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Abstract: The new Sequential Multi-block PLS algorithm is applied for establishing multivariate
specification regions jointly on multiple types of raw materials. SMB-PLS distinguishes between process
variations associated with raw materials from other orthogonal sources of variations such as operating
policies. Combinations of raw material properties not compensated by the control schemes are clearly
identified. Multivariate specifications are required for these combinations to avoid negative impact on
process performance and product quality. The method was applied to an industrial aluminum smelter.
Bad combinations of raw material properties were identified and validated against process knowledge.
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1. INTRODUCTION

The properties of raw materials entering a production process
influence its performance and final product quality. Thus, it is
essential to develop specification regions for the incoming
materials to ensure that the desired product quality or process
performance can be achieved. Establishing specification
regions has economic benefits for both materials suppliers
and producers. Suppliers who meet the specification regions
may increase their market share. Incoming materials that
meet the specifications ensure the manufacturers of a smooth
operation and desired product properties. In addition,
manufacturers may be able to choose lower cost materials if
those have the right combinations of properties.

Materials quality is a multivariate property where the right
balance of properties is required to meet the specifications.
Thus, multivariate specification regions are required to be set.
Multivariate latent variables methods such as Principal
Component Analysis (PCA), Partial Least Squares (PLS)
regression (Eriksson et al., 2001) are well established data-
driven multivariate methods for process analysis and
monitoring in different industries (Kourti, 2005), and could
be used to extract those combinations of raw material
properties that have a negative impact on product quality (to
be avoided).

De Smet (1993) proposed a PLS-based approach for defining
multivariate specifications for raw materials properties
assuming that product quality solely depend upon the
incoming materials. However, as argued by Duchesne and
MacGregor (2004), specification regions must account for
raw materials and process variations because of the
interaction between them. For instance, wider specs regions
could be used if an effective process control system
attenuating most raw material variations is implemented. In
their approach, the relationships between the raw material
properties, the process conditions and product quality were
modelled using Westerhuis’s Multi-block PLS (MB-PLS)
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algorithm (Westerhuis et al., 1998), and the specification
region was defined through a mapping between the product
property space, accounting for the impact of process
variations, and that of raw materials. The method was shown
to be effective for defining specification regions for a single
type of raw materials but did not address the case where
multiple types of materials are used and synergy exists
between them. In addition, MB-PLS does not clearly identify
feedforward and/or feedback control actions used to
compensate raw material variations, due to the way it handles
the correlations between the blocks.

The Sequential MB-PLS algorithm (SMB-PLS) proposed
recently (Lauzon-Gauthier and Duchesne, 2014) is a better
alternative for establishing multivariate specification regions
for raw materials because it explicitly takes into account the
feedforward/feedback control actions taken to compensate for
raw material variations. This allows establishing
specifications for those combinations of properties that are
not compensated for by the currently implemented process
control system. The SMB-PLS method imposes a sequential
pathway between the regressor blocks according to the
process flowsheet (i.e. prior knowledge), and then uses
orthogonalization to separate correlated information between
the blocks from orthogonal variations (i.e. new information).
Hence, variations in process variables that are correlated with
raw material properties (e.g. control actions) are extracted in
the same latent variables as opposed to MB-PLS which tends
to spread correlated information between blocks into several
latent variables (Lauzon-Gauthier and Duchesne, 2014). The
algorithm also takes into account the synergy between the
properties of different types of raw materials when more than
one type is required for making the final product.

This work presents a preliminary application of SMB-PLS
for establishing multivariate specification regions on multiple
raw materials. An industrial case study is presented
(aluminium smelting plant) in which two incoming materials
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are involved. The multi-block set of data is first modelled
using SMB-PLS and the relationships between the raw
material blocks and the process block are interpreted. The
combinations of incoming materials properties that are not
compensated by the actual control system and result in lower
performance are then identified. Finally, boundaries are
established in the latent variable space of the SMB-PLS
model to help avoid those materials at the purchasing stage.
The proposed approach is consistent with the Quality by
Design (QbD) initiative in the pharmaceutical industry in the
sense that it could allow establishing the so-called design
space for the properties of multiple types of raw materials
and process conditions jointly.

Instead of establishing specification regions, one may be in a
situation where it desired to select in an optimal way the raw
materials, from those available on the market, their ratios as
well as the process conditions under which they should be
processed to obtain the desired quality. In that case, the
reader is referred to the work of Muteki and MacGregor
(2008).

2. METHODOLOGY

SMB-PLS uses the MB-PLS hierarchical structure, but
imposes the sequential pathway of the process flowsheet to
order the regressor blocks (X;), and sequentially extract
information from each of them. The model structure is given
by equations 1-12 and is shown schematically in Fig. 1. Note
that although any number of X, blocks (b=1, 2, ...,B) can be
used in SMB-PLS, the calculations are presented only for the
first block in the sequence X; (i.e. b=1 in eqs 1-12) and for
two regressor blocks (B=2) for sake of simplicity in
explaining the algorithm. Prior to using SMB-PLS, all the
data blocks are mean-centered and scaled to unit variance and
block scaling is applied to each X, blocks. Then the blocks
are ordered according to the process flowsheet with the first
block X; containing incoming raw material properties, and
process data in the second block X, (could be divided into
several blocks according to the sequence of process units but
not done here for simplicity). After initializing u with a
column of Y, the iterative algorithm starts by regressing u
onto X, to obtained the block weights wy; ' and block scores
tx1 (egs. 1,2). The subsequent block X, is then orthogonalized
with respect to tx; (eq. 3) to yield two new blocks: variations
correlated with and orthogonal to X; (X" and X,*™
respectively). The loadings and scores of the 2™ block wx, "
and tx, are obtained by regressing u onto X, (eq. 4,5). All
block scores are then combined in the super level score
matrix T (eq. 6) and a PLS model is built between Y and T to
obtain the super weights wy' and super scores tr (eqs. 7-10),
just as in MB-PLS. Up to this point, X; and all information in
the subsequent blocks that is correlated with X; is used to
explain the variations in Y. Equations 1-10 are repeated until
convergence on u. Upon convergence, the X, blocks are
deflated using the super-scores as in MB-PLS (eqgs. 11-12).
Then X, and Y are replaced respectively by E; and F and the
iterations are repeated to compute the next component. When
additional components have depleted all information in Y
related with X, the procedure is repeated for the next block
in the sequence by setting b=2 in eq. 1-12 and replacing the
Xy’s (b=2,...,B) and Y by their residuals left after modelling
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with X;. The next components now based on X,"™ will only

capture new orthogonal information not explained by X;.
Note that for the last block in the sequence (b=B), X, in this
example, a normal PLS is built between Eg and F.
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Fig. 1. Schematic of SMB-PLS algorithm for two X, blocks.
Numbers correspond to each step of the iterative algorithm.

A different number of components can be selected for each
Xp, block as opposed to MB-PLS for which the number is the
same for all blocks. The number of components is selected
similarly as for any other latent variable method using, for
instance, cross-validation and root mean square error of
prediction (RMSEP) and Q° statistics (variance of Y
explained on a prediction set). These were used in this study.

Consider that raw materials properties and process variables
are grouped in X; and X,, respectively. SMB-PLS captures
the impact of variations in raw materials properties on the
process and on Y in the first modelling step. This allows
identifying feedback/feedforward control to compensate for
raw materials properties. Establishing specifications in the
latent variables space of [Z X,*"] aims at penalizing those
combinations of raw materials properties that are not
compensated for by the current control schemes. In the
second step, X,"™ captures process variations that are
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independent from raw materials and also affect Y, e.g.
process disturbances, operating policies, etc.

Note that the pathway structure impose in the current version
of SMB-PLS is appropriate for a large number of “linear”
flowsheets, such as those found in several industries
(polymer processing, pharmaceutical, metallurgical, etc.) but
is not suitable for highly integrated chemical plants with
complex recycle structures. Modifications to the algorithm
will be explored in the future. Also, if raw materials do not
come in lots but rather continuously in pipelines, one just
needs to synchronize raw material properties with process
conditions prior to adding lags and modelling.

3. CASE STUDY: ALUMINUM SMELTING

The Hall-Heroult process (Grjotheim, 2010) is used for
commercial production of primary metal aluminum. Liquid
aluminum is produced by electrolytic reduction of aluminum
oxide (alumina) dissolved in cryolite. The reduction cells (or
pots) consist of a steel shell lined with refractory and thermal
insulation materials, cathode block and collector bars. Several
consumable carbon anodes are dipped into the electrolyte.
The alumina is consumed -electrochemically by which
aluminum is reduced on the cathode surface and oxygen is
released on the anode. A pool of liquid aluminum is formed
on top of the cathode block underneath the cryolite (bath)
layer. Oxygen reacts with carbon and CO/CO, is produced.
The overall alumina reduction reaction is as follows:

241 0

273(diss)

+3C,,, =441, +3C0,, (13)

Alumina is charged periodically into the cells to control the
alumina concentration close to the lowest bath electrical
resistivity. Molten aluminum is tapped over 24 h periods and
consumed anodes are replaced every 20-30 days.

Current efficiency (CE), energy consumption (EC) and profit
were used as performance metrics in the Y block. Current
efficiency (%) is the ratio of metal produced over 24 hours to
theoretical metal production obtained from Faraday’s law.
Energy consumption (kWh/kg) is the energy required to
produce a unit mass of aluminum. Profit ($) is the economical
profit per pot per day and is a function of CE, operating
current and voltage (more details in Tessier et al., 2012).

Data was obtained from Alcoa’s Deschambault smelter
(Quebec, Canada), operating prebaked anode technology
(AP-30). It was collected from 26 pots with similar operating
policy between September 2013 and May 2014. It is known
in the field that the properties of both raw materials, alumina
(Wang, 2009) and baked carbon anodes (Jentoftsen et al.,
2009), strongly affect reduction cell performance. Control
actions periodically implemented at the plant to counteract
negative effects cannot attenuate them completely.

Alumina was supplied by two different suppliers (binary
variables), and characterized by suppliers for particle size
distribution, chemical impurities, specific surface area, LOI,
bulk density and angle of repose (24 properties in total).
Baked anodes were characterized at the smelter for physical
and mechanical properties, chemical impurities, and air and
CO; reactivities. These anode properties were measured from
anode core samples on a weekly basis (16 properties total).
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The properties of both raw materials were collected in a
single block Z. Pot operating data are recorded for each pot
and used for process control and monitoring. It includes bath
level and temperature, excess AlF;, electric current, feeding
strategy and intervals, bath and metal composition, anode set
cycle, and voltage variations were used for this study. These
49 variables were stored in the pot block X.

Weekly averages of variables were used in the data blocks
because some variables, e.g. anode properties, are not
measured on daily basis and the variables have different
sampling or measurement frequencies. In addition, using
weekly averages helps reducing the uncertainties that exist in
the amount of metal produced within a 24 hour period which,
in turn, corrupts CE values. More details on CE measurement
uncertainties can be found in Tessier et al. (2012).

Variations in raw materials and process operation do not
show instantaneous influence on the pot performance. Hence,
a lag structure was added to the data prior to modelling in
order to account for process dynamics. A dead-time of 4
weeks was used between the anode block and Y because the
anodes are set in the pots a month after they are produced.
Then, the anode block was augmented with 4 lags of 1 week
to account for the fact that the 40 anodes populating a pot at
any given time have a different age. The anodes are replaced
every about 20-30 days (about 2/day/pot) because they are
consumed by the reaction. At a given time, the newest anode
was produced 4 weeks earlier (dead-time) while the oldest
was manufactured 4 weeks plus 20-30 days in the past.
Adding 4 lags was found adequate to cover the range of
properties of the population of anodes in a pot in a given
week. The alumina and pot blocks were also augmented with
4 lags of one week to account for dynamics. Adding more
lags did not improve the model performance. Figure 2
presents the final data arrangement.

24 48 72 96 112 128 144 160 49 98 147 196

Pot 1

Pot2
Alumina Anode Pot CE EC Pro
Pot 26
AN J
~ Y —
Z X Y

Fig. 2. Data sets with process dynamics. Colors indicate the
Z and X lag structure to account for process dynamics.

4. RESULTS AND DISCUSSION

Two components (t; and t;) were found sufficient to capture
the impact of raw material properties Z (and correlated
process data X) on Y in the 1* modelling step. Two
additional components (t; and t;) were also needed to model
the effect of orthogonal variations in the pot data X°™ on the
remaining variations in Y. Table 1 presents the cumulative
variance of the Z and X used to explain Y variations. The
first two components captured 43.3% of information in Z and
8.6% of information in X that was correlated with Z (X*™),
to explain 11.9% in Y. Components 3 and 4 explained an
additional 20% of the variations in X (i.e. X*™ block) and
21% of the variations in Y. Fig. 3 shows observed vs.
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predicted profit for calibration and validation models.
Although explaining 33% of Y seems low, the Y-residuals
showed no significant autocorrelation after 4 components
(white noise), hence there was no more structured
information to extract from Y. This is explained by the fact
that production data was used (no designed experiments) and
because control actions attenuate an important proportion of
the variance in raw material properties and other process
disturbances. Would the controllers have been turned off, a
much larger amount of variance could have been explained.
Another reason for low prediction ability of the model was
the uncertainties in CE are important. Yet, the fact that 33%
of the variance of Y is explained by the model means that
room for improvement exist, and establishing specs regions
for raw materials and better operating regions for the process
could help removing further variance. Also note that the
model performance on validation data (1/3 of the data set) is
has as good as on the training set (no over-fitting).

Table 1. Cumulative percent variance explained by the SMB-
PLS model for Z, X and Y data matrices.

Block Comp. Z X Y
Z and X" 1 3831 | 7.79 4.94
Z and X" 2 4327 | 856 | 11.89

xerth 3 4327 | 2136 | 24.64

xerth 4 43.27 28 33.23

0,7 9

Observed profit
2 2
w o
1 Il

o
£
I

0.3 -
e e e

0,3 0,4 0,5 0,6 0,7
Predicted profit

Fig. 3. Profit predicted by SMB-PLS vs. observed profit
(Solid triangles: calibration data, Crosses: validation data).

Fig. 4 compares the Y-variance explained by MB-PLS and
the new SMB-PLS algorithm. The number of components
were selected using the same criteria for both methods.
Although the results look similar there are some difference
worth discussing. MB-PLS after 4 components (obtained
from cross validation) had a higher R? for calibration model
but a lower for validation compared to SMB-PLS with 2
components for each block. This may lead to suspect a slight
over-fitting of the data with MB-PLS, likely caused by
imposing the same number of components to each block.
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Fig. 4. Variance of pot performance metrics (Y) explained by
MB-PLS and SMB-PLS on calibration and validation data.

Fig. 5 shows the relative contribution of the Z and X blocks
to each component of the MB-PLS and SMB-PLS models,
defined as the square of the super weights of a block in each
component. The figure clearly shows that MB-PLS
distributes the information captured from X almost evenly in
all components due to between block correlations. Thus
model interpretation becomes more complex. In SMB-PLS,
however, adjustments to manipulated variables in response to
raw material variations and changes in state variables caused
by raw materials are captured in the first two components as
will be shown next. The last two components capture only
information from process variables that are orthogonal to raw
materials (e.g. process disturbances, operating policies, etc.).
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Number of components

Fig. 5. Relative contributions of Z and X blocks to each
component for MB-PLS and SMB-PLS algorithms.

Figure 6 presents the ¢;-¢, latent variable space of raw
material properties and correlated process variations (Z and
X") and that of the orthogonal process block X°™ (£5-z,).
The color map indicates the predicted profit (Ypred=thT) in
scaled units. Fig. 6.a clearly shows that variations driven by
raw materials affected profit in spite of control actions since
the observations cluster from lower left to upper right of the
plot according to increasing profit. Therefore, certain
combinations of raw material properties seem associated with
lower performance. A similar observation can be made for
orthogonal process variations (Fig. 6.b). The high profit
region lies in the positive score values.

The straight line in Fig. 6.a defines the joint multivariate
specification region for both incoming raw materials (anodes
and alumina) corresponding to a given scaled profit. Lots of
raw materials projecting below the line would need to be
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avoided to help maintain a certain level of performance as
these variations cannot be compensated by the actual control
scheme. A profit value in the lower range of about -0.4 was
selected for illustration purposes. Setting the limit at higher
value would increase profit at the expense of rejecting a
wider range of materials and possibly higher purchasing costs
due to demand for higher quality materials. Hence, deciding
where to set the limit results from a compromise.

Fig. 7 provides an overlay of Z, X*" and Y loadings that will
be used to interpret the relationships between the variables
with respect to variations in alumina and anode properties
(captured by ¢; and ¢,). The variables in the same quadrant are
positively correlated and those in opposite quadrants are
negatively correlated. Among the 160 variables, only the
most important ones (i.e. VIP > 1.2) are shown in the plot.
The numbers before the variable names show the week index.
For example, 1 A is the average of variable A for the current
week for which pot performance is calculated, and 4 A is the
average of variable A measured three weeks ago.

Component plot for [Alumina+Anode] block
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Fig. 6. Predicted profit projected on (a) Z block scores and
(b) X"™ block scores.

Anode air permeability is clearly one of the main factors that
cannot be compensated for and contributed to lower pot
performance (cluster opposite to CE and profit in Fig. 7), a
well known effect (Grjotheim, 2010). V,0s impurity in
alumina is also known as a factor that reduces the current
efficiency (Grjotheim, 2010). High angle of repose for
alumina powder enhances the crust formation on top of the
pot and reduces the alumina dissolution (Grjotheim, 2010).
This variable was mostly captured by t, and showed a
negative impact on CE. Alumina particles smaller than 20
micron revealed an enhancing influence on CE. Although
finer particles may improve the dissolution rate of alumina in

Copyright © 2015 IFAC

the bath, this observation is in contrast with general
agreement in the literature where <20 micron alumina should
be limited (Grjotheim, 2010). It should be noted that this
work is data driven and obtained results are highly affected
by datasets used to train the algorithms.

The X" weights were also overlaid in Fig. 8 to interpret the
synergy between the pot operating variables and materials
properties. This figure leads to identify the two main control
schemes implemented to compensate for raw material
properties: the pot resistance and bath chemistry controls.
The first component captured the pot control decisions made
to compensate the effect of materials variations on the pot
resistance. Anode electrical resistivity, reactivity dust (CRD)
and alumina particles smaller than 20 micron are among the
variables that increase the cell resistance. Fig. 8 shows that
these variables are in opposite direction with average pot
resistance with respect to wy. This means that when materials
properties cause an increase in the resistance of the cell,
actions are taken to reduce the pot resistance, for example
anode-to-cathode distance is reduced. The second component
captures bath chemistry control actions. Low AlF;
concentration in the bath increases the bath liquidus
temperature and bath temperature. Therefore, more fluoride is
added to reduce the bath temperature. When Na,O in alumina
is increased more AlF; is added to the bath to form cryolite.
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. 3] Young mod. Profit
1 1.2 3 4 Avg.res. »3_Res. Mod. total 4‘ ?:6/;"(;0:; comp. strength
. .
1234 Avg. T =3_BathxsAIF3 = — w4 Cainmetal
23 4_AVE. 3 path level 2 BathxsAlF3 - 3_CO2 CRD
volt; LI Lot ;. _CO2 CRL
' _2_3_Fein metal
05w =

a1_Anode elec. Res.
44_-20 micron
43_-20 micron

.
3_4_Baseres. target

123
®1.2_3_4_Res. Mod. Settime on 3_Nain metal

=3 o =2_Cain metal
'E 3_App. density
AV205 » ®1_Bathadd crushed
_3_Res. Mod. 3 gath 1_2_NDBB u1_Cainmetal .
A temp. & - 234
4235102 iquidus . 2.3Bathadd _Avg.
-0,5 LR _3_Na20 = crushed Amps.
4_CO2CRR g \ . %) 6a203 .
1_Air permeability a~ w3_AQUtC="3_Alumina [ag - -
control BET
1_Fracture energy .
EC . 2_3_Added Res. .
o 4 ar L. 2_3_NDAIF3 3_4_Bath add lig.
- i 2_ Alumina
permeability  %— 2_3_Added
BET Fluoride 2_3_Angle of repose
154 T T T T T
-04 -0,3 -0,2 -0,1 01 0,2 03 0,4

0
wlqgl

Fig. 7. Overlay of Z (black) and X" (blue) weights and Y
loadings (red).

Fig. 8 shows the loading biplot of the X*"™ weights and Y
loadings again for the most important variables (VIP > 1.2).
This plot allows interpreting those process variations that
affected Y but are independent from raw materials. The pot
variables appearing in this Figure, i.e. pot age, bath level,
AlF; target and feeding strategy, are independent of raw
materials properties (i.e. operating policies). When rich
alumina feeding strategy is used and the number of alumina
feeds is increased (lower feeding interval) the alumina
concentration in the bath is increased that enhances CE.
Increasing the bath excess AlF; and CaF, also helps reducing
the bath liquidus temperature, accelerates alumina dissolution
and subsequently lead to a higher CE. RF is an indication of
the amount of tapped metal according to metal tapping table
and showed a strong and positive relationship with CE.
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Sodium content of metal revealed a positive correlation with
CE as is widely accepted in the literature (Grjotheim, 2010,
Tabereaux, 1996). The third component shows the negative
impact of pot age on CE. High bath liquidus temperature and
bath measured temperature resulted in higher EC.

A similar analysis of MB-PLS loadings could not be added
here due to space limitation. The influence of orthogonal
process variations on pot performance could be identified.
However, SMB-PLS provided more insights and results were
in better agreement with process knowledge for the effects of
materials variations and correlated process variables (control
schemes mainly). Some of the MB-PLS results were difficult
to explain without considering the correlations between
materials properties and process data.
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Fig. 8. Weights for X" (black) and Y loadings (red).

5. CONCLUSIONS

Efforts are being made in several industries to establish
specification regions for raw materials. For processes using
more than one type of raw materials and several process units
where process parameters are correlated with materials
properties or with previous sections parameters, it is difficult
to determine the specification regions. This work presents an
early attempt at establishing specification regions for multiple
types of raw materials, taking into account the variations
compensated for by control actions.

The Sequential multi-block PLS algorithm (SMB-PLS) was
applied to differentiate the between block correlation from
the orthogonal (new) information available in each blocks of
a multi-block data structure by imposing the sequential
pathway of a process flowsheet. Each step of this approach
focuses on the effect of a given regressor block on
subsequent ones and Y and thus captures only new
information that is not modelled by previous blocks. In this
way, specification regions could be established jointly on all
materials in a way to identify those combinations of
properties that are not attenuated by the current control
schemes. Although SMB-PLS is appropriate for many
sequential production routes where process dynamics can be
defined, modifications may be needed for specific processes.

The approach is illustrated using a dataset from an aluminum
smelting process and it was observed that variations in raw

Copyright © 2015 IFAC

materials, i.e. alumina and anode, induced some effects on
the process operation. In particular, it was found that
variations in anode air permeability and some mechanical
properties affected process performance in spite of the
control schemes currently implemented on that process.
These combination of properties (high permeability, low
compressive strength, etc.) need to be avoided to prevent
negative impact on process performance.
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