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Abstract: We derive a nonlinear model of the steam cycle of a solar power plant, estimate its
unknown parameters with measured data, and design a linear model predictive controller based
on the resulting model. Simulations show that the linear model predictive controller is able to
regulate the electrical power of the nonlinear steam process of the plant to a given reference
trajectory very well. Moreover, it results in very good disturbance rejection.
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1. INTRODUCTION

Various types of solar power plants are established (see
Camacho et al. (2010) for a summary). We consider a
parabolic trough solar power plant. Plants of this type
are based on concentrating the solar irradiation onto an
absorber pipe positioned in the focal line of a parabolic
mirror. A heat transfer fluid (HTF) circulating inside the
absorber pipe supplies energy to a heat exchanger, where
it is used to generate steam. The steam is passed into
a multi-group steam turbine, which drives a synchronous
generator. Systems of this type are known to pose complex
control problems. Many researchers have considered the
oil circuit in detail, see the survey articles Camacho et al.
(2007a,b) and references therein for an overview. We here
focus on the steam part of the plant, which consists of
a steam turbine, a generator and a condenser. These
subsystems show fast dynamical and nonlinear behavior
and are sensitive to disturbances, which therefore must be
accounted for in the modeling and in the control concept.

We use nonlinear models based on those given in Jost
et al. (2014), but include more details in the models
presented here. Transient data recorded in a real solar
power plant were used to adjust the unknown parameters.
The resulting models have been verified with independent
recorded data. In contrast to those given in Jost et al.
(2014) the models that result here are shown to be accurate
even for transient operations.

We present a model of the plant in Sect. 2. We then use
logged measurement data to estimate unknown parameters
such as efficiency factors and heat transfer coefficients
(Sect. 3). The resulting model is used to set up a model
predictive controller for the steam cycle of the plant in
Sect. 4. Simulation results for the controlled nonlinear
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system are presented in Sect. 5. Conclusions and an
outlook are stated in Sect. 6.

2. PHYSICAL MODEL

A sketch of the steam cycle of the solar power plant is
shown in Fig. 1. We present detailed models of the steam
turbine and the condenser in Sections 2.1 and 2.2, respec-
tively. Models of the remaining subsystems, specifically the
generator, feedwater pump and the steam generator, are
summarized in Sect. 2.3.

2.1 Turbine

A schematic representation of the turbine is given in Fig. 2.
The steam turbine is modeled as a two group extraction
turbine with pre- and reheater.
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Fig. 1. Sketch of the steam cycle: Feed water is evaporated
and superheated in a steam generator (1) and passed
into the turbine (2). Several bleeds (steam extractions
from the turbine) are summarized in the mass flow
ṁPH and used to preheat (5) the feedwater. The
remaining steam expands in the low pressure turbine
and is condensed by a water condenser (4). Via the
feed pump (6), the condensate is supplied to the boiler
again. A generator (3) is coupled to the turbine to
convert the mechanical power into electric power.
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The inlet mass flow rate ṁ1 through the nozzle groups of
the turbine can be controlled by the control valve position
uV . The characteristics of this valve can be described by

ṁ1 = ṁ0

√

p0T0,0

T0p0,0
(3u2

V − 2u3
V), (1)

where T0,0 and p0,0 denote the design point of live
steam temperature and pressure, respectively (Grote,
2009, p. 78).

The mass flow rate through a turbine group is a function
of the inlet pressure, outlet pressure and the temperature
T1 of the inlet steam. For the high-pressure (HP) group of
the turbine the flow rate can be described by

ṁ2 = KST

√

p21 − p22
T1

. (2)

This relation, which is known as Stodola’s law of the
ellipse, permits calculating power and steam flow rates
for off-design operation points (for example, for part load
conditions of turbine sections). The constant KST can be
determined from the nominal design parameters. For the
HP turbine this yields

KST = ṁ0

√

T1,0

p21,0 − p22,0
. (3)

Equations (2) and (3) also apply to the low pressure
group of the turbine with the respective pressures and
specific volumes. To the knowledge of the authors no
suitable model for the leakage mass flow rate through the
labyrinth seals of the turbine ṁLF exists. We therefore
use design data obtained from the turbine manufacturer
to approximate ṁLF as a function of the inlet pressure of
the HP group. The empirical relation

ṁLF = 0.0042p1.03261 (4)

results from this approach.

Applying the conservation-of-mass-principle to a steam
chamber leads to an ordinary differential equation for the
chamber pressure. The resulting equation for the outlet
pressure of the HP turbine, for example, reads

ṗ2 =
c2

V2
· (ṁ2.1 − ṁ2.2 − ṁ3), (5)

where ṁ2.1 = ṁ2−ṁLF , and where c is the instantaneous
sonic speed of the steam inside the volume V2. The pres-
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ṁ2.1
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Fig. 2. Schematic representation of the turbine
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Fig. 3. Polytropic expansion (Grote, 2009, p. 52)

sure dynamics after the low pressure group are included
in the condenser model. The dynamics of the pipe flows
are neglected for simplicity. The bleed mass flow in the
low pressure group ṁ3,T and the mass flow rate ṁ2.2 (see
Fig. 2) are also approximated by empirical relations that
are derived from manufacturer design data. The resulting
expressions read

ṁ3,T = 0.0065p23 + 0.04351p3 − 0.5393 (6)

and
ṁ2.2 = 0.0021p1.88121 , (7)

respectively.

The total mass flow ṁPH consumed by the pre-heaters is

ṁPH = ṁ2.2 + ṁ3,T . (8)

Thermodynamic steam properties are calculated with the
IAPWS-IF97 formulas (Wagner and Kretzschmar, 1997).
The algorithm used to calculate the polytropic expansion
in steam turbines is shown in Fig. 3. The calculation must
be performed for all turbine stages. Specifically, it must be
carried out for both the HP and LP section.

The thermal power is obtained from

P = PHP + PLP (9)

with
PHP = (ṁ2 − ṁLF ) (η∆hHP ) ,

PLP = (ṁ3 − ṁ3,T · w) (η∆hLP ) ,

where w is the fraction of extracted steam, ∆hHP and
∆hLP are the enthalpy difference for the high pressure
and low pressure stage, respectively, and η is the isentropic
efficiency.

2.2 Condenser

The steam enters a condenser after passing the LP turbine.
The exhaust steam pressure dynamics can also be modeled
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with a single lumped, ideally mixed volume. This yields

ṗ4 =
c2

VC
(ṁ3 − ṁ3,T − ṁ4), (10)

where VC is the sum of the steam volumes in the condenser
and the exhaust pipe of the turbine. The mass flow of the
condensing steam ṁ4 can be calculated from the latent
heat of vaporization hr and the heat flow Q according to

ṁ4 =
Q

hr
, (11)

where hr is given by

hr = a1 + a2 · ln p4 + a3 · (ln p4)
2
, p4 ∈ [0.01, 1].

The heat flow Q reads

Q = kA ·
Tcw,out − Tcw,in

ln
T4−Tcw,in

T4−Tcw,out

, (12)

where Tcw,out and Tcw,in are the cooling water temperature
at the outlet and inlet, respectively. The heat transfer
coefficient kA depends on the mass flow of exhaust steam,
since the heat transfer of film condensing improves as
the mass flow of the condensate increases. However, a
saturation effect must be considered. Assuming that the
heat transfer from the steam to the cooling water is
dominated by film condensation on the surfaces of the
condenser pipes the relation Nu = l · Ren · Prm holds for
the Nusselt number, where Re is the Reynolds number,
Pr is the Prandtl number and l, n and m are problem-
specific constants (Incropera et al., 2007). With Nu ∝ kA,
Re ∝ ṁ4 and Pr ≈ const., it is reasonable to describe the
heat transfer coefficient by

kA = b2ṁ
b1
4 , (13)

where b2 and b1 ≈ 0.38 for film condensation are deter-
mined from measured data. The exhaust steam tempera-
ture can be calculated with Magnus’s formula

T4 =
c2 ln

(

p4

c0

)

c1 − ln
(

p4

c0

) + 273.15, (14)

where c0, c1 and c2 are specific constants (Alduchov and
Eskridge, 1996). The dynamics of the effluent cooling
water follow from the first law of thermodynamics and
read

Ṫcw,out =
2ṁw

mw

(Tcw,in − Tcw,out) +
2

mwcp
Q, (15)

where ṁw is the mass flow and mw is the mass of the
cooling water and cp is the specific heat capacity.

2.3 Equations of the auxiliary subsystems

We briefly summarize the equations for the remaining
components. For more details we refer to Jost et al. (2014)
and the references therein. Indices “in” and “out” are
used to refer to the input state and the output state,
respectively.

Feedwater pump: The pressure difference between the inlet
and outlet is given by

∆p =

(

n

n0

)2

d0 +

(

n

n0

)

d1q̇ + d2q̇
2, (16)

where d0, d1 and d2 are constants, n0 denotes the nominal
rotational speed, n is the instantaneous rotary speed of the
pump and q̇ is the volume flow rate (Gülich, 2010; Leonow
and Mönnigmann, 2013).

Generator: The equations for the rotor dynamics and the
power output read

ϕ̈ =
1

θ
(MI −MT sin(ϕ)− deϕ̇),

Pel = MT sin(ϕ)2πf0,
(17)

respectively, where ϕ is the rotor angle, de is a damping
constant, MT is the tilting torque of the machine, θ is the
inertia torque and f0 is the nominal grid frequency (Chap-
man, 2012).

Preheater/Superheater: The differential equations for the
output temperatures read

ṪP,out =
ṁP,out

mP,out

(TP,in − TP,out)

−

kA

mP,outc
∆ϑlog(TP,out − Tw,in, TP,in − Tw,out)

(18)

where TP,in, TP,out denote the steam inlet and outlet tem-
peratures and Tw,in, Tw,out refer to the feedwater inlet
and outlet temperatures; and ∆ϑlog(TP,out − Tw,in, TP,in −
Tw,out) is the logarithmic temperature difference (Incr-
opera et al., 2007, p. 670) which is defined by

∆ϑlog(∆TA,∆TB) =

{

∆TA −∆TB

ln(∆TA)− ln(∆TB)
, ∆TA∆TB > 0,

0, otherwise.

(19)

The pressures in the heaters can be described by

ṗP =
c2

VP
(ṁPH − ṁP,out), (20)

where c is the sonic speed, VP is the volume and ṁP,out is
given by

ṁP,out =

(

pin − pP

R

)
4
7

, (21)

see Jost et al. (2014) for more details.

Evaporator: The differential equation for the output tem-
perature reads

ṪE,out =
2ṁE,out

mE,out

(TE,in − TE,out)

−

2kA

mE,outcp
∆ϑlog(TE,out − Tw,in, TE,in − Tw,out),

(22)

where the temperatures and the logarithmic temperature
difference are defined as before. The mass flow is given by

ṁE,in =
kA

hE
∆ϑlog(TE,out − Tw,in, TE,in − Tw,in) (23)

where hE is the enthalpy of the vaporized water (Sonntag
and Van Wylen, 1971, p. 140). The pressure and the mass
flow in the evaporator can be described by (20) and (21).

Combining (1)–(23) results in a nonlinear state space
model of the steam cycle sketched in Fig. 1, which has
the form

ẋ = f(x, u,Ω, z),

y = h(x,Ω),
(24)

with state vector is x = (p2, p4, ϕ, ϕ̇, Tcw,out, TP,out, pP,in,

TE,out, pE,in)
′

, input vector u = (uV, n)
′

, output y = Pel,
and disturbance z = Tcw,in. Ω denotes the parameter
vector which includes all parameters of the steam part.
We state (24) in Appendix A.
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Fig. 4. Comparison of the measured temperature values
T2 and the corresponding simulation results: (a) blue
curve shows simulation results, green curve shows
measured values. (b) percentage relative difference
between measured and simulated data.

3. PARAMETER ESTIMATION AND MODEL
VERIFICATION

We use data measured in an industrial solar power plant to
adjust unknown model parameters in a submodel of (24),
specifically, in the models of the turbine, condenser and
the generator. This submodel is shown in Fig. 2, where
the measured physical quantities are highlighted with gray
boxes. Data have been logged with a sampling time of 20
milliseconds with data acquisition software we developed
for communication with the plant controller.

The subsystems turbine, condenser and generator are
described by (5) and Fig. 3, Eqs. (10) and (15) and (9),
respectively. Together these equations define the nonlinear
state space model

˙̄x = f̄(x̄, ū, Ω̄, z),

ȳ = h̄(x̄, Ω̄),
(25)

with state vector x̄ = (p2, p4, ϕ, ϕ̇, Tcw,out)
′

, measured sig-

nals ū = (p1, T1, T3)
′

, system output ȳ = (p2, p4, T2, T4, Pel,
Tcw,out)

′, measured disturbance z = Tcw,in and parameter

vector Ω̄ = (η, b1, b2,mw, ṁw, w)
′

. Note that the measured
signals ū are not the inputs of the full model (24), but
merely the signals that are available for the parameter
estimation. All parameters not mentioned here are chosen
as in Jost et al. (2014).

We describe the parameter estimation in Sect. 3.1 and
verify the models with independent data in Sect. 3.2.

3.1 Parameter Estimation

We estimate the isentropic efficiency η (cf. (9)), the coef-
ficients b1 and b2 of the heat transfer equation (cf. (13)),
the mass mw and the mass flow ṁw of the cooling water
(cf. (15)) and the factor w (cf. (9)) that describe the
influence of the bleeds on the thermal power.

Parameters are estimated by solving the nonlinear least
squares problem

min
Ω̄

N
∑

k=1

(

ỹ(k)− y(k, Ω̄)
)2

s.t. ˙̄x = f(x̄, ū(k), Ω̄, z(k)),

ȳ = h̄(x̄, Ω̄),

Ω̄− ≤ Ω̄ ≤ Ω̄+,

(26)

where the output ỹ(k), the signals ū(k) and disturbance
z(k) are available from measurements at times tk, k =

p
4
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Fig. 5. Comparison of the measured pressure values p4
and the corresponding simulation results: (a) blue
curve shows simulation results, green curve shows
measured values. (b) percentage relative difference
between measured and simulated data.

1, . . . , N . The number of sample points is N = 106,
which corresponds to a time span of approximately half an
hour. The prediction-error minimization algorithm (pem)
provided by the Matlab System Identification Toolbox was
used to obtain the optimal solution Ω̄⋆ of (26).

3.2 Model verification

We verify the resulting nonlinear state space model (25) by
comparing the system outputs ȳ(k, Ω̄⋆) to data measured
independently of the time series used to determine the
optimal parameters Ω̄⋆. We show the results for the outlet
pressure p4 of the LP-Stage (cf. (10)) and the outlet
temperature of the HP-Stage T2 (cf. Alg. 3) in Figs. 5
and 4, respectively. We select these quantities, because the
smallest (T2) and the largest (p4) percentage root mean
square error xrms result for them, where xrms is defined by

xrms =

√

√

√

√

1

N

(

N
∑

k=1

(

ỹ(k)− y(k, Ω̄⋆)

ỹ(k)
· 100%

)2
)

. (27)

Root mean square errors for the remaining outputs of the
subsystems, specifically Pel, T4, p2, Tcw,out, are listed in
Tab. 1. The largest error amounts to 1.4079%. It occurs
for the outlet pressure p4 of the LP-Stage. We infer the
models presented in Sect. 2 with the parameters estimated
in Sect. 3.1 are accurate enough for controller design and
tuning.

4. MODEL PREDICTIVE CONTROL

We give a brief introduction to MPC in Sect. 4.1 and
present details on the specific controller used here in
Sect. 4.2.

Component Output yi xrms,i in %

HP-Stage p2 0.1211

T2 0.0346

LP-Stage T4 0.1753

Generator Pel 0.7736

Condenser p4 1.4079

Tcw,out 0.1231

Table 1. Root mean squared error xrms for all
outputs. Note that the largest value is only
xrms = 1.4079% (for p4); and four out of six

figures are smaller than 0.18%
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4.1 Brief introduction to model predictive control

We assume the nonlinear state space model (24) derived in
Sect. 2 has been linearized at a point of operation (x0, u0)
and discretized. This yields a linear discrete-time state
space system of the form

x̂(k + 1) = Ax̂(k) +Bû(k), x̂(0) = x̂0

ŷ(k) = Cx̂(k) +Dû(k)
(28)

with states x ∈ R
n, inputs u ∈ R

m, outputs y ∈ R
p and

constraints
ûmin ≤ û(k) ≤ ûmax,

ŷmin ≤ ŷ(k) ≤ ŷmax,
(29)

for all k ≥ 0, where ûmin, ûmax, ŷmin and ŷmax are of
appropriate dimensions and ûmin < 0 < ûmax, ŷmin < 0 <
ŷmax. Symbols with a hat refer to differences w.r.t. the
point of linearization, for example, x̂(t) = x(t)− x0.

MPC seeks an input sequence that essentially minimizes
the deviation between the system output ŷ(k) and a
reference trajectory ŵ(k) by solving the optimal control
problem

min
U,Y

Hp
∑

j=1

‖ŷ(k + j)− ŵ(k + j)‖2Qŷ
+

Hp−1
∑

j=0

‖û(k + j)‖2Rû
,

s.t. x̂(k + 1) = Ax̂(k) +Bû(k),

ŷ(k) = Cx̂(k) +Dû(k),

ûmin ≤ û(k) ≤ ûmax,

ŷmin ≤ ŷ(k) ≤ ŷmax,

(30)

where U ′ = [û(k)′, . . . , û(k +Hp)
′], Y ′ = [ŷ(k)′, . . . ,

ŷ(k +Hp)
′]; and where ‖v‖2M is short for v′Mv. In (30),

Rû and Qŷ denote the weighting matrices on the inputs
and the output error, respectively, and Hp denotes the
horizon.

We use several extensions to the basic model predictive
control formulation (30), which can be summarized as
follows. Weightings on the rate of change of the input
R∆û and rate constraints can be considered in (30) by
augmenting the state with the input of the current time
step and introducing the difference ∆û = û(k)− û(k − 1)
as an artificial system input (see e.g. Maciejowski (2002,
Chpt. 2.2, p. 41)). If the system is subject to state and
output disturbances an observer has to be included in
the problem formulation (30) to regulate the output error
ŷ(k)−w(k) to zero. We choose the observer gain matrices
for the states and disturbances as zero and unitiy matrix,
respectively, see e.g. Maciejowski (2002, Chpt. 2.6.3, p. 57),
see also Grote (2009, Chpt. 4.2.2, p. 131). For the con-
sidered stable plant, stability of the closed loop can be
obtained with an appropriate choice of Qy and Ru (see
e.g. Maciejowski (2002, Chpt. 6, p. 167)).

4.2 Controller design

Linearization of the model described in Sect. 2 results in a
stable discrete-time model of the form (28) with 10 states,
2 inputs (control valve ûV = uV − uV,0, cf. (1); speed of
feedwater pump n̂ = n − n0, cf. (16)) and one output

(generated power P̂el = Pel − Pel,0, cf. (17)). The sample
time was set to Ts = 0.1s. We removed 4 uncontrollable
states to obtain a suitable model for controller design,

P̂
e
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Fig. 6. Results for the set point change: (a) blue curve
shows the simulated electric power, green curve shows
the set point. (b) inputs of the system; blue curve
corresponds to the speed of the feedwater pump, green
curve corresponds to the valve position.

which results in a discrete-time state space model of
form (28) with 6 states.

The following output, input and rate constraints were
applied

−10 · 106 ≤ ŷ(t) ≤ 10 · 106,
(

−0.9
−1000

)

≤ û(t) ≤

(

0.1
1000

)

,
(

−0.01
−1

)

≤ ∆û(t) ≤

(

0.01
1

)

.

The weighting matrices are chosen to be Qy = 10−4,
Ru = 0, R∆u = 104 · I2×2 and the prediction horizon
is set to Hp = 50. The resulting quadratic program has
500 constraints and 100 decision variables.

5. SIMULATION AND RESULTS

We simulate the steam part of the power plant for several
operation conditions to assess the performance of the pro-
posed controller. We stress that all simulations are carried
out with the nonlinear models described in Sect. 2. For
simplicity we made the following assumptions throughout
the simulations: (a) piping dynamics are neglected, (b) oil
temperature and flow rate at the steam generator inlet are
constant, i.e. the oil part of the plant is in steady state,
(c) the mass flow ṁPH is not controlled and depends on
the pressures p2 and p3 only, and (d) the reheater is not
controlled.

We assess the controller performance with the following
two scenarios.

Set point change: We apply the following reference tra-
jectory to the output ŷ = P̂el in (30).

• ∆0 MW → −∆1 MW at time t1 = 17.5s,
• −∆1 MW → ∆1 MW at time t2 = 60s,
• ∆1 MW → ∆1.5 MW at time t3 = 102s,
• ∆1.5 MW → ∆0 MW at time t4 = 140s.

Disturbance Rejection: We simulate the response to a
change of the cooling water temperature, where the tem-
perature change is modeled as the step response of a first
order lag element with time constant T = 50s and gain
K = −2.

The simulation for the set point change and the distur-
bance rejection are shown in Fig. 6 and Fig. 7, respectively.
Consider the results of the set point change first (Fig. 6a).
It is evident that set point changes around the operation
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Fig. 7. Results for the disturbance rejection: (a) blue curve
shows the simulated electric power, green curve shows
the disturbance signal (b) inputs of the system; blue
curve corresponds to the speed of the feedwater pump,
green curve corresponds to the valve position.

point (±∆1 MW) can be achieved by the proposed con-
troller. If the set point changes from ∆1 MW → ∆1.5 MW
the trajectory tracking is less accurate. An explanation for
this can be found in Fig. 6b, which shows the inputs of
the system. The first two set point changes require only
small variations of both inputs. However, if the set point
changes from ∆1 MW to ∆1.5 MW, the valve fully opens
and runs into saturation at the upper limit. To further
increase the generated power, the controller drastically
increases the speed of the feed water pump. Note that the
rate constraints limit the changes in the speed of the feed
water pump.

Results for the disturbance rejection are shown in Fig. 7.
The cooling water temperature decreases aperiodically, cf.
green curve in Fig. 7a. The controller rejects the distur-
bance and the electrical output remains approximately
constant. The resulting inputs are shown in Fig. 7b.

In both Fig. 6a and Fig. 7a small oscillations of the gener-
ated power Pel can be observed. These oscillations result,
since a simple generator model with damping constant
de = 0.3 is used here. The oscillations are very small
compared to the nominal generator output. The amplitude
of the oscillations stays well below 1% of the nominal
power in all simulations. As a result the control inputs
ûV and n̂ also show small oscillations to compensate the
oscillations of the generated power Pel.

6. SUMMARY AND OUTLOOK

We derived a nonlinear model for the steam cycle of a solar
power plant, estimated unknown model parameters by
applying nonlinear least squares estimation to measured
data, verified the resulting model with independent data,
and proposed and successfully tested a linear MPC con-
troller for this system in simulations. The model represents
the behavior of the real-world system very accurately over
a wide range of operation. Specifically, the largest root
mean squared error was observed for the outlet pressure p4
and was lower than 1.5%. The proposed model predictive
controller, despite being linear, is able to regulate the
nonlinear system to a given output trajectory and provided
good disturbance rejection.

Future work will address the implementation of the MPC
controller for the control of a solar power plant or parts
thereof. In addition, the nonlinear model will be used for
the optimal control of start-up and shut-down procedures.
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Appendix A. NONLINEAR ODE

The model summarized in (24) reads

ẋ =









































c2

V2

· (ṁ2 − ṁLF − ṁ2.2 − ṁ3)

c2

VC

(ṁ3 − ṁ3,T − ṁ4)

x4

1

θ
(MI − MT sin(x3) − dex4)

2ṁw

mw

(z − x5) +
2

mwcp
Q

ṁP,o

mP,o

(TP,i − x6) −
kA

mP,oc
∆ϑlog(x6 − Tw,i, TP,i − Tw,o)

c2

Vi

(ṁPH − ṁP,o)

2ṁE,o

mE,o

(TE,i − x8) −
2kA

mE,ocp
∆ϑlog(x8 − Tw,i, TE,i − Tw,o)

c2

VE

(ṁE,i − ṁE,o)









































,

y = MT sin(x3)2πf0,

where the mass flows ṁ2, ṁLF , ṁ2.2, ṁ3, ṁ3.T , ṁ4, ṁPH , ṁP,o, ṁE,o

are calculated with (2), (4), (7), (2), (6), (11), (8), (21), (21) respectively.

We use indices “i” and “o” for inlet and outlet, respectively. Note that

both ṁE,o and ṁP,o are calculated with the same equation but different

parameters. Moreover, Q and kA are calculated with (12) and (13),

respectively. Finally, MI = P/2πf0, where the thermal power P follows

from (9). Both ∆hHP and ∆hNP in (9) can be calculated with Alg. 3.
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