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Abstract: In this paper, an observer-based model predictive control (MPC) strategy is
presented for distributed parameter systems (DPSs). First, principal component analysis (PCA)
is used for dimension reduction by transforming the high-dimensional spatio-temporal data into
a low-dimensional time domain. Then an observer is builded to estimate the low-dimensional
temporal output using the real-time measurable spatiotemporal output. Finally, the MPC
strategy is proposed based on the low-dimensional estimation models. Simulations demonstrate
the accuracy and efficiency of the proposed methodologies.
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1. INTRODUCTION

Model predictive control (MPC) strategy has been used
very successfully in industrial process. As many industrial
process, such as flexible manipulator, fluid flow process,
thermal process and convection diffusion reaction process
exhibit strong spatiotemporal characteristic, nowadays
more MPC researches focus on these processes ( Armaou
and Christofides (2002), Dufour and Toure (2004)). The
mathematical description of these systems usually consists
of systems of PDEs with boundary constraints (Gay and
Ray (1995), Christofides (2001)). Such PDE models can
accurately predict nonlinear and distributed dynamic be-
havior of these processes also called distributed parameter
system (DPS), but the infinite-dimensional nature leads to
the fact that they cannot be used due to the limited sen-
sors and computing powers (S.Dubljevic and Christofides
(2006)).

When the PDEs of the process are known, lumped pa-
rameter models are derived by traditional time/space dis-
cretization methods and the model-based control structure
is adopted. The mode of the derived ordinary differential
equation (ODE) system that yields the desired degree of
approximation may be very large (Baker and Christofides
(2000)). It leads to a complex controller design and high
dimensionality of the resulting controllers for industrial
processes. As it is a general difficulty associated with
the control strategies for DPSs, the model-reduction-based
MPC strategies are proposed to solve this problem.

Singular value decomposition (SVD) and Karhunen-Loeve
(KL) decomposition are examples of popular model re-
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duction methods for DPSs, where the system’s spatial
information is represented with the derived spatial basis
functions (Gay and Ray (1995)). For these methods, an
infinite number of basis functions can be found to represent
the spatial frequencies of the system (Wang et al. (2011)).
After truncation, a finite-dimensional coefficients modeling
problem is raised. In the reference from Zheng and Hoo
(2004), finite spatial basis functions were identified using
a combination of singular value decomposition (SVD) and
the KL expansion. Then a low-order linear model was
established for dynamic modeling. The low-dimensional
model based MPC control strategy was proposed for the
DPS.

However, the model reduction method based on KL de-
composition method is a linear projection/recontruction
process, the modeling error occurs while the real time low-
dimensional temporal data cannot be obtained directly.
Although the feedback in MPC can reduce the impact of
the discrepancy between the process and the predictive
behavior, MPC is not designed to explicitly handle model
mismatch. Thus, in this paper, an observer based MPC
strategy for distributed parameter systems is presented
using an identified low-dimensional model, where the s-
patiotemporal outputs are used to estimate the state of
the observer model. First, spatiotemporal training data
is generated from the PDE, from which, the spatial in-
formation at the discrete node locations can be obtained.
Then, principal component analysis (PCA) is applied to
determine the dominant spatial basis functions of the PDE
system. High-dimensional spatiotemporal data can then be
projected onto the spatial basis functions to generate cor-
responding temporal data. From this temporal data, a low-
dimensional state space model can be identified for control
design. Then the observer is builded to approximate the
temporal state based on the measurable spatiotemporal
information. Finally, the proposed MPC strategy is ap-
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plied to a standard reaction-diffusion-convection process.
The simulations demonstrate the accuracy and efficiency
of the proposed methodologies.

The paper is organized as follows. In Section 2, the
problem and the philosophy are presented. In Section
3, the model reduction process is proposed. Section 4
introduces the observer-based MPC strategy. Section 5
shows the application to a reaction-diffusion-convection
process, in which we will also analyze the results and
discuss the advantages of the proposed method. In the last
section the conclusion is drawn.

2. PROBLEM FORMULATION

Consider a standard reaction-diffusion-convection process,
we can obtain the following PDE to represent the system:

∂C

∂t
+ v

∂C

∂z
= D

∂2C

∂z2
− krC; 0 < z < L, 0 < t ≤ tf (1)

where C is the specie concentration,z is the spatial coordi-
nate, v is the known velocity field,L is the domain length,
D is the specie diffusion coefficient, and kr is a first-order
rate constant.

Typical initial and boundary conditions are:

C(z, 0) = 0, C(0, t) = u(t), D
∂C

∂z

∣∣∣∣
z=L

= 0 (2)

Discretizing the spatial variable in (1)and (2)by the finite
difference method gives:

dCi

dt
= D

Ci+1 − 2Ci + Ci−1

∆z2
− vCi+1 − Ci−1

2∆z
− krCi

(3)

where Ci denotes the concentration at spatial location
i = 0, . . . , N + 1 with C0 = C(0, t) and CN+1 = C(L, t)
specified from the boundary condition functions.

Under discretization schemes such as (3), the infinite-
dimensional state is approximated as finite so that the
number of nodes N represents the state dimension (i.e.,
[C1 C2 · · · CN ]T ). Depending on the PDE, accurate solu-
tions may require a large number of nodes. Furthermore,
the total number of nodes scales polynomially with the
number of dimensions (i.e., O(Nnd) for N nodes in each
of the nd dimensions) which quickly makes these models
computationally intractable for real-time control.

To avoid these high-dimensional models, a principal com-
ponent analysis (PCA) based technique is introduced in
the next section, which converts the spatiotemporal data
to a low-dimensional time series by identifying the domi-
nant spatial basis functions of the PDEs. From this time
series, an state space model can be identified and used as
a low-dimensional predictive model for MPC. As the low-
dimensional temporal data cannot be obtained directly, an
observer is builded to predict the state of low-dimensional
model using the real-time spatiotemporal output. This
methodology can improve the robustness of the control
system and reduce the computational cost of MPC because
the spatial evolution of the state is stored in the dominant
basis functions (computed offline with PCA) so that the
spatial dimensions can be bypassed in the algorithm.

3. MODEL REDUCTION

3.1 Time-space separation

Time-space separation methods are widely used for model
identification from input-output data . The time-space
separation approach assumes that the spatial dynamics
of the system can be captured with an infinite number of
basis functions

Y (z, t) =

∞∑
i=1

ϕi(z)yi(t) (4)

where Y (z, t) denotes the spatiotemporal output of the
system, z denotes the spatial variable over domain Ω, t de-
notes time, ϕi(z), i = 1, . . . ,∞ denotes the infinite number
of spatial basis functions (frequencies) in ascending order,
and yi(t) are the corresponding temporal coefficients. This
expansion is motivated by the Fourier series implying the
basis functions must be orthogonal. Orthonormality is
further required to ensure each ϕi(z) is unique i.e.,

〈ϕi(z), ϕj(z)〉 = δij (5)

where 〈g(z), h(z)〉 =
∫

Ω
g(z)h(z)dz denotes the inner

product and δij is the Kronecker delta. The orthonormality
condition in (7) implies that the temporal coefficients in
(6) can be computed by

yi(t) = 〈Y (z, t), ϕi(z)〉 (6)

Karhunen-Loeve (KL) decomposition can be used to com-
pute a finite number of spatial basis functions from
Y (z, t). The problem is posed as an optimization that
minimizes the error between the truncated expansion and
Y (z, t). Using the method of “snapshots” (i.e., finite data

{Y (zj , tk)}Z,T
j=1,k=1 is known at Z spatial locations and

T time points), it has been shown that the necessary
condition for optimality can be stated as the following
eigenvalue problem (EVP)(Li et al. (2009))∫

Ω

R(z, η)ϕi(η)dη = λiϕi(z) (7)

where R(z, η) = 1
T

∑T
k=1 Y (z, tk)Y (η, tk) is the spa-

tial two-point correlation function. Because only a finite
amount of data is known in the spatial dimension (posi-
tions z1, · · · , zZ), the integral (7) must be solved numer-
ically via discretization. This results in an Z × Z matrix
EVP. This estimation procedure is known as the “spatial
correlation method” and estimates Z eigenfunctions at the
Z sampled spatial locations.

As T is typically much smaller than Z, a more computa-
tionally efficient method for solving (7) has been developed
known as the “temporal correlation method” (Li et al.
(2009)). The main assumption is that a general eigenfunc-
tion ϕ(z) can be expressed as a linear combination of the
snapshots

ϕ(z) =

T∑
k=1

γkY (z, t) (8)

Substituting (8) into (7) produces the following T×T EVP

Sγ = λγ (9)

where γ = [γ1 γ2 · · · γT ]T denotes the eigenvector with
corresponding eigenvalue λ and S is a positive semidefinite
matrix defined as
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S =


S11 S12 · · · S1T

S12 S22 · · · S1T

...
...

. . .
...

S1T S2T · · · STT

 (10)

with Sij = 1
L

∫
Ω
Y (z, i)Y (z, j)dz. The maximum number

of nonzero eigenvalues is K = min(Z, T ). The nth-order
approximation for the output Yn(z, t) can be expressed as

Yn(z, t) =

n∑
i=1

ϕi(z)yi(t) (11)

where n is the number of terms kept in the truncated
expansion. Arranging the eigenvalues in decreasing order
(i.e., λ1 > λ2 > · · · > λK), PCA states that the fraction of
variance (or “energy”) retained in (11) can be computed
by

ρ =

∑n
i=1 λi∑K
i=1 λi

(12)

After solving either (7) or (9) for {ϕi(z)}ni=1, the temporal
coefficients {yi(t)}ni=1 can be computed numerically from
(6). Practically speaking, the basis functions and coeffi-
cients are only known at finite points, however, interpola-
tion can easily be used to compute Yn(z, t) at any z and t
values.

3.2 Predictive Model

The spatial basis functions provide a simple mapping
from high-dimensional spatiotemporal data to lower-
dimensional temporal data according to (6). This implies
that a control strategy in terms of {yi(t)}ni=1 can be used
in place of spatially distributed control. With slight abuse
of notation, the argument k ∈ N will represent discrete
time in the rest of this work (related to continuous time
according to t = kTs where Ts denotes the sampling time).

A low-dimensional temporal model (see e.g., Wang et al.
(2011)) can be defined to predict the expansion coefficients

Ai(q
−1)ŷi(k + 1) = Bi(q

−1)∆u(k); ∀i = 1, · · · , n (13)

where q−1 denotes the backward shift operator, ŷi(k + 1)
denotes the ith predicted temporal coefficient at discrete
time k+ 1, and ∆u(k) = u(k)−u(k−1) denotes the input
change at k. The parameters Ai(q

−1) and Bi(q
−1) can be

estimated offline from input-output data.

From the identified low-order temporal models (13), the

spatiotemporal output Ŷ (z, k) can be reconstructed point-
wise using (11)

Ŷ (z, k) = ϕ(z)ŷ(k) (14)

where ϕ(z) = [ϕ1(z) ϕ2(z) · · · ϕn(z)] denotes the spatial
basis functions stacked into a row vector evaluated at spa-
tial point z and ŷ(k) = [ŷ1(k) ŷ2(k) · · · ŷn(k)]T denotes
the predicted temporal coefficients stacked into a column
vector evaluated at discrete time k. Let z = [0 · · · L]T

denote a finite reconstruction of the spatial domain Ω, then
the reconstructed output over z is computed as follows

Ŷ (z, k) = Ψŷ(k) (15)

where

Ψ =

ϕ(0)
...

ϕ(L)

 (16)

which follows straightforwardly from (14).

4. OBSERVER-BASED MPC STRATEGY

Based on the low-dimensional model, the MPC strategy
can be designed to achieve the control aim. However, PCA
method is a linear projection/recontruction process, the
modeling error occurs while the low-dimensional temporal
data cannot be obtained directly. Thus, in this paper,
an observer model is designed, where the states of the
estimation model are estimated using the spatiotemporal
measurement information. Next, the MPC strategy is
derived using observer-based low-order state space models
to predict predict the values of the controlled variables
over a finite prediction horizon.

To simplify control design, the spatiotemporal control
objective is transformed, using Ψ, to be in terms of ĉ

min
u(k)

p∑
i=1

‖r(k + i)− ĉ(k + i)‖2 + w

m−1∑
i=0

‖∆u(k + i)‖2

(17)

s.t.: umin ≤ u(k + i) ≤ umax; i = 0, · · · ,m− 1

∆umin ≤ ∆u(k + i) ≤ ∆umax; i = 0, · · · ,m− 1

clow(k + i) ≤ ĉ(k + i) ≤ cup(k + i); i = 1, · · · , p
where p is the prediction horizon; m is the control horizon;
w is the input change weighting; u(k) = [u(k) · · · u(k +
m − 1]T is the vector of input changes over the control
horizon; r(k) = Ψ−1C(z, k) is the transformed reference;
umin and umax are the minimum and maximum allowable
supplied input, respectively; ∆umin and ∆umax are the
minimum and maximum allowable input change, respec-
tively; clow(k) = Ψ−1Clow(z, k) denotes the lower bound
on the temporal coefficients of the concentration; and
cup(k) = Ψ−1Cup(z, k) denotes the upper bound on the
temporal coefficients of the concentration.

The results presented in Section 3 are valid for any PDE
model. Thus, reaction-diffusion-convection PDE model of
(1) can be represented using (14)

Ĉ(z, k) = Ψĉ(k) (18)

where ĉ(k) denotes the predicted temporal coefficients
corresponding to the growth factor concentration (defined
similarly to ŷ(k)).

As the parameter Ψ and the model parameters for the
elements of (13) can be obtained by the detailed steps
in Section 3, the multi-input multi-output ARX model
can be obtained. Considering that the low-dimensional
temporal data cannot be obtained directly, the control
quality based on the temporal models may be affected by
the model mismatch and system noise. Thus, transforming
the ARX model into the state space model,an observer is
builded to estimate the temporal output using the on-line
measured spatiotemporal output. The state space model
can be defined as

x(k) = Ax(k − 1) + Bu(k − 1) + w(k)

y(k) = Cx(k)
(19)
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where x(k) = [c(k)T c(k−1)T · · · c(k−dy)Tu(k)T u(k−
1)T · · · u(k − du + 1)T ] denotes the state of the low-
dimensional model, and x(k) = [c(k) denotes the output
of the low-dimensional model.

According to the low-dimensional state space model, the
observer model can be described as:

x̂(k|k − 1) = Ax̂(k − 1) + Bu(k − 1)

x̂(k|k) = Ax̂(k|k − 1) +K(z, k)(C(z, k)

− ϕCx̂(k|k − 1))

(20)

where x̂(k|k − 1) represents the estimate state at k −
1, x̂(k|k) represents the state of the observer at time
k, K(z, t) represents the Kalman filter gain and C(z, t)
represents the measurable spatiotemporal concentration.

Let P (k− |k− 1) represent the covariance matrix of state
estimation error at time k-1,

P (k − 1|k − 1) =E((x(k − 1) + x̂(k − 1|k − 1))

(x(k − 1) + x̂(k − 1|k − 1))T )
(21)

The covariance matrix of state estimation error at time k
can be described as:

P (k|k) = (I −K(z, t)ϕC)P (k − 1|k − 1) (22)

then the Kalman filter gain can be obtained by minimize
the the covariance matrix of state estimation error

K(z, t) = P (k|k − 1)CTϕT (ϕCP (k|k − 1)CTϕT )−1

(23)

where P (k|k − 1) = AP (k − 1)AT .

Using the predictive control strategy, the predicted tempo-
ral coefficients over the prediction horizon can be obtained
according to the observer model. The main steps of the
entire proposed control method can be summarized as
follows

(1) Use the input-output data (obtained by solving the
governing PDE for the specie concentration at de-
sired spatial locations) to compute the spatial basis
functions using (7) or (9).

(2) Compute a time series for the temporal coefficients
using (8) and identify a low-dimensional ARX model
for each of these coefficients according to (15).

(3) Transform the spatially distributed reference and
concentration bounds to a simple time-series using
Ψ as detailed in (21).

(4) Using the spatiotemporal output C(z, t) to calculate
the Kalman gain as detailed in (23).

(5) Compute the optimal input sequence ∆u(k)∗ by
solving the optimal problem in (17). Apply the first
element of this optimal input sequence ∆u(k)∗ to the
system. Set k := k + 1 and repeat this process until
the final time (i.e,. in a receding horizon manner).

5. SIMULATION STUDY

The proposed observer-based MPC strategy is applied to
an example of (1),with L = 1 m, D = 1 m2/s, v = 1 m/s,
and kr = 0.1 1/s. To generate the model training data, (1)
was solved in time increments of ∆t = 0.05 s and spatial
increments ∆z = 0.01 m until time 10 s with input trials

uk = 3Usin(k∆t/50 + U) + 0.5e−1/20sin(k∆t/10) (24)

where k = 1, . . . , 10/∆t and U is a uniform random num-
ber between 0 and 1 (i.e., rand). Using this 100×200 spa-
tiotemporal training data, we can compute the dominant
spatial basis functions using the PCA method (Section
2). Figure 1 shows the n = 3 dominant spatial basis
functions used to identify a low-dimensional ARX model.
For the control problem, define the input constraints to be

Fig. 1. Spatial basis functions

umin = 0.1, umax = 1.2, ∆umin = −0.1, and ∆umax = 0.1,
the controller parameters to be w = 0.9, p = 3, and m = 3,
and the spatially distributed reference Cdes to correspond
to that shown in Figure 2. Using the proposed control
strategy in Section 3, the closed-loop response of the specie
concentration can be obtained (see Figure 3), which closely
matches the desired spatially-varying reference Cdes.

To verify the controller’s ability to reject disturbances,
one case was considered: a step output disturbance with
amplitude -0.3 were added to the process. The closed-
loop behavior of the concentration at the boundary C(1, t)
under the output disturbance is shown in Figure 4.

Fig. 2. Spatially distributed reference

Table 1 compares the floating point operations (FLOPs)
for the typical discretization based MPC method and the
proposed low-dimensional MPC strategy in Problem 2.
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Fig. 3. Spatially distributed concentration C(z, t)

The main steps are a prediction step (solving the opti-
mization) and a model update step. The fact that the
state-space methods scale with the number of discretiza-
tion nodes O(N2) indicates that this will quickly become
intractable. However, the proposed method scales as O(n2)
due to the low-order model implying that it is an efficient
alternative for the DPS control design while still achieving
good performance.

Fig. 4. Closed-loop response under output disturbance

Table 1. FLOP comparison

Discretization-based MPC Proposed MPC strategy

Predictive Step 6N + 9 2n(6n− 1)
Update Step N(2N + 1) 3n(6n+ 1)

6. CONCLUSION

An observer-based MPC strategy is presented for dis-
tributed parameter systems in this paper. First, PCA is
used to transform the high-dimensional spatiotemporal
data into a low-dimensional time domain. To simplify
control design, based on the low-dimensional models,the
spatiotemporal control objective is transformed into the
temporal control objective. Thus, MPC strategy is pro-
posed based on the low-dimensional models, where an ob-
server is builded to approximate the temporal state based
on the measurable spatiotemporal output. Simulations
demonstrate the accuracy and efficiency of the proposed
methodologies.
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