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Abstract: In order to mantain hybridoma cell cultures in optimal operating conditions, on-line measure-
ments of glutamine and glucose concentrations are required, implying the availability of probes, which
are expensive and with poor durability. A way to overcome this problem is to design software sensors.
In this work, both Extended and Unscented Kalman Filters are developed in order to estimate glucose
and glutamine concentrations, based on biomass, lactate and ammonia on-line measurements. System
observability conditions are first examined. The performances of both software sensors are analyzed with
simulations of hybridoma cell cultures in fed-batch and continuous bioreactor operating modes. Three
different tests are conducted in order to compare the performance of both observers: continuous culture
with constant feeding profile, fed-batch culture with both constant and exponential feeding profiles. Also,
two different sets of parameters are investigated: the ones obtained by using the least-squares method in
order to minimize the error between model predictions and experimental measurements, and the ones
which are modified by minimizing a cost function combining the usual least-squares criterion with a
state estimation sensitivity criterion.

Keywords: Hybridoma cultures, state estimation, software sensors, observability, Extended Kalman
Filter, Unscented Kalman Filter.

1. INTRODUCTION

Hybridoma cell cultures are widely used for the production
of monoclonal antibodies with therapeutic purposes. In recent
years, many improvements have been developed so as to ensure
the growing demand for these kinds of recombinant proteins.
However, large-scale production is often limited by problems
related to the availability of adequate process control strategy
ensuring optimal culture conditions. Moreover, the develop-
ment of such control tools requires reliable monitoring systems
on the production system in order to maintain the cell in a
specific metabolic state (Rodrigues et al., 2010; Wurm, 2004).

Indeed, hybridoma cells exhibit an overflow metabolism phe-
nomenon in presence of an excessive substrate concentration
(glucose and/or glutamine) in the medium leading to a by-
product formation (lactate and ammonia) and the inhibition of
cell growth (Amribt et al., 2013). Hence, the substrate con-
centrations need to be maintained at a critical concentration
value to avoid this undesirable effect (Amribt et al., 2014).
This kind of control requires the presence of reliable probes for
the on-line measurement of these variables. As these ones are
expensive and present poor durability (about 1-3 months), the
design of software sensors for glucose and glutamine estimation
is a useful alternative strategy widely recognized in bioprocess
monitoring and control (Dewasme et al., 2013; Hitzmann et al.,
2000; Veloso et al., 2009).

The Extended Kalman Filter (EKF) appears as the most used
state estimator when the system is nonlinear (Simon, 2006).
Although the EKF is a widely used filtering strategy, it presents
some disadvantages. It is reliable for systems which are almost
linear on the time scale of the update intervals; it requires
the calculation of Jacobians at each time step, which may be
difficult to obtain for higher order systems; it does linear ap-
proximations of the system at a given time instant, which may
introduce errors in the state, leading then the state to diverge
over time (Julier and Uhlmann, 1997; Wan and Van Der Merwe,
2000; Zhu and Feng, 2012). In order to handle these problems,
the unscented Kalman filter (UKF) was proposed by Julier and
Uhlmann (2004). The UKF uses the unscented transformation
(UT) based on the idea that it is easier to approximate a prob-
ability distribution than a nonlinear function. The advantage of
the UKF with respect to the EKF is that no jacobians need to be
computed, therefore no linearization errors are introduced.

The present study uses a macroscopic model taking account of
an overflow metabolism within glycolysis and glutaminolysis
(Amribt et al., 2013) in order to compare the performance
between both Extended and Unscented Kalman Filters.

In many study cases, sensitivity of measured model states
with respect to the unmeasured ones is poor, leading to poor
estimation quality. This is due to the fact that when using least-
squares method to identify model parameters, no guarantee is
given about sensitivity of measured with respect to unmeasured
states. To overcome this problem, a parameter identification
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procedure is proposed in Bogaerts and Vande Wouwer (2004),
which is based on a cost function combining the usual least-
squares criterion with a state estimation sensitivity criterion.

The motivation of this work is twofold: on the one hand to
compare the performance of both EKF and UKF observers,
to estimate glucose and glutamine concentrations, based on
biomass, lactate and ammonia on-line measurements and, on
the other hand, to show the effectiveness of the parameter
identification for state estimation procedure.

This paper is organized as follows. The dynamic model is
presented in the next section. In section 3, the system observ-
ability condition is analyzed and both methods for parameter
identification are introduced: the least-squares method and the
cost function combining the usual least-squares criterion with a
state estimation sensitivity criterion. Sections 4 and 5 describe
the EKF and UKF, respectively. Results are presented in section
6 and conclusions are pointed out in section 7.

2. OVERFLOW MODEL

The present study uses a macroscopic model developed in
Amribt et al. (2013) which takes into account the overflow
metabolism of glycolysis and glutaminolysis of hybridoma
cells. Macroscopic reactions representing the respiratory and
the overflow metabolism are assumed as follows:

(1) Respiratory metabolism

Glc
ϕGlc
−−−→ a × X + b × L (1)

Gln
ϕGln
−−−→ c × X + d × N (2)

(2) Overflow metabolism

Glc
ϕGlc over
−−−−−→ 2 × L (3)

Gln
ϕGln over
−−−−−→ N +

1
2
× L (4)

where X, Glc, Gln, L and N are the concentrations of biomass,
glucose, glutamine, lactate and ammonia, respectively. Note
that a, b, c and d are the stoichiometric coefficients. ϕGlc, ϕGln,
ϕGlc over and ϕGln over are the reaction rates used to describe
respiratory and overflow metabolisms. Reaction rates are given
by:

ϕGlc = min(ϕGlc1, ϕGlc max) (5)

ϕGln = min(ϕGln1, ϕGln max) (6)

ϕGlc over = max(0, ϕGlc1 − ϕGlc max) (7)

ϕGln over = max(0, ϕGln1 − ϕGln max) (8)

where glucose and glutamine consumption rates (ϕGlc1 and
ϕGln1) are represented as extended Monod-kinetics. Maxi-
mum growth capacity for glucose and glutamine (ϕGlc max and
ϕGln max) are expressed as first order kinetics with respect to the
biomass concentration:

ϕGlc1 = µGlc max1
Glc

KGlc + Glc
Gln

KGln1 + Gln
Xv (9)

ϕGln1 = µGln max1
Gln

KGln + Gln
KN

KN + N
Xv (10)

ϕGlc max = µGlc max2Xv (11)

ϕGln max = µGln max2Xv (12)

where µimax j (i = Glc,Gln, j = 1, 2) are the maximum values of
the specific rates and KGlc, KGln1 and KGln are the saturation
coefficients. KN is the ammonia inhibition constant over the
oxidation of glutamine.

Mass balances for viable biomass (Xv), glucose, glutamine, lac-
tate, ammonia are given by the following differential equations:

dXv

dt
= aϕGlc + cϕGln − µdXv − DXv (13)

dGlc
dt

= −ϕGlc − mGXv − ϕGlc over + D(Glcin −Glc) (14)

dGln
dt

= −ϕGln − ϕGln over + D(Glnin −Gln) (15)

dL
dt

= bϕGln + 2ϕGlc over +
1
2
ϕGln over − DL (16)

dN
dt

= dϕGln + ϕGln over − DN (17)

dV
dt

= Fin (18)

with dilution rate D = Fin
V , where Fin is the inlet feed rate and V

the broth volume. Glcin and Glnin are the glucose and glutamine
concentrations in the feed medium, respectively. mG represents
the maintenance coefficient of glucose and the specific death
rate µd is assumed to be constant. Note that in the case of this
study, the authors have chosen not to consider the dynamics
associated with dead biomass which is normally included as a
state variable in the model of Amribt et al. (2013). Indeed, this
state variable can be easily excluded from the model only taking
into account the viable biomass concentration.

3. SYSTEM OBSERVABILITY

Before proceeding to state estimation, system observability
has to be checked. Observability is a system property, which
depends on the input signal in nonlinear systems. The global
observability analysis of nonlinear models can be simplified
through the introduction of a canonical form (Zeitz, 1984;
Gauthier and Kupka, 1994) given by:

ξ̇ =



ξ̇1

ξ̇2

...

ξ̇q−1

ξ̇q


=



f1(ξ1, ξ2)
f2(ξ1, ξ2, ξ3)

...

fq−1(ξ1, . . . , ξq−1, ξq)
fq(ξ1, . . . , ξq−1, ξq)


(19)
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y =


h1(ξ1

1)

h2(ξ1
1 , ξ

2
1)

...

hn1 (ξ1
1 , . . . , ξ

n1
1 )


(20)

where ∀i ∈ 1, . . . , q, ξi ∈ <
ni , n1 ≥ n2 ≥ · · · ≥ nq,

∑
1≤i≤q

ni =

N = dimξ. Then, a system is said globally observable if the
following conditions are satisfied:

∂h j

∂ξ
j
1

, 0, ∀ j ∈ 1, . . . , n1 (21)

rank
∂ fi
∂ξi+1

= ni+1, ∀i ∈ 1, . . . , q − 1 (22)

The first condition implies that the first n1 state variables can
be inferred from the measurements, while the second ensures
that any differences in the state trajectory can be detected in
the measurements thanks to a pyramidal influence of the state
subvector ξi+1 on the evolution equations ξ̇i.

In doing so, the model presented above can be put in the
canonical form as follows:

ξ̇ =

[
ξ̇1

ξ̇2

]
=

[
f1(ξ1, ξ2)
f2(ξ1, ξ2)

]
, y = ξ1 (23)

where ξ1 = [Xv L N]T and ξ2 = [Glc Gln]T . The observability
test is given by:

rank
∂ f1
∂ξ2

=



∂Ẋv

∂Glc
∂Ẋv

∂Gln
∂L̇
∂Glc

∂L̇
∂Gln

∂Ṅ
∂Glc

∂Ṅ
∂Gln


= n2 = 2 (24)

and is verified if Glc, Gln and N concentrations do not vanish.

3.1 Parameter identification for state estimation

One of the requirements to build state observers is to investigate
the observability of the system. What happens sometimes is that
even if the system is observable, the ability to detect, in the
output trajectories, a difference in the initial states is difficult,
leading to poor estimation quality. This fact was a motivation
to define a new cost function F(θ) combining the identification
criterion J(θ) with the observability measure Fobs(θ) in Bo-
gaerts and Vande Wouwer (2004), yielding, therefore, a model
dedicated to state estimation purposes.

F(θ) = J(θ) + λFobs(θ) (25)

where λ is the weighting factor and Fobs is given by:

Fobs(θ) =

q∑
j=1

p∑
i=1

√
cond

(∂ f1
∂ξ2

)T

i j

(
∂ f1
∂ξ2

)
i j

 (26)

”cond” being the condition number of the matrix (the ratio of its
largest to its smallest eigenvalue), q the number of experiments
and p the number of measurements.

Both nominal and modified sets of parameters are used in the
present study in order to design and compare the performances
of both EKF and UKF software sensors.

4. EXTENDED KALMAN FILTER

The Extended Kalman Filter (EKF) is widely used to estimate
the states when the system is nonlinear (Simon, 2006). The
EKF algorithm involves a linearization of the nonlinear state
equations around the current state estimate x̂. As a result, a
group of iterative equations is obtained, which are similar to
the Kalman Filter (Kalman, 1960) equations for linear systems.

Given the following nonlinear system:

xk = f (xk−1, υk−1, uk−1), (27)

yk = h(xk, nk, uk), (28)

where x ∈ Rnx is the system state, υ ∈ Rnυ the process
noise, n ∈ Rnn the observation noise, u the input and y the
noisy observation of the system. The EKF algorithm proceeds
in two steps: a prediction step (corresponding to the time
period between two measurement times) and a correction step
occurring each time a new measurement is available.

Step 1: Prediction step between tk and tk+1

Prediction step linearizes the system dynamics, yielding the
state estimate x̂k as well as the covariance Pxk

a priori by using
the Jacobian function, as follows:

x̂k = f (x̂k−1, uk),

Pxk
= Fxk Pxk FT

xk
+ Qk−1 (29)

where Qk−1 is the process noise covariance matrix and Fxk is
the Jacobian function.

Fxk =
∂ f
∂x

∣∣∣∣∣
x=x̂(k)

(30)

Step 2: Correction step at time tk+1

The observation dynamics yk are linearized around the a priori
state estimate x̂k.

At the end, the state estimate x̂k and the covariance Pxk a
posteriori are obtained thanks to the correction term Kk.

Kk = Pxk
HT

xk
(Hxk Pxk

Hxk + Rk)−1,

x̂k = x̂k + Kk[yk − H(x̂k)],

Pxk = (I − KkHxk )Pxk
. (31)

where Rk is the measurement noise covariance matrix and Hxk

is the Jacobian function given by:

Hxk =
∂h
∂x

∣∣∣∣∣
x=x̂(k)

(32)
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5. UNSCENTED KALMAN FILTER

UKF addresses the mentioned problems of EKF by using
a deterministic sampling approach. The state distribution is
represented by a GRV (Gaussian Random Variable), but is now
specified using a minimal set of carefully chosen sample points
(called sigma points). These sample points completely capture
the true mean and covariance of the GRV, and when propagated
through the true non-linear system, captures the posterior mean
and covariance accurately.

5.1 UKF Algorithm

UKF computes a set of 2n+1 sigma points χi (with correspond-
ing weight 4i) of the random variable x of dimension n, mean
x̄, and covariance Px. The statistics of the random variable x is
calculated using the unscented transforms (UT) as follows:

χ0 = x̄
χi = x̄ + (

√
(n + λ)Px)i i = 1, ..., n

χi = x̄ − (
√

(n + λ)Px)i−n i = n + 1, ..., 2n
4

m
0 = λ/(n + λ)
4

c
0 = λ/(n + λ) + (1 − α2 + β)
4

m
i = 4

c
i = λ/(2(n + λ)) i = 1, ..., 2n

where λ = α2(n+κ)−n is a scaling parameter, α determines the
spread of the sigma points around x̄ and is usually set to a small
positive value (0 < α ≤ 1). κ ≥ 0 must be chosen to guarantee
the semi-positive definiteness of the covariance matrix. A good
default choise is κ = 0. β is a tuning parameter, which can
be used to incorporate knowledge of the distribution. For a
Gaussian distribution the optimal choice is β = 2 (Kandepu
et al., 2008).

Step 1 - During the prediction step, the UKF algorithm
exhibits as follows:

The transformed sigma points are given by instantiating
each point through the process model:

χ−i(k) = f [xk, χ
−
i(k−1)] (33)

The predicted mean x̂−k and covariance P−k are computed as
follow:

χ−i(k) = f [xk, χ
−
i(k−1)]

x̂−k =

2n∑
i=0

4iχ
−
i(k)

P−k =

2n∑
i=0

4i[χ−i(k) − x̂−k ][χ−i(k) − x̂−k ]T + Qk−1

(34)

Step 2 - During the correction step of UKF, the mean and
covariance calculated during the prediction are used together
with the measurements at time k to correct the new values.

The prediction sigma points are propagated through the
observation model:

Ŷi(k) = h[xk, χ
−
i(k)] (35)

ŷk =

2n∑
i=0

4
m
i Ŷi(k)

Pȳk ȳk =

2n∑
i=0

4
c
i [Ŷi(k) − ŷk][Ŷi(k) − ŷk]T

Pxkyk =

2n∑
i=0

4
c
i [χ−i(k) − x̂−k ][Ŷi(k) − ŷk]T

S k = Pȳk ȳk + Rk−1

Kk = Pxkyk S
−1
k

x̂k = x̂−k + Kk(yk − ŷk)
Pk = P−k − kkS kkT

k

(36)

where ŷ−k , P−ȳk
, Pxkyk , Kk, x̂k and Pk are the mean and covariance

of the measurement vector, the cross covariance, the Kalman
gain, estimated state and covariance, respectively.

6. RESULTS AND DISCUSSION

EKF and UKF observers are applied in order to estimate glu-
cose and glutamine concentrations from biomass, lactate and
ammonia measurements. Biomass can be measured off-line
using microscopic cell counting and on-line using a Fogale
Nanotech probe. Lactate and ammonium can be measured off-
line by ultra performance liquid chromatography (UPLC) and
in-line using a calibrated Near Infra-Red (NIR) probe.

Due to the poor estimation of glutamine concentration, a set of
modified parameters based on a cost function (25) combining
the usual least-squares criterion with a state estimation sensitiv-
ity criterion, when applied to a structurally comparable model
defined by a set of nominal parameters identified by a classical
least-squares method is also applied. This procedure was also
applied in Amribt et al. (2014), from where the parameters
values (see table 1) are taken.

Table 1. Identified parameter values.

Parameters Nominal values Modified values Units

µGlc max1 1.0006 1.5265 mmol/(109cellsh)
µGlc max2 0.0283 0.0371 mmol/(109cellsh)
µGln max1 0.1992 0.1447 mmol/(109cellsh)
µGln max2 0.0203 0.0222 mmol/(109cellsh)
µdmax 0.0111 0.4753 h−1
KGlc 23.2350 42.7822 mM
KGln 0.0004 0.2770 mM
KN 0.9931 3.5332 mM

KGln1 0.0005 0.2006 mM
KGd 2.1862 1.7429 mM

a 1.1462 0.8757 109cells/mmol
b 1.2939 1.1806 mmol/mmol
c 0.1186 0.0805 109cells/mmol
d 0.3000 0.4099 mmol/mmol

mG 0.0367 0.0352 mmol/(109cellsh)
KGnd 0.002 0.002 mM

Three different tests are conducted in order to compare the
performance of both observers: continuous culture with con-
stant feeding profile, fed-batch culture with both constant and
exponential feeding profiles. Continuous culture conditions are
the following: initial volume V = 0.35L, dilution rate D =
0.0197h−1. The feeding starts at time t = 35h. Glucose and
glutamine feeding are Glcin = 15mM and Glnin = 4mM,
respectively and final culture time is t f = 200h. Concerning the
fed-batch culture with constant feeding, the same conditions as
the ones used in continuous culture are considered, except the
dilution rate. From D = Fin

V , we assume an input feeding of
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Fig. 1. Biomass, lactate and ammonia on-line measurements
simulated with nominal parameter values. Red: Continu-
ous culture. Black: Fed-batch culture with constant feed-
ing. Green: Fed-batch culture with exponential feeding.
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Fig. 2. Glucose and glutamine estimation with EKF and UKF
using nominal and modified parameters values (20 runs by
varying initial conditions - black curves) for a continuous
culture with constant feeding. In blue: model evolution. In
green: Confidence intervals at 95%.

Fin = 0.1L/day, which starts at time t = 35h. For the last test,
the fed-batch culture with exponential feeding, the feeding is
represented by F(t) = 6.10−4e0.038×(t−52) and starts at t = 52h.
Initial volume V = 0.35L, glucose and glutamine feeding are
Glcin = 38mM and Glnin = 10mM, respectively. Culture ends
at time t f = 133h.

Observer initial conditions are taken randomly at maximum
30% of the real initial conditions: Xv = 0.185 × 106cells/mL,
Glc = 17.17mM, Gln = 2.41mM, L = 0.36mM, N = 0.23mM.

The noise standard deviation is chosen as 5% for biomass and
ammonia and 25% for lactate. Being xi0 the initial conditions
and N the number of considered states; initial covariance and
model noise covariance are given by: P0 = (diag[0.2 × xi0 ]2)
Q0 = 0.12 × eye(N) are given by.

As dynamics are changing depending on bioreactor mode, the
sigma points tuning parameters α and κ also have to change. For
the first test α = 0.9 and κ = 0.6. For the second test α = 1.0−3

and κ = 1.0−4. For the third test α = 0.4 and κ = 0.

In order to compare the different simulation results, Root Mean
Square Error (RMSE) of the estimation of glucose and glu-
tamine when varying initial conditions are calculated as fol-
lows:

RMS Ek =

√∑N
j=1

∑n
i=1(Xobsk,i j − Xmodk,i j)2

n × N
(37)
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Fig. 3. Glucose and glutamine estimation with EKF and UKF
using nominal and modified parameters values (20 runs by
varying initial conditions - black curves) for a fed-batch
culture with constant feeding. In blue: model evolution. In
green: Confidence intervals at 95%.
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Fig. 4. Glucose and glutamine estimation with EKF and UKF
using nominal and modified parameters values (20 runs by
varying initial conditions - black curves) for a fed-batch
culture with exponential feeding. In blue: model evolution.
In green: Confidence intervals at 95%.

Table 2. RMSE of glucose and glutamine obtained
for UKF and EKF using nominal and modified

parameters.

Continuous culture
RMSE Glucose RMSE Glutamine

Nominal values Modified values Nominal values Modified values

EKF 0.9058 1.3631 0.2204 0.2180
UKF 0.6695 1.3816 0.2012 0.1990

Fed-Batch culture with constant feeding
EKF 0.8493 1.5107 0.2072 0.1930
UKF 0.8389 2.0763 0.2070 0.2072

Fed-Batch culture with exponential feeding
EKF 5.3263 1.8843 2.0069 0.2384
UKF 1.3832 2.4647 0.3701 0.2873

In figure 1, biomass, lactate and ammonia measurements sim-
ulated with nominal parameter values, for the three tests are
shown. Glucose and glutamine estimations for the continuous,
fed-batch with constant and exponential feedings cultures are
shown in figures 2, 3 and 4, respectively. Whatever the type of
feeding using the set of nominal parameters (NP), the UKF ex-
hibits better results in terms of convergence of the unmeasured
state estimates towards the true values as can be seen from the
RMSE values which are (in the average) about 32 % smaller in
the case of an UKF in comparison of the use of the EKF in the
same conditions. This can of course be explained on the basis
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that the UKF corresponds to a true nonlinear solution on the
contrary to the EKF which is based on a model linearization.

From figure 4 it can be seen that the use of the NP can lead
to divergent state estimates in the case of an exponential feed-
ing. This phenomenon is observed when the sensitivity of the
unmeasured states with respect to the measured ones becomes
very low (which happens here when the glutamine is almost de-
pleted) and, simultaneously, the corresponding state estimates
are still far from the true values. This only happens with the
exponential feeding profile because it is applied much later
(after 52h) than the constant feeding (35h in both continuous
and fed-batch cases) and with the estimates which correspond
to the highest overestimated initial values of the glutamine
concentration. As a consequence, the state estimates enter the
region of low sensitivity much faster while they are still far from
converging to the true values given the high initialization error.
Even though, from table 2 it can be seen that the RMSE values
are (in the average) 78 % smaller when using the UKF (NP)
instead of the EKF (NP). This phenomenon is not observed with
the modified parameters as they lead to a significantly higher
state estimation sensitivity.

7. CONCLUSION

In this study, EKF anf UKF algorithms are applied in order
to estimate glucose and glutamine from biomass, lactate and
ammonia measurements. Due to the poor glutamine estimation,
a set of modified parameters (the ones obtained by a cost
function combining the usual least-squares criterion with a state
estimation sensitivity criterion) is used and compared with a
set of nominal parameters identified by a classical least-squares
method.

From the presented results two main conclusions can be de-
duced. The first one is that the UKF achieves a better level
of accuracy than the EKF when nominal parameters are used.
The second one is that the state estimations based on the set
of modified parameters is notably useful when the sensitivity
of the unmeasured states with respect to the measured ones
becomes very low, which is the case of the fed-batch culture
with exponential feeding.
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