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Abstract: This paper presents a possible approach for the dynamic optimization of biomass productivity 

in continuous cultures of microalgae, using light intensity as the manipulated variable. Extremum seeking 

control is applied as the real-time optimization algorithm to evaluate feasibility. Two different models of 

microalgae growth (of different complexities) were used in this study, with parameters representative of 

the Isochyris galbana specie. Results showed relatively good performances of the optimization procedure 

despite parameter variations and the presence of measurement noise. 
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

1. INTRODUCTION 

Our understanding of the photosynthesis process, along with 

our ability to efficiently exploit its properties, is at the core of 

any advance towards the successful industrialization of algal 

bioprocesses. Algae are expected to play a key role in making 

our world a sustainable place to live again: replacing fossil 

fuels with renewable alternatives (Chisti, 2007; Lam and Lee, 

2012; Demirbas, 2010), capturing CO2 and mitigating climate 

change (Lam et Lee, 2012; Demirbas, 2010), even providing 

proteins and other nutrients for animal feed and human food 

supplements (Chisti, 2007; Becker, 2007; Mata et al., 2010; 

Lam and Lee, 2012) as well as other high-value molecules of 

pharmaceutical interest (Chisti, 2007; Mata et al., 2010). 

Continuous mode of production (chemostat) is interesting for 

microalgae for different reasons: first, it is a powerful tool for 

studying the cell growth kinetics and physiological behaviors 

(Ethier et al., 2011), on which much research still remains to 

be done, and second, it allows prolonged stable production of 

biomass, possibly at maximum productivity (Gojkovic et al., 

2013). For example, (Sforza et al., 2013) produced 2 distinct 

strains of microalgae for over 100 days in continuous mode, 

with a constant biochemical composition and photosynthetic 

behavior. Similar observations are found in (Ferreira et al., 

2008) and (Kaspar et al., 2014). Heterotrophic cultures also 

show similar properties: (Ethier et al., 2011) used continuous 

cultures to characterize DHA productivity, and (Gojkovic et 

al., 2013), selenomethionine (SeMet) production. 

This paper will focus on photosynthetic aspects of continuous 

(autotrophic) productions of algal biomass, for which detailed 

rigorous models were recently made available accounting for 

photo-inhibition and photo-acclimation (Bernard et al., 2009; 

Bernard, 2011). These phenomena drive many physiological 

responses of the algae, impacting product formation kinetics, 

hence the importance of a good control over their influence. 

Here, only biomass productivity will be considered, as a first 

stage of development. Real-time optimization of this quantity 

will be conducted using the extremum-seeking control (ESC) 

algorithm, with light intensity as the manipulated variable. To 

the best of the author’s knowledge, there has apparently been 

no report of the application of dynamic optimization to light 

intensity in photobioreactors: there are however several static 

optimization studies, (e.g., Hallenbeck et al., 2014), one data-

based feed-forward (without feedback correction) approach 

to batch cultures in (Kandilian et al., 2014) and one trajectory 

tracking approach for the light-to-algae ratio to minimize the 

light requirements in batch productions of a desired biomass 

quantity (Tebbani et al., 2014). 

The objective of this paper is therefore to investigate the 

possibility of adjusting the light intensity online in order to 

continuously track the optimal biomass productivity and to 

achieve this in an almost model-free setup, in the spirit of the 

extremum seeking control approach popularized by (Ariyur 

and Krstić, 2003). In addition, robustness of the ESC scheme 

is assessed against plant-model “mismatch” (regarding the 

model knowledge that is used at the parameter tuning step) 

and measurement noise. The paper is organized as follows: 

first, the general principles for the models are presented and 

discussed, and the main parameters are given. The ESC 

implementations (and the tuning approach) are then presented 

and tested in various situations including parameter variations 

and in the presence of measurement noise. 

2. MODELS OF MICROALGAE GROWTH 

2.1 Generalities 

The dynamic model used in this study is borrowed from the 

excellent survey (Bernard, 2011), and describes the culture of 

Isochrysis galbana in a continuous photobioreactor under 

time-varying light conditions. The keystone of this model is 
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the classical Droop model (Droop, 1968), supplemented by 

appropriate kinetics accounting for photo-acclimation, photo-

inhibition, as well as light absorption and diffusion. 

2.2 Droop model 

Microalgae have the ability to store nutrient s into a so-called 

internal quota q, which is further used for biomass x growth. 

Nutrient uptake (s) can be described by a Michaelis-Menten 

type kinetics 

 
sK

s
s

S 
 max  (1) 

whereas the growth rate can be modelled by Droop kinetics 

(Droop, 1968): 
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In these expressions, KS is a half-saturation constant, qmin is 

the quota threshold below which no growth is possible, and 

max and µmax are the maximum uptake and growth rates, 

respectively. Mass balances in the chemostat lead to the 

following set of ordinary differential equations 
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where sin represents the concentration of inorganic substrate 

(nitrogen) in the inlet flow and D the dilution rate. The Droop 

model has been used in a large variety of applications and is a 

widely accepted model. Under time-varying light conditions, 

however, it has to be extended to include photo-acclimation 

as well as photo-inhibition. In photobioreactors operating at 

high cell density, the phenomena of light absorption and 

diffusion also have to be taken into account. 

2.3 Photo-acclimation and photo-inhibition 

Model extensions are necessary to describe the influence of 

time-varying light exposition of the microalgae. Such model 

extensions should however remain relatively simple so as to 

avoid introducing an excessive number of parameters, which 

would be very difficult to extract from experimental data and 

would make the model of little use for control applications. 

The idea is to modulate the maximal growth rate µmax(I, ) as 

a function of the light intensity I and the chlorophyll to 

biomass ratio  = Chl / x, to account for two mechanisms: (1) 

photo-acclimation, the adaptation of chlorophyll synthesis to 

light intensity and (2) photo-inhibition, leading to a reduced 

growth at higher light intensities (Eilers and Peeters, 1988; 

Eilers and Peeters, 1993), for example: 

 

iI

sI
K

I
IK

I
I

2max ,



 
 (4) 

In this expression, the parameter KsI is a function of the 

chlorophyll to biomass ratio in the following way: 



*

sI
sI

K
K   (5) 

Chlorophyll is considered to be proportional to the particulate 

nitrogen (Laws and Bannister, 1980): 

  qxIChl *  (6) 

with a coefficient 

 
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*

*

*
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k
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I
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
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being an empirical function of *I  representing the irradiance 

at which microalgae are acclimated following the dynamics:  

   ** ,, IIIqI    (8) 

In this latter expression,  is the adaptation rate and I  is the 

average irradiance along the culture volume. 

This average irradiance can be computed quite easily for the 

case of flat panel photobioreactors (length L), where the light 

attenuation due to the biomass can be modelled using a Beer-

Lambert law (Bernard et al., 2009) and approximated as: 

 LbChlaK
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g

g


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Where Kg, a and b are parameters for this “workable” model 

(Bernard et al., 2009). Rather than directly introducing this 

expression into the Haldane law describing the dependency 

of the maximum growth rate on light, it is preferable to use 

an averaged value of the maximum growth rate leading to a 

modified expression (Bernard et al., 2009): 
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An alternative form (arctangent expression) for this function 

of the growth rate, presented in (Bernard, 2011), will also be 

of interest later in this paper (with same parameters KsI, KiI). 

To account for the dark periods (which occur as microalgae 

move through darker spots inside the photobioreactor), it is 

also necessary to include a down regulation of the substrate 

uptake (Lehman et al., 1975): 
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The full model can thus be summarized as follows: 
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where a respiration term R was also introduced in the balance 

equation for the biomass (Bernard, 2011). 
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2.4 Parameters 

The model parameters were obtained for Isochrysis galbana 

in (Bernard, 2011) and are provided in Table 1 for the reader. 

Table 1.  Model parameters 

Symbol Value (units) Symbol Value (units) 

max 0.073 gNgC
-1
d

-1
 KiI 295 µEm

-2
s

-1
 

KS 0.0012 gNm
-3

 kI* 63 µEm
-2
s

-1
 

Kg 1.25 µEm
-2

 s
-1

  1 (no units) 

qmax 0.250 gNgC
-1

 KsI
*
 1.4 µEm

-2
 s

-1
 

qmin 0.050 gNgC
-1

 a 16.2 m
2
gChl

-1
 

max 0.57 gChlgN
-1

 b 0.087 m
-1

 

  1.7 d
-1

 R 0.0081 d
-1

 

 

3. EXTREMUM SEEKING IMPLEMENTATION 

The real-time volumetric biomass productivity in continuous 

bioreactors is the product between the biomass concentration 

X (grams per volume) and the dilution rate D (days d): 

     1111   VolgXdDdVolgP  (13) 

Real-time measurements of the biomass concentration can be 

reasonably achieved with OD correlations (Deschênes et al., 

2012; Havlik et al., 2013) while D is a manipulated variable. 

Thus, the real-time availability of the optimization criterion P 

is possible in these situations. 

In our particular context, it is assumed that the dilution rate D 

depends on external process conditions or constraints that are 

beyond remaining actuators for reactor operation and control. 

This leaves the task to other actuation variables, such as light 

intensity, to optimize the uptake of nutrients from the effluent 

stream and/or the production of biomass. For a fixed value of 

D (non-zero), the latter can also be maximized through acting 

on the biomass concentration alone: from (13), maximizing X 

also maximizes P in this situation. The two possibilities will 

be considered as the variable y(t) in the (perturbation-based) 

ESC optimization scheme (Fig. 1) used throughout the paper.  

 

Fig. 1. Perturbation-based ESC scheme used in this paper. 

3.1 Tuning of the perturbation-based ESC 

The ESC tuning was done following (Deschênes et al., 2012) 

and (Deschênes, 2013): a step-response test was conducted to 

obtain an approximation of the natural system dynamics. This 

information was then used for the determination of the dither 

signal fundamental frequency, based on desired performances 

and robustness considerations. The amplitude of this signal is 

fixed based on a trade-off between sufficient excitation on the 

output and the variation of the input over its possible range. 

A second-order Butterworth high-pass filter is used, with its 

parameters based on the system’s dynamics and the choice of 

the dither signal frequency (Deschênes, 2013). Integrator gain 

k is last obtained, by a trial-and-error approach. Although the 

present study is entirely in simulation, this general procedure 

has been used successfully in the past with a real microalgae 

bioprocess (Deschênes et al., 2012) for pH optimization. 

For both models, the step-response was of the first-order type 

with a time constant of approximately 1 day (rough estimate). 

Relative to this value of , different choices can be made for 

the dither excitation frequency : three will be considered for 

this paper: 1/, 5/ and 10/. The dither signal amplitude was 

set to a = 8 µEm
-2
s

-1
 (on a 0-120 µEm

-2
s

-1
 variation range). 

The best values for k were found to be 20 ( = 1 radd
-1

), 100 

( = 5 radd
-1

) and 400 ( = 10 radd
-1

).  

4. PERFORMANCE RESULTS 

4.1 Influence of the model 

Models from (Bernard et al., 2009) and (Bernard, 2011) were 

implemented and compared in open-loop (I = 60 µEm
-2
s

-1
) 

and with the ESC (D = 0.35 d
-1

), with D and I set at realistic 

values for this algae. Fig. 2 shows the results for  = 1 radd
-1

 

with the ESC, where differences are rather small between the 

two models. For  = 5 and 10 radd
-1

 as the dither excitation 

frequency, the results are hardly distinguishable (not shown). 

 

Fig. 2. Model comparison in open-loop and with ESC. 
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One important thing that can be noticed in Fig. 2 is that as the 

output converges, the input continues to evolve through time. 

This is a consequence of the photo-acclimation phenomenon, 

which would be rather complex and lengthy to analyse here, 

but simply put, the optimum varies with the acclimated light 

intensity I
*
. Looking at the maximal growth rate function 

(Fig. 3) for two distinct values of I
*
 (and associated boundary 

values for   as q = qmin and qmax) illustrates the situation: the 

optimum for I  is always slightly higher than I
*
 (e.g. between 

70 and 90 µEm
-2
s

-1
 for I

*
 = 70 µEm

-2
s

-1
, and between 170 

and 210 µEm
-2
s

-1
 for I

*
 = 130 µEm

-2
s

-1
), and this constantly 

pushes the input light intensity towards higher values. Also, 

as the acclimated light intensity becomes higher, the maximal 

growth rate decreases (as Fig. 3 also shows).  

 

Fig. 3. Theoretical mapping between the maximal growth 

rate and average light intensity inside the photobioreactor. 

Consequences of this are that the optimum has to be tracked 

continuously, and as it goes, biomass productivity eventually 

decreases. Despite these theoretical issues, our results for this 

microalga (parameter values) showed no significant reduction 

in productivity over 100 days, a longest practical duration for 

microalgae cultivation: at this stage, other phenomena such as 

accumulation of biofilm or dead cells have other undesirable 

effects that force the process to stop. 

Increasing the fundamental frequency of the dither signal also 

improves the convergence rate (Fig. 4). Note that all further 

results including this one will use the more recent model in 

(Bernard, 2011), which is more realistic in terms of physical 

interpretation. 

4.2 Influence of the measured variable (X vs P) 

As discussed earlier, optimization of the biomass productivity 

could well be done by optimizing the biomass concentration, 

the dilution rate D being an independent variable. The tuning 

of the ESC (following the same methodology as with P as the 

output variable) has to be modified to adjust integrator gain k 

to 5, 80 and 180 for  = 1, 5 and 10 radd
-1

 respectively. Fig. 

5 shows a comparison between the two situations. Using X as 

the output variable has little impact for the most part: indeed, 

step perturbations on D show similar responses on the output, 

and most convergence rates are similar. Convergence is faster 

however for  = 5 radd
-1

 with X as the output variable. 

4.3 Dilution rate variations (nonlinear map) 

Variations in the dilution rate affect the nonlinear mapping 

between I and X (or P). To that end, the sensitivity of the 

ESC implementations is tested (Fig. 6), using X as the 

measured variable for the optimization and for the three 

different choices of . 

Results show that as frequency  is increased, the algorithm 

becomes less sensitive to variations in the static map relation. 

All tunings remain stable as D decreases, but slower choices 

of  become impractical at some point (open-loop results are 

sometimes better). However, as D < 0.1 d
-1

, little is gained by 

even trying to optimize the biomass productivity, as it is quite 

low in that range and the open-loop situation shows a similar 

behaviour as most implementation results (not shown).  

 

Fig. 4. Influence of the dither signal fundamental frequency 

on the convergence rate.  

 

Fig. 5. Comparison between P and X as the output variable 

for the optimization routine (D = 0.35 d
-1

).  

4.4 Parameter sensitivity 

Model parameters were varied to evaluate the sensitivity of 

the algorithm to uncertainties at this level. Parameters tied to 

the light influence (KiI, KsI
*
, max, kI* and ) and the maximum 

growth rate   were tested for this evaluation. Parameters KiI, 

KsI
*
, kI* and  were varied by ±50%, while max and   were 

varied by +50 % and -20% only, as -50% variations for these 

variables completely disrupts the behaviour of the model in 

the conditions tested. Most have a significant influence in this 

range, except , which effect is essentially negligible. Results 

for KsI (Fig. 7), KiI (Fig. 8) and   (Fig. 9) are provided with 

 = 5 radd
-1

 only (plus the open-loop case) as situations with 

other dither frequencies are also affected similarly. It is also 
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important to note that all situations retain stability despite the 

importance of the parameter variations. In practice, the ESC 

parameters would be retuned in such situations (to maintain 

performance) after re-identification. Nonetheless, this shows 

the very good robustness of these ESC implementations. 

 

Fig. 6. ESC implementations for different values of D.  

4.5 Noise sensitivity 

Noise sensitivity is a most important aspect to evaluate before 

implementing a control algorithm on real systems, especially 

biological systems where there are often high uncertainties on 

the measurements or time-varying behaviors. Here, situations 

of white noise (Fig. 10) and low-pass filtered noise (Fig. 11) 

were tested. Results show that the ESC is more sensitive to 

noise for high values of  (which induce fast convergence 

rates), and that it is quite tolerant to it for lower values of . 

In the white noise scenario, variances shown in Fig. 10 are 

the worst case that can be tolerated for each case: the figures 

also include the open-loop case (same noise of same 

variance) to clearly show the level of output (measurement) 

noise. As one could think of (low-pass) filtering the biomass 

measurement to reduce the noise, this in fact does not help 

the situation, as it simultaneously filters the dither frequency 

contents needed by the ESC to allow convergence. Other 

means of removing random noise could be investigated, 

however. Fig. 11 shows the results for low-pass filtered white 

noise, where similar conclusions are drawn: noise contents at 

the same frequencies as the dither signal should be of lesser 

amplitude than those originating from it. 

 

Fig. 7. Parameter sensitivity results for KsI
*
 ( = 5 radd-1

). 

 

Fig. 8. Parameter sensitivity results for KiI ( = 5 radd-1
).  

 

Fig. 9. Parameter sensitivity results for   ( = 5 radd-1
).  
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Fig. 10. White noise sensitivity results. 

4.6 Wrap-up of design considerations 

Design considerations should include the noise level and its 

frequency contents, performance requirements and sensitivity 

to the nonlinear input-output relations. For this case, selecting 

higher dither frequencies will increase speed of convergence 

(performances) and reduce the ESC’s sensitivity to variations 

in the nonlinear map (section 4.3). It however increases its 

sensitivity to measurement noise. 

5.  CONCLUSIONS 

This study has investigated the use of ESC for optimizing the 

light intensity input to a photobioreactor in real-time so as to 

increase biomass productivity in continuous operation mode. 

The approach appears quite successful as it is possible to tune 

the parameters of the ESC with little prior knowledge on the 

process, mostly based on a step-response experiment, and to 

achieve significant productivity improvements. Furthermore, 

the ESC is quite robust to relatively large process parametric 

variations as well as reasonable measurement noise levels. 

Further research entails testing the approach in real (physical) 

experiments, as well as investigating more filtering options 

and online parameter adaptation. 

 

 

Fig. 11. Low-pass filtered noise sensitivity results. 
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