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Abstract: A modern complex industrial process, such as petroleum refinery, petrochemical plant, pulp & 

paper process and power plant, usually include hundreds or thousands of control loops. It is a well-known 

fact that many controllers in a process plant are not tuned properly (Desborough and Miller, 2001). Badly 

tuned controllers would lead to loss in production as well as quality (Bialkowski, 1993; Ender, 1993). 

Therefore, it is necessary to detect the controllers that are poorly tuned and diagnose their behavior as 

sluggish or aggressive (oscillatory) and make the operators aware of it so that appropriate retuning 

actions can be initiated. There are methods in the literature for diagnosing aggressive (Thornhill and 

Horch, 2007) or sluggish (Hugglund, 1995; Kuehl and Horch, 2005) controller behavior.  However, each 

of these methods has its own limitations and none of them addresses the improper controller tuning issues 

(sluggish and aggressive behavior) in a unified framework.  Here, we have proposed a non-invasive 

method to automatically detect the badly tuned controller and identify its tuning issue as sluggish or 

aggressive directly from the routine plant operation data. The effectiveness of the proposed method is 

demonstrated on both simulated as well as industrial control loop examples. 

Keywords: Process and Control Monitoring 



                                                 
1
 Currently at Yokogawa Ltd. Bangalore, India 

1. INTRODUCTION 

A modern complex industrial process, such as petroleum 

refinery, petrochemical plant, pulp & paper process and 

power plant, usually includes hundreds or thousands of 

control loops. Various studies indicate that a large percentage 

(between 66% to 80%) of industrial process controllers have 

performance problems (Desborough and Miller, 2001; 

Bialkowski, 1993). These problems arise due to various 

reasons including use of incorrect controller tuning 

parameters or inappropriate hardware during installation. 

Furthermore, the performance of a well-tuned control system 

can deteriorate over time due to various factors including 

changes in operating conditions and equipment wear and tear. 

Nonetheless, these poorly performing controllers has a 

detrimental effect on plant profitability, both in terms of 

increased product variance and increased settling time, which 

can lead to loss in production as well as quality. Therefore, 

there is a strong motivation to develop a method for 

automating detecting control loop tuning issues.  

Hagglund (1999) proposed a method for detecting the 

sluggishness of controller tunings directly from routine 

operation data. It is based on idle index which relies on the 

length of reverse correlation between CE and OP in the 

transition region. Since, the Hagglund’s method is based on 

the correlation of increments in CE and OP, it is highly 

sensitive to noise and it works well only with clean, noise 

free data. Therefore, the practical applicability of this method 

is very much limited and it is not at all suitable for real 

industrial dataset where the data are inherently noisy. To 

overcome this problem and to enable this method to deal with 

real, noisy data, Kuehl and Horch (2005) proposed a series of 

data pretreatment procedure which includes a set of filtering 

techniques, steady state detection and signal quantization. 

Each of these pretreatment procedures (e.g., filtering, steady 

state detection, signal quantization) requires a number of 

parameters, the values of which are to be chosen 

appropriately to obtain the desired results. An improper 

choice of any of these parameters may lead to misleading/ 

erroneous results. The choice of best set of parameter values 

depends heavily on nature of the signal. In fact, there is no 

unique set of parameter values that works well for all types of 

data.  Therefore, finding the best set of parameter values for 

each signal is really a daunting task and demands sufficient 

domain/process knowledge. Therefore, the data pre-treatment 

procedures proposed by Kuehl and Horch (2005) to 

overcome the limitations of Hagglund’s method is not ideally 

suited for the large scale industrial process involving 

thousands of closed loop controllers. A robust method which 

can efficiently handle real, noisy industrial data without the 

need of any pre-treatment is highly desirable as per as 

practical implementation is concerned. Furthermore, the 

method proposed by Hagglund (1999) and/or Kuehl and 

Horch (2005) cannot address all the controller tuning issues, 
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it can only detect whether a controller is tuned conservatively 

or not. Hence, there is a strong motivation for developing a 

single unified approach which can detect full range of 

controller tuning problems and diagnose them either as 

sluggish or aggressive behavior directly from the routine 

plant data. 

In this paper we propose a novel method, which is able to 

automatically detect the badly tuned controller and identify 

its tuning issue as sluggish or aggressive directly from the 

routine plant operation data. Rest of the paper is organized as 

follows: the proposed method for detecting controller tuning 

issues is presented in section 2.  The proposed method 

requires automatic detection of the steady state and transition 

regions in the controller time series data. In section 3, a novel 

and efficient technique for detecting the steady state and 

transition regions in the controller time series data is 

proposed. The efficacy of the proposed method for detecting 

controller tuning issues is demonstrated through various 

simulated and industrial control loop examples in Section 4.    

2. PROPOSED APPROACH FOR DETECTING 

CONTROLLER TUNING ISSUES 

When a closed loop control system is at the steady state a 

strong correlation – either positive (in case of reverse acting 

controller) or negative (for direct acting controller) exists 

between the controller input i.e., Control Error (CE = SP – 

MV) and controller output (OP). The closed loop system 

undergoes through a transition in response to a step change in 

the set point (SP) or in load disturbance and ultimately settles 

down to a new steady state. The behavior of the system 

during this transition can be analyzed for detecting the 

controller tuning issues.  If the controller is tuned sluggishly, 

the strong correlation (either positive or negative) that exists 

between controller input (CE) and output (OP) in the steady 

states is expected to break significantly during the transition 

periods. For the aggressively tuned controller, on the other 

hand, the transition regions would exhibit clear oscillatory 

behavior in both CE and OP with decaying oscillation 

amplitude. However, Presence of oscillation in the time series 

data cannot be used as a basis for the diagnosis of aggressive 

controller tuning, since several other problems – such as 

valve stiction, external disturbance can also lead to oscillation 

in MV and/or OP data. Hence, the presence of oscillation in 

the MV and/or OP signal does not necessarily indicate that 

the oscillation is due to the aggressive controller tuning. 

However, as discussed before, when a system undergoes 

transition in response to a step change in SP or load 

disturbance, the presence of aggressive controller tuning 

would result in clear oscillation with decaying amplitude in 

the transition region. Therefore, presence of oscillatory 

behavior with decaying amplitude in transition region of time 

series CE and/or OP data forms a strong basis for the 

diagnosis of aggressive controller tuning issue.  

In this paper, we have proposed a unique approach for 

diagnosing both sluggish as well as aggressive controller 

behaviors in a unified framework. The proposed approach is 

depicted in Fig. 1. The input to the system is the routine time 

series operation data of a controller, i.e., MV, OP and SP data 

and the output is the diagnosis results of controller tuning 

problem (see Fig. 1a). The output could be sluggish or 

aggressive controller behavior or it could be well tuned 

controller. The major steps involved in the proposed method 

are shown in Fig. 1b.  

 

                                          (a) 

 

                                             (b) 

Fig. 1(a). Input and output, and (b). Major steps in the 

proposed method. 

In the proposed approach, first, the steady state and transition 

regions in the time series data are identified. For this we have 

proposed a novel steady state detection approach. The steady 

state detection method is discussed in the next section. After 

detecting the steady state regions, the transition regions are 

identified as the segments in the time series in between two 

steady states. The correlation coefficient (r) between CE and 

OP are computed in the identified steady state as well as in 

the transition regions. CE and OP would be strongly 

correlated in the identified steady state regions i.e., the value 

of correlation coefficient (r) would be positive (for reverse 

acting controllers) or negative (for direct acting controllers) 

at the steady states. A significant change (reversal) in 

correlation structure between CE and OP in the transition 

region compared to that in the steady state region is a clear 

indication of sluggish controller tuning. The sluggish 

controller behavior is diagnosed if the correlation coefficient 

(r) between CE and OP in the transition region differs 

significantly and becomes reverse from that in the steady 

state. To determine whether the correlation coefficient in the 

transition region has changed significantly from that in the 

steady state we use statistical hypothesis testing which is 

based on the p-value associated with the computed 
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correlation coefficient (r) (Taylor, 1990). A low p-value 

(p<0.01) indicates that the correlation is statistically 

significant. If the slow control is not detected through the 

above procedure, then the identified transition segment in the 

time series data is further tested for the presence of 

oscillation. The CE data in the identified transition region is 

tested with auto-correlation based oscillation detection 

method (Thornhill et al. 2003). Aggressive controller tuning 

is diagnosed if the oscillation is detected in CE data and the 

amplitude of detected oscillation is decaying. Otherwise, the 

controller would be diagnosed as well tuned if neither 

sluggish nor aggressive behavior can be detected. 

In this work, we propose a novel steady state detection 

method for identifying the steady state and transition regions 

automatically in the time series CE and OP data of control 

loop. The proposed steady state detection method is discussed 

next. 

3. A NOVEL STEADY STATE DECTION METHOD 

Most of the steady state detection methods (Narashiman et al. 

1987; Cao and Rhinehart, 1995; Jiang et al. 2003) proposed 

in the literature are uni-variate in nature. Here, we have 

proposed a novel bivariate based steady state detection 

method that can identify the regions in the time series at 

which a closed loop control system is at the steady state by 

taking the time series data of both CE and OP together into 

the consideration. 

In case of a PID controller Control Error (CE) and controller 

output (OP) are related through the following equation 

   tCE
dt

d
KdCEKtCEKtOP

t

dic  

0

)()(    (1) 

In Eq (1), Kc, Ki and Kd are proportional, integral and 

derivative gain respectively. The term t represents time or 

instantaneous time (the present) and τ is the variable of 

integration; takes on values from time 0 to the present t. In 

the regions where the closed loop system is at steady state 

both the magnitude of CE(t) as well as changes in CE (ΔCE) 

become very small. Because of this, in the steady state 

regions, the term  

t

dCE

0

 in Eq 1 does not vary much 

(stays nearly constant), also the derivative action (3rd term in 

Eq 1) becomes negligible. As a result of this, CE and OP 

become almost linearly correlated with a slope close to Kc in 

CE - OP space when the system is at steady state. Therefore, 

when time series CE and OP data are transformed into a new 

coordinate system, yx   by rotating the original CE – OP 

coordinate system by an angle   
c

K
1

tan


  in 

anticlockwise direction (shown in Fig. 2) and a histogram of 

y  coordinate values of all the data points is obtained (see Fig 

3), then the peaks in the histogram would typically 

correspond to the samples that are at the steady state regions 

while the transitions are typically represented by the valleys 

or flat regions in the histogram. Thus, the steady state region 

in bivariate CE and OP can be identified by finding a time-

series segment in which the y  coordinate values lie within 

the peak region of the histogram (say, within 2 bins on both 

sides of a peak). This forms the basis of steady state detection 

in bivariate CE-OP data in this paper. The various steps 

involved in the proposed steady state detection method are 

presented in Fig. 4. Once the steady states regions are 

determined in the time series data, a transition region can be 

easily identified as the region that lies in between two steady 

states. 

 

Fig. 2. Original and transformed coordinate system. 

 

Fig. 3. Histogram of y  coordinate values. 

 

Fig. 4. Flow chart of proposed steady state detection method. 
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4. ILLUSTRATIVE EXAMPLES 

This section presents some simulated as well as real industrial 

examples, where the proposed method for detecting 

controller tuning issues is demonstrated. 

4.1 Simulated sluggishly tuned controller  

First, the proposed method is applied to the simulated 

sluggishly tuned controller example reported in Kuehl and 

Horch (2005), wherein a simple process model described as 

 
 

2
1

1




s
sG is perturbed with a single stepwise load 

disturbance of amplitude 1. White noise with a variance of 

0.01 has been added to the disturbance. The process is 

controlled with a sluggishly tuned PI controller 

  









s
KKsF

ic

1 with Kc = 0.4 and Ki = 0.02. The MV, 

SP and OP data of this simulated loop are shown in Fig. 5. 

The results of the proposed method are summarized in Table 

1. 

 

Fig. 5. Time series plot of MV, SP and OP data in the 

simulated sluggish controller example in Kuehl and Horch 

(2005). 

It is quite clear that from the correlation coefficient (r) values 

and their associated p-values in the steady state and transition 

regions (see Table 1) that the strong positive correlation 

between CE and OP that exists in the steady states is 

completely broken and becomes reverse (negative) in the 

transition region. Hence, sluggish controller behavior can be 

successfully diagnosed through the proposed method. As 

mentioned in Kuehl and Horch (2005), Huglund’s idle index 

based method fails here to detect the sluggish tuning issue in 

this example. Although, Kuehl and Horch (2005) succeeded 

to detect this sluggish tuning issue through a series of data 

pretreatment steps with proper choice of tuning parameters in 

each step. However, improper choice of tuning parameters in 

any of the pre-treatment steps may poetically lead to a 

misleading result.      

Table 1.  Results of the proposed method on the simulated 

sluggish controller in Kuehl and Horch (2005)  

Identified steady state region 1 (SS1) Sample No 

1-109 

Correlation coefficient (r) in SS1 0.9880 

p-value of correlation in SS1 ~ 0 

Identified steady state region 2 (SS2) Sample No 

247-801 

Correlation coefficient (r) in SS2 0.8522 

p-value of correlation in SS2 ~ 0 

Identified Transition Region Sample No 

109-247 

Correlation coefficient (r) in transition region -0.6524 

p-value of correlation in the transition region ~ 0 

4.2 Simulated aggressively tuned controller  

Next, the proposed method is applied to the same simple 

process as described in section 4.1. But unlike in section 4.1, 

the PI controller is now tuned aggressively with Kc = 2 and 

Ki = 1.5. A single stepwise load disturbance of amplitude 1 is 

added to the process while the variance of added white noise 

is 0.001. The MV, SP and OP data of this simulated loop are 

shown in Fig. 6. The results of the proposed method are 

summarized in Table 2. 

 

Fig. 6. Time series plot of MV, SP and OP data in the 

simulated aggressive controller. 

It can be seen from the correlation coefficient (r) values and 

its associated p-values in the steady state and transition 

regions that the strong positive correlation between CE and 

OP that exists in the steady states is retained even in the 

transition region as well. Hence, sluggish controller behavior 

cannot be diagnosed through the proposed method. 

Therefore, CE data in the identified transition region is 

subsequently tested with DCT based oscillation detection 

method. Oscillation is detected in the transition region of CE 

and the period regularity of the detected oscillation is ~53%. 

Oscillation amplitude regularity measure also indicates that 

the amplitude of this oscillation is decaying since the 

amplitude irregularity of the detected oscillation is about 

65%. Consequently, the controller can be correctly diagnosed 

as an aggressive one. 
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Table 2.  Results of the proposed method on a simulated 

aggressive controller  

Identified steady state region 1 (SS1) Sample No 

1-100 

Correlation coefficient (r) in SS1 0.7291 

p-value of correlation in SS1 ~ 0 

Identified steady state region 2 (SS2) Sample No 

116-801 

Correlation coefficient (r) in SS2 0.7295 

p-value of correlation in SS2 ~ 0 

Identified Transition Region Sample No 

100-116 

Correlation coefficient (r) in transition region 0.6416 

p-value of correlation in the transition region 0.0055 

Oscillation in the transition region Detected 

Amplitude Irregularity of Oscillation in the 

transition region 

64.65% 

4.3 Simulated Well-tuned controller  

Finally, the proposed method is applied to a simulated well-

tuned controller. Here, the same simple process model as 

discussed above is used with a well-tuned PI controller. The 

controller parameters are Kc = 0.4 and Ki = 0.4. As 

mentioned in section 4.1, the process is perturbed with a 

single stepwise load disturbance of amplitude 1 and a white 

noise with a variance of 0.01 has been added to it. The MV, 

SP and OP data of this simulated loop are shown in Fig. 7. 

The results of the proposed method are summarized in Table 

3. 

 

Fig. 7. Time series plot of MV, SP and OP data in the 

simulated well-tuned controller. 

It can be seen from Table 3 that significant positive 

correlation exist between CE and OP in both the identified 

steady state regions since the correlation coefficient (r) 

values are positive with their associated p-values close to 0 

(<0.01) in both the steady states. While a high p-value, close 

to 0.04 (>0.01), clearly indicates that the negative correlation 

(r = -0.6925) between CE and OP in the identified transition 

region is not statistically significant. Hence, the clear reversal 

of correlation between CE and OP cannot be observed in the 

transition region of this simulated data and consequently, the 

presence of sluggish controller tuning cannot be diagnosed. 

Then, the presence of oscillatory behavior in the identified 

transition region is checked. But the DCT based oscillation 

detection algorithm could not detect any oscillation in the 

transition region. Therefore, the presence of aggressive 

controller tuning is also ruled out. Finally, this control loop is 

correctly diagnosed as a well-tuned one since neither the 

presence of sluggish or not the aggressive tuning can be 

diagnosed.  

Table 3.  Results of the proposed method on a simulated 

well-tuned controller 

Identified steady state region 1 (SS1) Sample No 

1-101 

Correlation coefficient (r) in SS1 0.6282 

p-value of correlation in SS1 ~ 0 

Identified steady state region 2 (SS2) Sample No 

109-801 

Correlation coefficient (r) in SS2 0.3810 

p-value of correlation in SS2 ~ 0 

Identified Transition Region Sample No 

101-109 

Correlation coefficient (r) in transition region -0.6925 

p-value of correlation in the transition region 0.04 

Oscillation in the transition region Not detected 

4.4 Industrial Data 

The proposed method was tested on the data from three 

industrial control loops (c.f. Fig 8-10) known to have 

sluggish, aggressive and well-tuned behaviours respectively. 

In all the three cases, the proposed method was successful in 

correctly detecting the controller tuning issues. For example, 

as can be seen in the flow control loop data (c.f. Fig. 8) that 

the correlation between CE and OP is negative in the 

transition region (sample no 3284 to 3615), while the 

correlation between CE and OP is positive in the steady state 

region (sample no 1 to 3283). Therefore, clearly there is a 

reversal in correlation in the transition region w.r.t the steady 

state region. Thus, indicating the presence of sluggish 

controller tuning. On the other hand, in the level control loop 

(see Fig. 9) there are 4 identified transition regions (sample 

no 364 to 550, 674 to 850, 3540 to 3700, and 3871 to 4000) 

and correlation between CE and OP in all these transition 

regions remains negative as it is in the steady state regions. 

Furthermore, all the transitions are exhibiting oscillatory 

behavior with decaying amplitude. Hence, our proposed 

method successfully diagnoses the aggressive tuning issue for 

this level loop. Again, for the flow control loop shown in Fig. 

10 there is no significant change in the CE-OP correlation in 

the identified transition region (sample no 1053 to 1486) as 

compared to that in the steady state region (sample no 1 to 

1052) and the transition is non-oscillatory in nature. Hence, 

this flow loop is tuned properly, which can be diagnosed 

correctly by our method. 

5. CONCLUSIONS 

In this paper, we propose a novel non-invasive method to 

automatically detect the poorly tuned controllers in a process 

plant directly from the routine plant operation data and 

identify the tuning issue as sluggish or aggressive. By 

diagnosing and retuning these loops, control loop 

performance and the quality of the process can be improved 
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significantly. Some of the novel features of the proposed 

methods are: (i) it can efficiently handle real, noisy data 

without the need of any data pretreatment – filtering, 

quantization etc. which are signal specific; (ii) full range of 

controller tuning issues (both sluggish as well as aggressive) 

can be automatically detected using a single unified approach 

directly from the routine time series data; (iii) The proposed 

method also incorporates a novel and efficient technique for 

detecting the steady state and transition regions in the 

bivariate CE-OP time series data of a controller as an integral 

part of it. The usefulness of the proposed method in detecting 

controller tuning issues has been demonstrated through 

various simulated and real industrial examples. However, 

there are some issues with proposed method - it detects 

control issues when there is a step change in load or SP in the 

time series data. Successful detection of controller tuning 

issues are not guaranteed if the change in load or SP happens 

in a non-stepwise manner. This method is generally robust to 

the presence noise in the data provided the magnitude of load 

or SP change is at least 4 times larger than standard deviation 

of noise. These issues would be addressed in our future work.  

 

Fig. 8. Data from an industrial flow control loop known to 

have sluggish behavior. 

 

 Fig. 9. Data from an industrial level control loop known to 

have aggressive behavior. 

 

Fig. 10. Data from an industrial flow control loop known to 

have well-tuned behavior. 
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