆t
, (6)

where ∆t is the sampling time.

Fig. 4 shows the real valve position x (first row) and
the controlled variable y (second row) from a simulated
level control loop containing a healthy valve (left column)
and a sticky valve (right column). The application of the
transformation function f(y) to the level data is also drawn
in the same figure (third row) showing how similar the
transformed signal becomes to the real valve position for
both cases.

Although this extension is only applicable to level control
loops data, it merely uses operational data easily available
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Fig. 4. Real valve position x, controlled variable y and
transformation function f(y) applied to the level for
no stiction and stiction cases.

in plants (the controller output u and the controlled
variable y) and requires no parameter tuning.

4. APPLICATION TO A SIMULATED SYSTEM

This section presents an evaluation of the proposed ap-
proach using simulated data sets generated by an Ham-
merstein Model which is frequently used to model the
stiction phenomenon. The Hammerstein Model consists of
a non-linear element in series with a linear dynamic part.
In the present context, the non-linear element represents
the sticky valve while the linear part models the process
dynamics. The present work uses the Choudhury Model to
model stiction and the state-space model

ẏ(t) = a y(t) + b x(t) , (7)

where a and b are state-space model constants, to model
the process dynamics.

In order to collect the experimental data, a plant simula-
tion was carried out using the defined Hammerstein Model
and the control algorithm

u(t) = u(t− 1) + kC e(t) +
1

τI

∫ t

0

e(t) dt+ τD ė(t) , (8)

where e(t) is the error signal, kC the proportional gain,
τI the integral time (or reset time), and τD the derivative
time. Model parameters of Choudhury et al. (2005) were
used to generate data of a level control loop: a = 0 min, b =
1 m/%, kC = 0.4 %/m, τI = 0.2 min−1, and τD = 0 min.
The Choudhury Model parameters (S, J) were defined as:
(0, 0)% for no stiction, (3, 0)% for pure deadband, (3, 1.5)%
for stiction with undershoot, and (3, 3)% for stiction with
no-offset.

Fig. 5 shows the collected data in a situation of regulatory
control.

It is composed by two parts: part (a) exhibits u and x
signals while part (b) displays u and y signals. Each of
these parts (a) and (b) is constituted by two columns
showing the signals time trends at the left-hand and

the corresponding phase plots at the right-hand. It is
noteworthy that only u and y data are usually available
from plants.

The first row shows a healthy valve (no stiction) where
the real valve position x follows the input u. The second
row exemplifies the pure deadband case. The third and
forth rows represent cases of stiction with undershoot and
with offset, respectively. When there is stiction in a control
loop, its behavior deteriorates giving rise to unwanted limit
cycles in the real valve position x and, consequently, in
the controlled variable y. The third, forth and fifth rows
of Fig. 5a and 5b clearly exhibit these cycles. The second
row evidences that an integrator produces limit cycles even
in the presence of pure deadband.

The approach developed in the present work was applied
to the generated closed-loop data. The transformation
function f(y) was calculated using (6) for the level data y.
Then, Yamashita’s method was applied to the variable u
and to the transformed signal f(y). Table 1 presents the
numerical results for all the data sets, under the reference
“New Approach”.

The expected evaluation for detection of stiction is pointed
out in the second column.

With comparison purposes, two other techniques were ap-
plied to the same data sets. Yamashita’s original method
was applied using variable u and the controlled variable
y. The study was complemented with the results of the
version of Yamashita’s method for slower dynamics (Ya-
mashita, 2006b). The later was applied using just the
controlled variable y. The results of these two techniques
are also shown in Table 1.

The performance evaluation of the methods on the simu-
lated noise free closed-loop data (shown in Fig. 5) reveals
that Yamashita’s method produces two wrong detections
in the cases of deadband and stiction with undershoot
whereas Yamashita’s index for slower dynamics detects
correctly the stiction phenomenon for the four studied
cases. The results of the new approach proposed in this
work are also correct and consistent for all the cases.

It is worth emphasising that such results were obtained
for noise-free simulated data, which is uncommon in real
industrial practice.

5. INFLUENCE OF NOISE IN THE DETECTION

The presence of noise in industrial data greatly impacts the
plant performance analysis as it may obfuscate relevant
information and, consequently, affect the algorithms. In
this section, the influence of noise on the performance of
the proposed stiction detection approach as well as on the
performance of the other two techniques is studied. At
first, the performance of the three methods was scrutinized
by analysing how they handled sets of simulated data adul-
terated by noise. Moreover, different intensities of noise
were studied. Finally, the three methods were compared
when dealing with industrial data.

The dataset undergoes filter and downsampling as fol-
lows. The generated dataset is subdivided in 10 datapoint
windows and a straight line is fitted within each of the
intervals using the least-square criterion. The obtained
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(b) u and y signals.

Fig. 5. Closed-loop response of a level control loop obtained by simulation using the Choudhury Model.

Table 1. Stiction detection results for free-noise closed-loop data of the level control.

Yamashita’s index
True Yamashita’s Method for slower dynamics New Approach

Case Eval. ρ1 ρ3 Eval. γ Eval. ρ1 ρ3 Eval.

No stiction × 0.22 0.22 × 48.87 × 0.05 0.05 ×
Pure deadband X 0.20 0.20 × -1.80 X 0.48 0.48 X
Stiction undershoot X 0.02 0.02 × -1.97 X 0.96 0.93 X
Stiction no-offset X 0.27 0.25 X -1.99 X 0.95 0.90 X

function is used to calculate the value at the beginning
of the interval.

5.1 Using Simulated Data

Noisy closed-loop data was generated with the parameters
mentioned above and with several degrees of noise n
added to the controlled variable. The PID controller (8)
parameters are kC = 0.2 % m−1, τI = 0.2 min−1, and
τD = 0 min. The results of the detection methods are
presented in Table 2 where the characterization of the
added noise is also explicitly defined.

The presence and intensity of noise degrades the perfor-
mance of Yamashita’s original method and, especially, of
Yamashita’s index for slower dynamics. In the presence
of noise, both methods give false positives and the sec-
ond method additionally gives false negatives when the
noise is more intense. In opposition, the proposed method
produced the expected diagnosis results for all the cases
highlighting its capacity to detect stiction even in noisy
environments.

The trends of the indexes ρ1 and ρ3 (Table 2) are repre-
sented in Figures 6a and 6b for the cases of no stiction,
pure deadband, and stiction with undershoot, and no-
offset.

Additionally, the indexes obtained for the closed-loop data
sets without noise are also illustrated.

It is possible to observe that the values of the indexes
obtained from the no-stiction data are clearly in the no
stiction zone (0 ≤ ρi ≤ 0.25 ). The pure deadband renders
intermediate values (ρi ∼ 0.5). The case of stiction with
undershoot obtains higher values for ρi than the other
two stiction cases, probably justified by the larger jump
component in these two cases (J ≥ S). In the presence
of noise mitigated with the use of filtering, the indexes
maintain correct trends in all the cases, even though
an evident influence of the noise may be observed. For
instance, for the no-stiction case, ρ1 is very close to 0.25
and almost results in a false positive. In comparison, ρ3

copes better with the presence of noise and achieves a
bigger distance from the limit value. In the pure deadband
case, ρi values experienced a slight decrease. The most
significant change was observed in the stiction cases where
the index values were radically reduced to values near the
ones obtained by the pure deadband case. Such behavior
may be attributed to the fact that the jump component
of stiction is hidden by the noise as it has fast dynamics
and amplitude compared to the stick component and the
process dynamics.

Although the present approach is affected by the presence
of noise, it showed adequate performance after a simple
data filtering.

5.2 Using Industrial Data

The new approach was also applied to three industrial
data sets collected by Jelali and Huang (Jelali and Huang,
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Table 2. Influence of noise in stiction detection by the three compared methods.

n1 ∼ N (0, 0.12) n2 ∼ N (0, 0.22) n3 ∼ N (0, 0.32) n4 ∼ N (0, 0.42) n5 ∼ N (0, 0.52)

Case Indexes Eval. Indexes Eval. Indexes Eval. Indexes Eval. Indexes Eval.

Yamashita’s Method ρ1 ρ3 ρ1 ρ3 ρ1 ρ3 ρ1 ρ3 ρ1 ρ3

No stiction 0.41 0.22 X 0.41 0.22 X 0.41 0.22 X 0.41 0.22 X 0.41 0.22 X
Pure deadband 0.41 0.29 X 0.39 0.25 X 0.43 0.27 X 0.43 0.26 X 0.42 0.26 X
Stiction undershoot 0.40 0.25 X 0.41 0.24 X 0.42 0.25 X 0.40 0.24 X 0.42 0.26 X
Stiction no-offset 0.37 0.21 X 0.41 0.25 X 0.40 0.23 X 0.42 0.26 X 0.39 0.23 X

Y. Slower Dynamics γ γ γ γ γ

No stiction -0.07 X -0.07 X -0.07 X -0.07 X -0.07 X
Pure deadband -0.91 X -0.01 X -0.04 X -0.08 X 0.08 ×
Stiction undershoot -0.70 X -0.09 X -0.12 X -0.05 X 0.15 ×
Stiction no-offset -1.13 X -0.04 X -0.12 X -0.12 X -0.04 X

New Approach ρ1 ρ3 ρ1 ρ3 ρ1 ρ3 ρ1 ρ3 ρ1 ρ3

No stiction 0.23 0.16 × 0.23 0.16 × 0.23 0.16 × 0.23 0.16 × 0.23 0.16 ×
Pure deadband 0.39 0.39 X 0.42 0.35 X 0.47 0.43 X 0.41 0.38 X 0.39 0.36 X
Stiction undershoot 0.42 0.38 X 0.46 0.42 X 0.44 0.39 X 0.38 0.31 X 0.43 0.39 X
Stiction no-offset 0.58 0.56 X 0.46 0.41 X 0.37 0.32 X 0.37 0.34 X 0.37 0.31 X

2013). The first data set is identified by CHEM4 in Jelali’s
database and is characterized by containing a controller
with tuning problems. The second data set, identified
by CHEM27, corresponds to a control loop containing
valve stiction. Finally, the third data set is identified by
CHEM73 and corresponds to a control loop performing
well (the root cause of the oscillation is an external
disturbance).

Table 3 presents the results obtained by the three methods.

The first case (CHEM4) is correctly undetected by Ya-
mashita’s original method, but Yamashita’s index for
slower dynamics produces a false positive. As for the case
CHEM26, both methods fail in detecting the existence
of stiction. In what concerns the case CHEM73, the first
method fails while the second indicates a correct negative
result. These results show that these two methods don’t
consistently detect the presence/absence of stiction. How-
ever, the new approach was able to diagnose all the cases
under consideration.

6. CONCLUSION

A new method based on the pattern recognition approach
of Yamashita was proposed in the present work in order
to detect stiction in level control loops. Using simulated
data, the new method performance was compared to two
Yamashita methods and showed superior performance.
The influence of the noise on stiction detection of the
pattern based algorithms was carried out using both noisy
simulated data and industrial data. Although the stiction
phenomenon gets obfuscated by the noise, correct stiction
diagnosis is possible with data filtering. The proposed
method may be further extended to auto regulatory pro-
cesses using adequate data transformation, such as the
fitting of linear dynamic models.
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