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Abstract: Control of sulfur content in diesel streams demands for on-line measurement of this component, 

with low pure time delay and easy operation. In this way, 2D fluorescence Spectroscopy becomes a 

reasonable choice for soft-sensor development. This work reports a different strategy to overcome the 

aforementioned lack of selectivity or signal overlapping using the selection of individual fluorescence 

spectral components combined into multilinear models to predict sulfur content in diesel streams from 

Ultra Low Sulfur Diesel and Diesel S100. The results obtained using Pure Spectral Chemometrical 

Modeling and Ant Colony Optimization showed good results as a source of information to determine the 

sulfur content in diesel. 
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1. INTRODUCTION 

Concerns about human and environment health have had a 

significant increase in last decades. All big cities are affected 

by seriously problems caused by soil, water and air pollution. 

The introduction of contaminants into the natural 

environment is highly correlated with the use of fossil fuels. 

This fact creates a necessity to produce fuels with less 

concentration of certain pollutant ion molecules (Goverment, 

2005, Betha and Balasubramanian, 2013). 

Oil is a highly complex mixture of hydrocarbons with small 

amounts of heteroatoms like sulfur, oxygen, nitrogen and 

organic metals. Among these, sulfur is the most abundant and 

is considered an undesirable compound by refineries. 

(Andrade et al.). Around the world, many countries had 

developed legislation to promote the Ultra-Low Sulfur Diesel 

(ULSD) production, as an attempt to improve the quality of 

fuels and minimize the air pollution, caused by fossil fuels 

combustion (De la Paz-Zavala et al., 2013). 

In Brazil, since December 2013, the resolution number 50 

from National Agency of Oil, Gas and Biofuels (ANP) 

regulates the quality of diesel commercialized on national 

territory after January 1
st
 2014. This resolution sets that all 

metropolitan diesel must contain less than 10 ppm of sulfur 

(also known as Diesel S10), framing it as a ULSD. This 

regulation forces refineries to treat the products to adequate it 

to the sulfur limit content (Moreira et al., 2014). 

Conventional hydrodesulfurization (HDS) is a catalytic 

chemical process used in refineries for efficient elimination 

of sulfur compounds, particularly efficient for light 

compounds, such as thiophenes and benzothiophenes (Aburto 

et al., 2014). Evolving, side by side, with the technology for 

desulfurization, is the capability to measure sulfur content in 

process streams.  

Today, sulfur monitoring is developed according standard 

methods published by American Society for Testing and 

Materials (ASTM): ASTM D2622 and ASTM D5453. Those 

methods require sample preparation by specialized people, 

high-cost instruments, high sample volume, uses of reagents 

or solvents and incapability to implement it in on-line form 

(Sajjad et al., 2014). 

Therefore, refineries are demanding  fast and efficient on-line 

sensors for sulfur content determination in diesel streams. 

These sensors are crucial from economic and technological 

point of view, since they can considerably improve the 

industrial unit performance (de las Obras-Loscertales et al., 

2014). A variety of spectroscopic techniques have been used 

over the last few decades for the analysis, characterization, 

and classification of crude oil, most because of their inherent 

sensitivity (Macho and Larrechi, 2002). 

Spectroscopic techniques advantages include, for instance: 

high robustness, requirement of minimal sample preparation, 

relatively inexpensive equipment costs (for customized 

versions), non-invasiveness, fast time response, and high 

resolution (Whitford and Julien, 2007). Among optical 

spectroscopic techniques, vibrational infrared (IR), UV-vis, 

and fluorescence spectroscopies have shown the highest 

potential in that field. Optical sensors based on spectroscopy 

principles can be considered a suitable and promising option 

for developing an on-line sulfur content analyzer.  
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The Near Infrared Spectroscopy (NIR) is one of the most 

studied techniques for determination of diesel analites, 

including sulfur. As showed by Breitkreitz (2003), this 

technique can satisfactorily quantify total sulfur 

concentration in a range between 0.07 and 0.33% (w/w), with 

results as good as standard procedures. However, for sulfur 

amounts lower than 15 ppm (case of ULSD), this technique 

did not show good results, making it not a useful principle for 

S10 Diesel characterization (Bueno, 2011). 

Among spectroscopy techniques, fluorescence spectroscopy 

appears as a promising alternative for sulfur quantification in 

diesel streams. This method shows good sensitivity and better 

limits of detection, up to three orders higher than the ones 

presented by absorption spectroscopies (Stasiuk et al., 2000). 

Once many sulfur compounds on diesel emit fluorescence, it 

seems to be natural to apply the fluorescence principle to 

develop an optical sensor for diesel streams. However, the 

selectivity is often reduced because of extensive spectral 

overlap or the presence of fluorescence phenomena 

interferences (Aburto et al., 2014).  

Despite the apparent viability of the fluorescence 

spectroscopy application for sulfur determination in diesel, 

many technical issues must be solved before the construction 

of sensors using this technology (Zhu et al., 2008).  

In this paper, we report a different strategy to overcome the 

aforementioned lack of selectivity or signal overlapping using 

the selection of individual fluorescence spectral components 

combined into multilinear models to predict sulfur content in 

diesel streams. The analysis and selection of fluorescence 

data is made using the Pure Spectra Chemometric Modeling 

(PSCM) strategy. The PSCM is a type of Linear Discriminant 

Analysis (LDA), where the input variables are fluorescence 

pairs intensity, combined using multilinear models. Selection 

of fluorescence pairs (wavelength of Excitation/Emission) 

among all possible fluorescence spectral candidates is made 

by Ant Colony Optimization (ACO). 

Aburto et al. (2014) shown good results for quantification of 

sulfur content using fluorescence spectroscopy with an 

enzymatic pretreatment for partial oxidation of sulfur 

compounds. According Aburto et al. (2014) oxidation of 

samples is mandatory for the sulfur characterization. Our 

contribution focus in applying supervised learning techniques 

directly to the 2D fluorescence spectrum data, dispensing any 

sample pretreatment. Our proposed approach can successfully 

characterize ULSD samples for sulfur content without any 

pretreatment reaction. 

 

2. MATERIALS AND METHODS 

Here, different samples corresponding to Diesel S10 (ULSD) 

and Diesel S100 (previously characterized according to the 

corresponding sulfur content) are analyzed using 2D 

fluorescence spectroscopy measurements. All the samples 

were provided and certified by a Brazilian Petroleum 

Refinery. 

Two different diesel classes are tested to compare results of 

fluorescence spectroscopy characterization capability in 

diesels samples with considerable difference in sulfur 

content. Distinguished classes are also tested to evaluate the 

methodology robustness.  

2.1 Diesel S10 samples - ULSD 

Samples were certified for sulfur content according to ASTM 

D-7039. Eleven samples were used in this study, with sulfur 

content in the range between 5.7 ppm and 6.4 ppm, with 

sulfur concentration average of 5.8 ppm. 

2.2 Diesel S100 samples 

The total amount of samples from HDT treatment was 51. 

Each sample was characterized for total sulfur content by  

ASTM D-4294. The frequency of sampling was of one 

sample each three days, during a period of three months of 

samples collection. 

The sample group presented sulfur amount range between 

73.7 ppm and 138.6 ppm, with sulfur average concentration 

equal to 100.3 ppm. Once the average concentration of sulfur 

in this sample group was close to 100 ppm, this samples were 

called here as Diesel S100, despite this group presented some 

samples with more than 100 ppm of sulfur concentration. 

2.3  2D Fluorescence Spectroscopy 

The Fluorescence Spectra were measured by the equipment 

HORIBA Fluoromax-4
®
, equipped with a xenon lamp of 

150W. The measurements were done in the range of 

excitation wavelengths between 260 nm and 600 nm, and 

emission wavelengths between 290 nm and 850 nm. Both 

excitation and emission wavelengths varied with increment of 

10 nm.  

Measurements of Diesel S10 samples were made using a 

quartz cuvette with optical path of 1 cm, while Diesel S100 

samples were measured using remote optical fiber accessory. 

Before spectroscopic measurements, each sample 

temperature were equalized at 25°C in a thermostatic bath.  

2.4  Chemometric Analysis  

Methods classified as Supervised Techniques (ST) are 

applied on two groups of variables: independent, e.g., 

variables arising from analytical techniques; and dependent 

variables, e.g., sulfur content on samples. STs establish a 

relationship between independent and dependent variables 

(Anzanello et al., 2011, J. Anzanello et al., 2014). 

Pure Spectral Chemometric Modeling (PSCM) is a 

chemometric methodology based on two main pillars: 

selection of pure spectral elements and model adjustment for 

state variable prediction, by finding a relationship between 

variables. The selection of model structure is crucial, not only 

for correct capture of spectral behavior in function of analyte 

variation in the medium, but also for viable fitting of model 

parameters.  

In this work, we applied multilinear model structure to the 

description of sulfur concentration into diesels samples, using 

spectral fluorescence intensities as input data. The choice for 
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linear models was based on the fact that, in principle, those 

kind of model can represent fluorescence sample behavior in 

a satisfactory way. Additionally, the estimation of models 

parameters can be easily made using Ordinary Least Squares 

(OLS), without significant time consumption, which is 

interesting, once the parameters are fitted thousands of times 

during algorithm running, presenting a significant impact on  

running time. 

The quality of the model depends not only on which variables 

are used in the regression, but also on how many. A small 

subset of predictor variables is often preferable against using 

all available data, because it reduces cost and time spent in 

the measurements, tending to present a more simple physical 

interpretation, and in the case of multiple linear regression, 

reduces the uncertainty of prediction, since this uncertainty 

increases with the ratio between the number of explanatory 

variables and the number of samples used in calibration 

(Brown et al., 2009). 

The selection of spectral elements is crucial for the success of 

PSCM approach. Selection of spectral group aims to choose 

spectrum components that have a direct correlation with state 

variables. Once usual size of spectral data is around 

thousands of elements per spectra (depending on spectral 

resolution), the use of exhaustive search become 

impracticable. Ant Colony Optimization (ACO) comes to 

solve this practical problem using an optimization approach. 

ACO is a stochastic optimization algorithm used for finding 

good paths through graphs (e.g. traveling salesman problem). 

The benefits obtained from this methodology are not only the 

stability of the model in terms of collinearity in multivariate 

spectra, but also the interpretability of the relationship 

between the model and the sample compositions, as initially 

presented by Allegrini and Olivieri (2011). A more detailed 

description about implementation and characteristics about 

PSCM and ACO (e.g. algorithm, objective function, input 

and output data format, etc) can be obtained at Ranzan et al. 

(2014). 

2.5  Calibration and prediction samples segmentation  

Diesel samples from each class were segmented into two 

groups: (i) calibration and (ii) prediction. Samples located 

into calibration data set are applied for chemometric models 

calibration while samples classified for prediction are applied 

for model test. In this way, samples used for model test do 

not participate either of the model calibration phase and 

neither in the selection of spectral components. 

This segmentation was performed using Y-rank strategy. On 

this methodology, samples are sorted in ascending order of 

the interest variable. Based on the sorted data set, two 

samples are allocated for calibration group while one is 

inserted into prediction (or test) group. Proportion of two by 

one is maintained until the total segmentation of samples 

groups. More information about Y-Rank can be obtained in 

Wehrens (2011). 

2.6  Statistics used in model analysis 

Appropriate criteria for model evaluations are crucial to rank 

the models. This work applies the RMSE (Root-Mean-Square 

Error) and R
2
 (Coefficient of determination) as metric for 

model quality, which are defined by:  

                  
  

   

 
                          (1) 

     
            

  
   

           
  

   

                            (2) 

Here the sub-index p refers to the vector of the predicted 

variable values, resulting from model evaluation, and m to the 

measured variable values, N is the number of measurements 

and y is the vector of interest variable. 

The RMSE and    when calculated using the calibration data 

set are represented by RMSEC and    , respectively. To 

quantify the corresponding prediction metrics, the test data 

set is used. In this case, the adopted notation is RMSEP and 

   , respectively.  

 

3. RESULTS AND DISCUSSION 

3.1 2D Fluorescence Spectroscopy measurements 

Figure 1 shows average 2D fluorescence spectra from Diesel 

S10 and S100 samples. Those results are originated from 

normalized spectral data, using Standard Normal Variate 

(SNV). Figure 1 shows the corresponding contour plots of the 

2D fluorescence spectra from each diesel class.  

 

Figure 1. Contour plots of the 2D Fluorescence Spectroscopy 

of (a) Diesel S10 and (b) Diesel S100 corresponding to the 

average spectral data. 

Both diesel classes have similar spectral data, with two 

pronounced regions: Region 1 [Excitation 300nm – 450nm / 

Emission 400nm – 500nm]; Region 2 [Excitation 300nm – 

450nm / Emission 750nm – 850nm], being region 2 more 

evident, with higher fluorescence intensity, than region 1. 

The main difference between both sample data in 2D 

fluorescence spectrum is related with the relative intensity of 

fluorescence peaks. Diesel S100 samples have shown smaller 

fluorescence intensity than Diesel S10 samples, indicating 

that the more aggressive process of hydrodesulfurization has 

withdrawn compounds responsible for fluorescence 

quenching, leading to the increase of fluorescence 

phenomena with the reduction of sulfur content (Aburto et 

al., 2014).  
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Previous studies (Ranzan, 2014) showed that despite the 

quantitative difference shown between fluorescence data of 

diesel types, the information about fluorescence data peaks 

cannot be applied individually for sulfur content prediction.  

This impossibility is due to the fact that fluorescence is 

highly sensitive to medium variations and environmental 

properties (e.g. temperature, pH, viscosity, etc.), forcing the 

combination between distinguished fluorescent spectral 

regions to make the prediction reliable. 

3.2  Chemometric Analysis  

The Chemometric analysis has two main purposes: (i) 

provide useful information about qualitative data and (ii) 

propose chemometric models for on-line sensors 

development. 

3.2.1 Qualitative Analysis 

The first objective, i.e., the analysis of fluorescence data, is 

developed using PSCM qualitative information vector. This 

technique is initially applied to each sample group and then, 

it is applied to both groups as if they are a single dataset. 

This first analysis aims to provide a mapping of significant 

information region content into fluorescence spectral data. 

This information is collected during ACO running in the 

form of an evolutionary vector (it actualizes its contents 

based on the objective function values presented by the use of 

spectral elements to predict interested variable). Spectral 

regions that present high linear correlations with interest 

variable are highlighted. In this way, this qualitative 

information is directly associated with the signature of 

interest variable in the fluorescence matrix data and presents 

useful information to spectral analysis. 

Figure 2 shows the qualitative signature based on the 

pheromone distribution calculated for diesel S10 and diesel 

S100 using ACO and plotted in the 2D fluorescence spectrum 

diagram of excitation/emission wavelengths in function of 

sulfur concentration. Since the information obtained by this 

analysis has only qualitative characteristics, the results are 

rescaled from zero to one. Another important characteristic is 

that the actualization of the weighting vector (i.e., pheromone 

vector) is inversely proportional to the objective function 

evaluations and with a decay factor of 0.5. 

Visual comparison between qualitative information extracted 

from diesel S10 and Diesel S100 shows that diesel S10 has 

two prominent specific regions, in contrast with diesel S100 

results, that showed several regions, distributed all over the 

spectrum, with linear correlation with sulfur content. 

Figure 2 clearly shows the qualitative difference between 

fluorescence data from Ultra Low Sulfur Diesels (case of 

diesel S10 class) and sulfurs that pass by less 

hydrodesulfurization. Diesel S100 has more molecules and 

elements that emit fluorescence and/or promotes quenching 

of sample fluorescence. This feature makes fluorescence data 

from diesel S100 noisier and disperse when compared with 

fluorescence data from diesel S10. 

Comparing Figure 1 (fluorescence spectra from each diesel 

class) with Figure 2, it is possible to see that PSCM 

methodology can identify spectral regions as significant for 

sulfur determination in regions where there is not any 

prominent fluorescence peak (particularly for diesel S100). 

This result is because PSCM methodology evaluates 

combinations of regions to search for the best group able to 

quantify the interest variable. During this search, many 

regions that present small fluorescence signal, but are more 

dependent of interest variable, are indicated as significant and 

highlighted from regions with more prominent peaks, but less 

correlated with interested variable. 

 

 

Figure 2. Qualitative information (dimensionless) obtained 

from PSCM analysis from (a) diesel S10 samples and from 

(b) diesel S100 samples. 

3.2.2 Quantitative Analysis 

After qualitative analysis of fluorescence data, PSCM was 

applied to the quantitative determination of sulfur. PSCM 

was applied individually for each diesel class, searching for 

spectral elements that, when combined linearly, could predict 

sulfur concentration. 

The supervised methodology was applied searching for 

models from one to eight input variables. In other words, it 

means that PSCM searched for combinations between one 

and eight pairs of fluorescence. This search is based on 

calibration data set adjustment of models into sulfur 

prediction, evaluated using statistical parameters. 

The best models from one to eight fluorescence pairs are 

tested using prediction group data set, and the results are 

presented on Tables 1 and 2, for diesel S10 and S100, 

respectively. Tables 1 and 2 also shows the performance 

metrics calculated using the calibration data set, i.e., RMSEC 

and    . 

Tables 3 and 4 present the fluorescence pairs selected for 

each model size, according PSCM for prediction of sulfur on 

class S10 and class S100. Tables 3 and 4 follow the same 

order of the models discussed in Tables 1 and 2.  

 

Table 1. PSCM quantitative analysis of diesel S10. 

Model 

size 
RMSEC R²c RMSEP R²p 

1 0,23 0,62 0,33 0,07 

2 0,15 0,85 0,18 0,54 
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3 0,09 0,94 0,20 0,77 

4 0,09 0,94 0,16 0,69 

5 0,06 0,97 0,26 0,50 

6 0,04 0,99 0,20 0,71 

7 0,05 0,98 0,21 0,32 

8 0,04 0,99 0,32 0,77 
 

Table 1 shows that models using fluorescence pairs can 

predict sulfur concentration in Diesel S10 with a maximal 

coefficient of determination of 0.77, for models with three or 

eight input variables. Those models, as seen on Table 2, 

selected similar fluorescence pairs, indicating that significant 

information contained on fluorescence data matrix from 

diesel S10 are concentrated in regions around fluorescence 

pairs included in the model with three pairs. These regions 

are the same highlighted by PSCM qualitative analysis in 

Figure 2 (a). 

Table 2. PSCM quantitative analysis of diesel S100.  

Model 

size 
RMSEC R²c RMSEP R²p 

1 11,23 0,22 8,55 0,37 

2 8,98 0,50 9,95 0,32 

3 8,69 0,53 11,01 0,16 

4 7,93 0,61 8,97 0,33 

5 7,41 0,66 8,94 0,41 

6 7,05 0,69 7,06 0,55 

7 6,89 0,71 9,13 0,46 

8 6,83 0,71 8,43 0,50 

 

Table 3. Fluorescence spectral pairs selected by PSCM 

for prediction of sulfur into diesel S10 samples. 

 
 

Regarding the characterization of sulfur content in diesel 

S100, despite increase of determination coefficient in the 

calibration step, with the increase of model size, results were 

not satisfactory. Prediction tests did not show good results 

either, with     reaching a maximum of 0.55. This result 

indicates what was previously seen on Figure 2(b), were 

PSCM was not able to highlight significant spectral regions, 

and presented many dispersed regions with equivalent 

importance. 

 

Table 4. Fluorescence spectral pairs selected by PSCM 

for prediction of sulfur into diesel S100 samples. 

 

 

These results indicate that spectroscopic fluorescence data 

from diesel S10 possibly present less noisy inductor 

molecules, according sulfur determination, while diesel S100, 

mainly because of more sulfur content and other components, 

like polycyclic aromatic hydrocarbons, presented dispersed 

information, resulting in difficulties for characterization using 

fluorescence pairs directly. 

A possible solution for the problem of dispersed information 

of diesel S100 spectral data is to use non-linear models to 

describe of sulfur content using fluorescence intensities. This 

modification can lead models with increasing prediction 

capability, reducing quenching effects on the models and 

producing equations that are more reliable. 

 

4. CONCLUSION 

Sulfur content determination in diesel samples became a 

problem to process optimization, once these measurements 

are usually time-consuming and require specialized people 

and equipment. Therefore, the development of a new on line 

sensor capable to quantify sulfur in diesel streams is a 

significant advance for oil refinery. 

The 2D fluorescence Spectroscopy measurements of diesel 

S10 and S100 samples have shown good results as a source 

of information to determine the sulfur content in diesel. 

Although, more studies should be made to find a more 

representative model structure for sulfur content using 

fluorescence data as input variables. Linear models have 

produced satisfactory results for S10 samples, but for diesel 

S100 samples, the model and prediction qualities must be 

improved. 

This paper has shown that it is possible to apply 2D 

fluorescence spectroscopy principle for developing an on-line 

sensor for determination of sulfur contamination in diesel. 

Despite the fact that the results presented by linear models 

aren’t satisfactory for real world application, they confirm the 
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capability on application of this spectroscopic methodology 

on diesel characterization. The results could be probably 

improved using non linear models, although the results of this 

are not ready. 

 

5. ACKNOWLEDGMENTS 

Authors are grateful to Refinery Alberto Pasqualini and 

Petrobras for samples supply. Authors are also thankful to 

CAPES, CNPq and FAPERGS for financial support. 

 

6. REFERENCES 

Aburto, P., Zuñiga, K., Campos-Terán, J., Aburto, J. & 

Torres, E., 2014. Quantitative analysis of sulfur in 

diesel by enzymatic oxidation, steady-state 

fluorescence, and linear regression analysis. Energy 

and Fuels, 28, 403-408. 

Allegrini, F. & Olivieri, A.C., 2011. A new and efficient 

variable selection algorithm based on ant colony 

optimization. Applications to near infrared 

spectroscopy/partial least-squares analysis. 

Analytica Chimica Acta, 699, 18-25. 

Andrade, L.D.S., Calvo, W.A.P., Sato, I.M. & Duarte, C.L., 

Petroleum and diesel sulfur degradation under 

gamma radiation. Radiation Physics and Chemistry. 

Anzanello, M.J., Fogliatto, F.S. & Rossini, K., 2011. Data 

mining-based method for identifying discriminant 

attributes in sensory profiling. Food Quality and 

Preference, 22, 139-148. 

Betha, R. & Balasubramanian, R., 2013. Emissions of 

particulate-bound elements from biodiesel and ultra 

low sulfur diesel: Size distribution and risk 

assessment. Chemosphere, 90, 1005-1015. 

Breitkreitz, M.C., Raimundo, J.I.M., Rohwedder, J.J.R., 

Pasquini, C., Dantas Filho, H.A., Jose, G.E. & 

Araujo, M.C.U., 2003. Determination of total sulfur 

in diesel fuel employing NIR spectroscopy and 

multivariate calibration. Analyst, 128, 1204-1207. 

Brown, S.D., Tauler, R. & Walczak, B., 2009. 

Comprehensive chemometrics: Chemical and 

biochemical data analysis. Analytical and 

Bioanalytical Chemistry, 1-2. 

Bueno, A.F., 2011. Desenvolvimento de um analisador de 

processo por espectroscopia no infravermelho 

próximo (NIR) para previsão de propriedades de 

derivados de petróleo. UNICAMP. 

De La Paz-Zavala, C., Burgos-Vázquez, E., Rodríguez-

Rodríguez, J.E. & Ramírez-Verduzco, L.F., 2013. 

Ultra low sulfur diesel simulation. Application to 

commercial units. Fuel, 110, 227-234. 

De Las Obras-Loscertales, M., De Diego, L.F., García-

Labiano, F., Rufas, A., Abad, A., Gayán, P. & 

Adánez, J., 2014. Sulfur retention in an oxy-fuel 

bubbling fluidized bed combustor: Effect of coal 

rank, type of sorbent and O2/CO2 ratio. Fuel, 137, 

384-392. 

Goverment, A., 2005. Sulfur dioxide (SO2) - Air quality fact 

sheet. In Department of the Environment and 

Heritage (ed.). 

J. Anzanello, M., S. Ortiz, R., Limberger, R. & Mariotti, K., 

2014. Performance of some supervised and 

unsupervised multivariate techniques for grouping 

authentic and unauthentic Viagra and Cialis. 

Egyptian Journal of Forensic Sciences, 4, 83-89. 

Macho, S. & Larrechi, M.S., 2002. Near-infrared 

spectroscopy and multivariate calibration for the 

quantitative determination of certain properties in 

the petrochemical industry. TrAC Trends in 

Analytical Chemistry, 21, 799-806. 

Moreira, J.R., Pacca, S.A. & Parente, V., 2014. The future of 

oil and bioethanol in Brazil. Energy Policy, 65, 7-

15. 

Ranzan, C., Strohm, A., Ranzan, L., Trierweiler, L.F., 

Hitzmann, B. & Trierweiler, J.O., 2014. Wheat flour 

characterization using NIR and spectral filter based 

on Ant Colony Optimization. Chemometrics and 

Intelligent Laboratory Systems, 132, 133-140. 

Ranzan, L., 2014. Estudo da Viabilidade do Uso de 

Espectroscopia Fluorescente 2D para Quantificar 

Reor de Enxofre em Óleo Diesel. Federal University 

of Rio Grande do Sul. 

Sajjad, H., Masjuki, H.H., Varman, M., Kalam, M.A., Arbab, 

M.I., Imtenan, S. & Rahman, S.M.A., 2014. Engine 

combustion, performance and emission 

characteristics of gas to liquid (GTL) fuels and its 

blends with diesel and bio-diesel. Renewable and 

Sustainable Energy Reviews, 30, 961-986. 

Stasiuk, L.D., Gentzis, T. & Rahimi, P., 2000. Application of 

spectral fluorescence microscopy for the 

characterization of Athabasca bitumen vacuum 

bottoms. Fuel, 79, 769-775. 

Wehrens, R., 2011. Chemometrics With R: Multivariate Data 

Analysis in the Natural Sciences and Life Sciences: 

Springer. 

Whitford, W. & Julien, C., 2007. Analitical Technology and 

PAT. BioProcess International, 32-41. 

Zhu, S.H., Wu, H.L., Li, B.R., Xia, A.L., Han, Q.J., Zhang, 

Y., Bian, Y.C. & Yu, R.Q., 2008. Determination of 

pesticides in honey using excitation-emission matrix 

fluorescence coupled with second-order calibration 

and second-order standard addition methods. 

Analytica Chimica Acta, 619, 165-172. 

 

 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 420


