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Abstract: Obtaining reliable models from experimental data is a point of deep interest in all areas of 

research. Since the quality of the model depends on the number of selected variables, it is important to 

develop methods that identify the best ones. This work proposes a method of variable selection based on 

the Ant Colony Optimization (ACO) algorithm. Using data from a Saccharomyces cerevisiae 

fermentation, several criteria for trail update and model comparison were implemented and the obtained 

models were compared. The use of the length of the confidence interval produced the best results, finding 

the optimal model more frequently. 
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1. INTRODUCTION 

In order to achieve production increment, one of the 

alternatives is to invest in optimization techniques. This often 

means investment in new or better control methods, which is 

linked to two important tasks: obtaining a good model for the 

variable of interest and monitoring the process (Yamuna & 

Ramachandra, 1999).  

Modelling consists on finding a causal relationship between 

variables. Regression analysis, combined with statistical 

techniques to quantify the confidence of the model, appears 

as the main tool used for this purpose, (Sykes, 1993). Among 

the different forms of regression, linear is certainly the most 

widely used. In this context, techniques like Partial Least 

Squares (PLS), Principal Component Analysis (PCA) and 

Principal Component Regression (PCR) appear as the 

primary regression methods, useful in the quantitative 

analysis of data (Geladi et al., 2004). 

The quality of the model depends not only on which variables 

are used in the regression, but on how many. A small subset 

of predictor variables is often preferable against using all 

available data, because it reduces costs and time spent in the 

measurements, tends to present a more simple physical 

interpretation, and, in the case of multiple linear regression 

(MLR), reduces the uncertainty of prediction, since this 

uncertainty increases with the ratio between the number of 

explanatory variables and the number of samples used in the 

calibration (Brown et al., 2009). It is important to notice that, 

in general, each variable has different difficulty levels and 

cost involved in measuring them, and this aspect must be 

taken into account during variable selection.  

Process monitoring, however, is highly dependent on the type 

and quality of sensors used. In recent years, optical sensors 

have become increasingly important in biotechnological 

applications. Optical sensors can be interfaced through glass 

window in reactors. Therefore, it is an in-situ, non-invasive 

method that gives real-time measurements (Hantelmann et 

al., 2006, Scheper et al., 1999). Several types of spectroscopy 

are possible through this technique, fact that makes models 

capable of dealing with spectral data so attractive. In this 

context, fluorescence sensors have being investigated for the 

determination of biomass and viable cells, bioreactor 

characterization, metabolic studies (transition aerobic/ 

anaerobic) and especially the monitoring of bioprocesses 

(Solle et al., 2003, Hitzmann et al., 1998). The development 

of a method capable of working with spectral data in order to 

identify spectral regions related to response variable can 

enable the development of optical sensors tailored to specific 

process, which would improve its control, making it more 

efficient and economic. 

In the case of variable selection, a fairly common approach is 

the combination of suitable criteria that evaluate the quality 

of a subset of predictors combined with an algorithm that 

optimizes these criteria (Brown et al., 2009). This approach is 

used in this work, applying the Ant Colony Optimization 

(ACO) algorithm as optimization method. Due to the 

advantages of spectral data, this work addresses the use of 

ACO for selecting components from spectroscopic analyses. 

When applied for different kind of data, the algorithm must 

take into account the difficulty level and cost involved in 

each variable measurement when selecting them. 

Ant Colony Optimization algorithm is based on the 

hypotetical collective behavior of ants when searching for 

food sources. During this search, the ants secrete pheromones 

to mark their path, but they evaporate over time. In nature, 

ants that travel the shortest path return to the nest more 

quickly, so that the path traveled by these individuals has a 
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higher concentration of pheromone. This trail acts as a decoy 

for other ants and, in time, all individuals of the colony tend 

to go trough this optimal (shortest) way (Allegrini & Olivieri 

2011).  

Dorigo and Gambardela (1997) developed the first version of 

ACO seeking solution for the Traveling Salesman problem, a 

problem of combinatorial optimization search in the space of 

permutations (Ranzan, 2014). Currently, several studies have 

been published regarding the application of the ACO method 

for screening variables, among which can be mentioned the 

work of Ranzan (2014), Allegrini and Olivieri (2011), 

Hemmateenejad et al. (2011), Mullen et al. (2009) and Socha 

et al. (2008).  

Ranzan et al. (2014) applied the Sum of Squares Errors 

(SSE) as a criterion for updating the pheromone trail and to 

compare models. The goal was to predict the content of 

protein in different brands of flour based on NIR spectral 

data. The results showed the use of ACO as a filtering tool 

made possible the selection of important spectral regions, 

increasing the coefficient of determination of generated 

models by 60% compared to other methods which used the 

full spectrum, such as PCA and PCR. 

Other optimization algorithms have also been used in 

variable selection, and the two stochastic optimization 

algorithms most known and applied in the field of 

chemometrics are simulated annealing and genetic algorithm 

(Cerny, 1985, Kirkpatrick et al., 1983). Moreover, other 

methods, such as tabu search, artificial colonies of bees, 

particles swarm and harmonic search can also be used for this 

application (Ghasemi et al., 2012, Mello & Pinto, 2008). 

2. STATISTIC METRICS 

Establishing appropriate criteria to evaluate the generated 

models is also crucial in order to obtain the optimal result. 

Among the parameters useful in this evaluation, the most 

used are the root mean square error of calibration (RMSEC) 

and prediction (RMSEP), which examines the fit of the 

model to the set of calibration and testing data evaluating the 

reproducibility of the data, and the coefficient of 

determination R², which is a measure of the proportion of 

variability explained by the fitted model.  

This coefficient is used quite frequently due to its simplicity, 

but there are some disadvantages in its interpretation, such as 

the increase of its value by the addition of terms in the model. 

The adjusted coefficient of determination (R a
 2

) is a variation 

that can be used to solve these problems, since it takes into 

account the number of degrees of freedom associated with the 

sum of squared error (SSE) and the sum of total squares 

(SST) (Walpole et al., 2012).  

Also, the use of hypothesis tests is very useful when 

analyzing models. The t-Student test (or t-test), for example, 

allows to test hypotheses about the coefficients and build 

their confidence intervals (Wilcox, 2012). Basically, the 

hypotheses being tested are: 

                          (1) 

where    is a given model parameter j and j=0,1,…,k.   

The rejection or not of the hypothesis   , called null 

hypothesis, depends on the level of significance chosen, on 

the parameter estimator and its variance and on the standard 

deviation of errors. If the null hypothesis is not rejected, the 

variable associated with    explains an insignificant amount 

of change in   in the presence of the others regressors, and 

therefore can be removed from the model. 

Even considering the estimators as unbiased, they are 

unlikely to estimate the parameters    accurately. Thus, it is 

preferable to determine an interval where it is possible to 

assume, with a given confidence, that it contains the true 

value of parameter   , called the confidence interval. The 

smaller the confidence interval, there is less uncertainty in the 

model parameter (Walpole et al., 2012). 

The use of such tests has the advantage of evaluate the 

contribution of each parameter separately, rather the 

adequacy of the model as a whole. Optimization methods 

can, therefore, use this information in combination with 

statistical models to identify and select the most relevant 

variables.  

Another way to assess the contribution of each predictor is 

making use of F-tests to compare subsets of variables against 

the full model. The higher the F value, the worse the 

submodel is when compared to the full model. This aspect 

will be better discussed in the next section.  

3. ACO MODIFICATIONS 

The version of ACO implemented in this study is a 

modification of the one used by Ranzan et al., (2014), which 

is based on pheromone trail evolution during spectral group 

scanning. Initially, all spectral components are marked with 

the same pheromone concentration. The ACO routine selects 

random spectral components to compose a group that is 

evaluated using the objective function for process variable 

prediction. Based on objective function error, the pheromone 

concentration, associated with each spectral component at the 

evaluated spectral group, is updated. For the subsequent 

spectral group selection, the random selection chooses 

spectral components associating the same random trigger and 

a cumulative density of pheromone for the full range of 

spectral elements. This association brings into evidence 

significant elements inside the spectral range, and, after few 

iterative runs, a pheromone profile is established, and the 

regions with high pheromone density highlight the significant 

excitation/emission pairs for process variable prediction.  

A schematic summary of steps within ACO implementation 

used in this work can be seen in Fig. 1. See Ranzan et al. 

(2014) for more detail about this algorithm 
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Fig. 1. Schematic summary of steps within ACO 

implementation. 

3.1 Pheromone trail update 

An important question is the update of pheromone trail of 

each spectrum component based on its performance within 

the same model. The original algorithm, suggested by Ranzan 

et al. (2014), uses SSE both as pheromone trail update and 

model selection criterion. As SSE is a property of the model 

as a whole, its use may erroneously increase the pheromone 

concentration of a spectrum component present in a good 

model that has not contributed significantly to the response. 

Therefore, besides the use of an indicator of the model 

quality, such as SSE, it is important to introduce in the 

algorithm metrics capable of assessing the importance of 

each variable within the model. In order to study this aspect, 

this work proposes the implementation of 3 metrics for the 

model (besides SSE) and 3 metrics for model component 

analysis as criterion for trail update.  

The global metrics chosen are: the adjusted coefficient of 

determination (Ra
2
), due to reasons discussed in section 2; the 

logarithm of  Ra
2
, in order to enhance the region of interest, 

i.e., values close to one; the absolute value of a modified R
2
, 

called RR (Silveira, 2012), as a way of enhancing the 

difference in the correlation, given by (2): 

        
 

      
  (2) 

 

 

For all three above, the increment on the pheromone trail at 

each iteration is exactly the same for all components in the 

selected model. The pheromone concentration is directly 

proportional to the Ra
2

 and the RR, and inversely proportional 

to the SSE and the logarithm of  Ra
2
. 

The individual metrics chosen were: the t-test of hypothesis, 

directly associating the absolute t-value to the spectral 

component; the length of the confidence interval of the 

coefficient associated with each variable, which can be used 

as criterion once the variables are staggered; the F-test of 

hypothesis, associating the F-value of a submodel to the 

spectral component absent in it.  

In other words, the F –test method works as follows: first, the 

algorithm chooses   variables among the 150 available and 

generates a model. Then, one of the components is withdrawn 

from the original group and another model, with size 

         , is  constructed. The submodel is then 

compared to the full model through the F-test. The F value is 

associated with the variable not included in the subgroup. 

Therefore, variables that are important for the final model 

will have a higher F statistic, since not using it results in a 

model worse than the full one. These variables with higher F-

value will then receive a higher increment in the pheromone 

trail.  

At each iteration, the 3 metrics above lead to different 

increment in the pheromone trail for each spectral 

component. This increment is directly proportional to the t-

value and the F-value, and inversely proportional to the 

length of the confidence interval. 

3.2 Criteria for model selection 

The second modification is regarding the comparison of 

generated models. In this aspect, besides the SSE, were also 

considered different metrics in order to find the criterion 

which emphasizes the best model the most. 

 The criteria chosen are: the ratio between SSE and Ra
2
; the 

product of the error and the logarithm of Ra
2
; the RR 

coefficient.  

Table 2 summarizes all the criteria implemented and presents 

the legend used for each combination of criteria. Each pair of 

criteria (C1, C2), being C1 the trail update criterion and C2 

the model selection criterion, is shown as a number. This will 

favor the interpretation of the results along this paper.  

Table 1. Summary of all criteria implemented in ACO 

algorithm for updating the pheromone trail (C1) and 

comparing/selecting models (C2).  

 

The different criteria introduced in Table 1 will be tested 

using the case study discussed in the next section. It is 

important to notice that case number 1 (using SSE both as C1 

and C2) is the one implemented by Ranzan et al. (2014), 

being used only as reference for the results produced in this 

work. 
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4. CASE STUDY 

4.1 Two-dimensional fluorescence spectroscopy 

Fluorescence spectroscopy is based on emission of 

fluorescence of fluorophores present in a sample because of 

emission / remission of low energy light. The reemitted light 

is proportional to the concentration of the fluorophore in the 

sample and has a wavelength equal to or greater than the 

excitation (Hitzmann et al., 1998, Solle et al., 2003). 

Thereby, it is based on the remission of light with spectral 

shift presented by some chemical species. Radiation with 

certain wavelengths is sent to the medium, electronically 

exciting the chemical bonds of certain molecules. When 

returning to its initial state, these components emit 

fluorescence in wavelengths of different lengths that are 

filtered by lenses or monochromators and processed by a data 

acquisition system. 

4.2 Experimental Data  

The fluorescence experimental data used in this work consists 

of two fermentative batch cultivations of glucose by 

Saccharomyces cerevisiae H620 growing in a 1.5L bioreactor 

at constant temperature and pH, 30ºC and 5.5, respectively, 

with Schatzmann medium supplementation. During 

cultivation, fluorescence spectra were collected every 6 

minutes, using a BioView fluorometer (Delta Light & Optics, 

Denmark), as described by Stärk et al. (2002). Each spectrum 

contained 150 fluorescence pairs with excitation/emission 

wavelengths: 15 filters in the region of 270 to 550 nm for 

excitation and 15 filters in the region of 310 to 590 nm for 

emission, both with a bandwidth of 20 nm, collected 

equidistantly. The spectral data is then formed by 150 pairs of 

excitation-emission wavelength, and its summary can be seen 

in Fig.2. The experimental data was segmented so that first 

batch is used only in the models calibration phase, and batch 

two is used only in the model test phase. 

There is a distinction between fluorescence pairs due to the 

fluorescence scanning method performed by the equipment. 

Since fluorescence measurements are made by varying the 

wavelengths of excitation and emission, each cell of the data 

matrix is composed by an excitation and an emission 

wavelength. However, as the phenomenon of fluorescence is 

due to the absorption and emission of energy, the emitted 

wavelength cannot have a higher energy than that used to 

excite it, thereby pairs whose fluorescence emission 

wavelength is lower than the excitation show no real 

information, only measurement noise.  

Due to this fact, the fluorescence data matrix, in the form as 

presented in Fig.2, has zero for values of fluorescence 

intensity for pairs above the main diagonal of the matrix. 

Thus, valid values of fluorescence intensity are located below 

the diagonal of the matrix (fluorescence pairs located in the 

matrix diagonal are those whose excitation wavelength is 

equal to the emission).  

 

Fig.2. Diagram showing the fluorescence pairs used to 

acquire the spectral data, as well as the number assigned to 

each pair. 

A total of 190 spectra were collected from each cultivation. 

The data obtained by BioView Spectrum Fluorometer was 

processed with MATLAB software (Ver. 5.3.0.10183 R11, 

The Mathworks, Inc., Natick, USA). Given that the efficiency 

of regression methodologies is highly associated with 

spectral data quality, it is useful to normalize the spectral 

signals prior to data analysis. This process helps in 

eliminating arbitrary offsets and multiplication factors. This 

was achieved by applying Standard Normal Variate (SNV) 

scaling to spectral data. This method essentially autoscales 

the samples, obtaining zero mean and standard deviation 

equal to 1 for each spectrum (Gemperline 2006, Wehrens 

2011). Fig 4 exemplifies one of the 190 normalized 2D 

fluorescence spectra obtained for the first and second 

fermentations. 

 

Fig. 3. Fluorescence spectra at t = 0, with standard SNV 

method of (a) fermentation 1 and (b) fermentation 2. (c) 

absolute difference in fluorescence intensity, pair-to-pair, 

between the normalized spectra. 

The comparison of the absolute difference between the 

normalized initial spectral data of both fermentation (Fig. 3c) 

confirms the similarity between the spectroscopic data of the 

reaction medium. Also, after applying PCA to verify the 

similarity of spectroscopy fluorescence data obtained from 

two cultivations, is possible to notice that both spectral data 

are similar and no pre-processing is needed to perform a 

comparison between fermentations, as presented in Fig. 4. 
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Fig. 4. Principal component 1 versus principal component 2 

for both fermentations tests. 

In order to effectively evaluate chemometric models based on 

fluorescence data, information about state variables must be 

available at the same sample range of fluorescence data. 

Since, originally, the total amount of off-line data is 

considerably smaller than fluorescence sampling data, it was 

used a dynamic model of the fermentative system, suggested 

by Ranzan (2014), to interpolate the state variables, obtaining 

off-line data at the same sampling range as fluorescence data.  

3. RESULTS AND DISCUSSION 

In order to assess the contribution of each modification to the 

final result, 100 (one hundred) evaluations for each 

combination were conducted. Each evaluation searched for 

the best linear model with 3 independent variables (k = 3), 

since a previous PCA analysis indicated the first 3 principal 

components describe about 98% of variability. Each 

evaluation used 50 cycles of 100 ants in the algorithm and all 

models involved were obtained by least squares method. 

Since there are 7 possible trail update criteria and 4 model 

selection criteria, there are 28 possible combinations to be 

compared in order to find the best method. 

For each evaluation, the RMSEC and the selected variables 

were computed. Also, an exhaustive search was conducted 

and the 3 components that generated the best model were 

determinate, as well as the minimum error possible, equal to 

0.19 g/L. This information is valuable when quantifying the 

quality of a model and allows the evaluation of each criterion. 

Once the minimum error possible was found through 

exhaustive search, a good way of comparing the 28 methods 

is to analyze how many times among 100 evaluations each 

one found the optimal model. The result is shown in Fig. 5: 

 

Fig. 5. Number of times each criteria combination (cf. Table 

1) found the optimal result, among 100 evaluations. 

As can be seen in Fig. 5, the criteria pairs 17, 18, 19, 20 

showed the best results, finding the optimal model more 

frequently than the other cases. Of all 93 evaluations that 

found the optimal solution (among the 28 conditions), 45% 

belong to this group. This four pairs have the length of the 

confidence interval (LCI) as the criterion for trail update. 

Comparing the pair 17 with the pair 1 taken from literature 

(both use SSE as C2) it is possible to see the contribution of 

the modification proposed in this work, once the optimal 

model was found 8 times more frequently.  

The use of different criteria for model selection (C2), 

however, does not seem to be significant for the final result.  

This is more evident when considering the group using SSE 

as C1 (numbers 1, 2, 3, 4):  the use of 4 different C2 led to 

the same result. Since the parameters SSE, R2, Ra2 and RR 

are all mathematical related and evaluate, in different ways, 

the aspect aspects of the model, it makes sense the 4 possible 

criteria for model selections led to similar results. 

Th LCI, t-test and F-test parameters has the advantage of 

providing information about the each component of the 

model, which results in a better trail update. Therefore, the 

methods using this kind of analyses as C1 found the optimal 

model more frequently. The LCI group was responsible for 

45% of all evaluations that found the minimal error, followed 

by the F-test and the t-test group, responsible for 13% and 

12%, respectively. 

The methods 13-16 also must be highlighted, because 

although they use the RR parameter as C1, they found the 

optimal the same amount of times than the F-test methods. In 

this case, the enhancement this parameter provides in 

differences between values of R
2
 seem to be great enough to 

compensate the lack of information about  the components, 

resulting in a good trail update as well. 

In order to evaluate the quality of each method, it is also 

convenient to define how far from the minimal error was the 

majority of evaluations. Fig. 6 shows the error threshold for 

90% of the evaluations of each method. For example, using 

the criteria pair number 1, 90% of all evaluations found an 

error lower than 0.215 g/L. The goal is to make this threshold 

the smallest possible, in a way that 90% or more of the 

evaluations find a model much closer to the optimal one. 

 

 Fig. 6. Value of RMSEC capable of comprising 90% of 

errors found in all 100 evaluations (i.e., the 90
o
 percentile), 

for each criteria combination. 
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According to Fig. 6, the best case in terms of reproducibility 

is pair 21, which found in 90% of evaluations equal or lower 

than approximately 0.207 g/L, an error 10% higher than the 

minimal RMSEC found by exhaustive search. However, the 

value found for methods 17-20 is very close to the best case, 

showing great results also in terms of reproducibility. 

It is also important to evaluate the prediction of the models 

obtained.  Since the cases using the length of confidence 

interval as criterion for trail update found the optimal more 

frequently and presented good reproducibility, this will be the 

ones used as reference. For this purpose, 2 models were 

plotted against the experimental data of biomass 

concentration in fermentation 2 (test group): 

 Model containing the spectral pairs [33, 50, 57], 

which gave the optimal model in calibration phase; 

 Model containing the spectral pairs [33, 49, 50], 

which were the most frequent spectral components 

chosen by the ACO algorithm using the LCI (criteria 

17 to 20) in calibration phase. 

The numbers inside brackets refer to one pair emission-

excitation used in the fluorescence spectroscopy. To see 

which wavelengths are used in these pairs go to Fig.4.  

 

Fig. 7. Comparison between measured data (blue), best model 

found in calibration phase (green) and most frequent model 

chosen by ACO using LCI in calibration phase (red). 

As shown in Fig. 7, the most frequent model found is very 

similar to the optimal one. Both optimal and most frequent 

models can predict biomass concentration with a small 

RMSEP: 0.42 and 0.54 g.l
-1

, respectively. Although the 

model is not exactly the same, two of them (33 and 50) are 

identical. The difference between the models prediction is, 

therefore, due to the third components (57 for the first model 

and 49 for the second one), which are in different spectral 

regions, as can be verified in Fig.2. The algorithm 

implemented used only linear models, but the use of 

nonlinear models could improve significantly the application 

of this method in variable inference. 

4. CONCLUSIONS 

The Ant Colony Optimization, as others optimization 

methods, is an important tool for variable selection. However, 

many variations of this method can be found in literature. 

This work proposed the alteration of two steps within ACO 

implementation: the trail update and the model selection. The 

modifications of the second step, however, produced similar 

results.  

In general, the use of LCI for trail update group showed the 

best optimization results, being responsible for 45% of all the 

times the optimum was found. Almost all models obtained by 

this method had a RMSEC smaller than 0.207 g/L, a value 

only 10% higher than the minimal error. Also, the most 

frequent model found by this method produced very good 

inference result, similar to the optimal one, especially when 

looking at the components composing both models: 2 of the 3 

selected components are the same. 

This result is in some way expected, once the length of the 

confidence interval gives information about each variable 

composing the model, instead of the full model. The t-test 

and the F-test, which also provides this kind of information, 

produced good results as well, although worse than those 

from LCI group. This fact is likely specific to the 

experimental data used and could be different if data of 

different spectroscopy or complexity are used. 
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