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Abstract: Distillation columns are the major energy consumers in petrochemical and chemical industry 

and their efficient operation is essential for energy saving and product quality enhancement. This paper 

presents an inferential active disturbance rejection control (ADRC) method for product composition 

control in distillation columns. The proposed control strategy integrates ADRC with inferential feedback 

control. Tray temperatures are used to estimate the top and bottom product compositions which are 

difficult to measure on-line without time delay. In order to overcome the colinearity in the tray 

temperature data, principal component regression (PCR) is used to build the soft sensors, which are then 

integrated with ADRC. In order to overcome static control offsets caused by the discrepancy between 

soft sensor estimations and the true compositions, intermittent mean updating is used to correct PCR 

model predictions. The proposed technique is applied to a simulated methanol-water separation column.   

Keywords: distillation columns, composition control, inferential control, active disturbance rejection 

control, principal component regression.  

1. INTRODUCTION 

Distillation is the most commonly used separation method at 

various industrial scales with more than 40,000 columns in 

operation worldwide (Kiss, 2014). Distillation can generate 

more than 50% of both capital and plant operating costs in a 

typical chemical plant which can have a significant impact on 

overall plant profitability (Kiss and Bildea, 2011). A suitable 

integration of distillation columns with the total process leads 

to substantial energy savings but the scope for this is usually 

limited (Smith and Linnhoff, 1988). Distillation columns are 

the major energy consumers in petrochemical and chemical 

industry. Most distillation columns’ operations require a high 

amount of energy and still remain very energy inefficient; 

they account for more than 40% of the amount of energy 

utilized in the refining and bulk chemical processes. 

Moreover, many columns are subject to significant 

interaction among the control loops and have operational 

constraints which complicate their dynamic behavior, making 

them more difficult to control and optimize. Furthermore, 

composition analyzers usually possess long time delay which 

deteriorates the achievable control performance. As a result, 

advanced control techniques are required to minimize the 

energy consumption and to meet the product composition 

specifications. In the control of distillation columns, the main 

important task is to avoid column drift by stabilizing the 

column profile (Ling and Luyben, 2009).  

In order to address these issues in distillation column control, 

this paper presents an inferential active disturbance rejection 

control (ADRC) method which integrates ADRC with 

inferential control. ADRC has been shown to give better 

control performance than PID control, but most of the 

reported applications of ADRC are in the area of motion 

control (Gao et al., 2001). Inferential estimation can 

overcome the impact of the long time delay in composition 

measurements on distillation product composition control 

performance. To the authors’ knowledge, the integration of 

ADRC and inferential control has not been reported in the 

literature.  

The paper is organised as follows: Section 2 gives an 

overview of active disturbance rejection control and 

inferential control. An integrated ADRC and inferential 

control strategy for distillation columns is presented in 

Section 3. Section 4 presents the development of soft-sensors 

for distillation product composition using principal 

component regression (PCR). Section 5 presents the control 

performance of the proposed control strategy. The last section 

draws some concluding remarks.  

 

2. AN OVERVIEW OF ADRC AND INFERENTIAL 

CONTROL 

Uncertainties commonly exist in many practical systems. 

Thus, dealing with uncertainties is a fundamental problem in 

control system design. Significant efforts have already been 

made and much progress has been achieved to overcome and 

solve this issue. Two sources of uncertainties are the internal 

parameters or sometimes called the un-modelled dynamics 

uncertainties and external disturbance uncertainties. To 

address these, many control techniques, like adaptive 

techniques, disturbance observers or estimators, and robust 

control techniques, have been developed. Moreover, various 

approaches with the idea of estimating external disturbances 

are introduced, such as the unknown input disturbance 
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observer based control (Gibson, Kolmanovsky, and Hrovat, 

2006), disturbance accommodation control (Kim, 2013) and 

many others. These techniques usually require a 

mathematical model of the controlled plant. It can be noticed 

that the modern control paradigm has an over dependency on 

the mathematical models. This makes many of the modern 

control methods not very practical because they need a 

mathematical model for the physical plant which sometimes 

is not realistic to attempt in the real world especially for 

complex nonlinear systems (Chen, Zheng, and Gao, 2007). 

ADRC breaks this barrier because it is after the PID control 

algorithm and it does not depend on the model accuracy of 

the plant. The ADRC method has been developed as a 

practical control method and proven as a powerful tool to 

deal with such mixed uncertainties.  ADRC directly estimates 

and compensates the total disturbances using extended state 

observer (ESO) leading to uncertainties reduction ability 

(Han, 2009; Gao, 2003). The second main advantage is that 

ADRC has few tuning parameters and it requires very little 

knowledge of the controlled dynamic system.       

2.1  The structure of ADRC  

Fig. 1 shows the structure of ADRC, which consists of three 

main components: transient profile generator, nonlinear 

weighted sum, and extended state observer.  

 

Fig. 1. Structure of ADRC 

A.Transient Profile Generator 

To overcome the impact of sudden set point jumps, Han 

(2009) mentioned the necessity of constructing a transient 

profile generator (TPG) which smoothes out sudden setpoint 

changes.  When there is a sudden unexpected change of the 

setpoint, the output signal of the plant will track the TPG 

output and will change gradually to reach the desired 

setpoint. TPG is represented by Eq(1). 
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In Eq(1), V represents the control target, V1 is the desired 

trajectory, V2 is the derivative of the desired trajectory and 

fhan represents the Han function. The speed of transient 

profile can be slowed down or speeded up by selecting a 

suitable value of r which is sometimes called tracking speed. 

The value of r can be selected depending on the physical 

limitation of the controlled plant.  

 

B. Nonlinear Weighted Sum 

The linear weighted sum is another limitation of the 

conventional PID controller which considers only the present, 

predictive and accumulative errors. Han (2009) presents an 

alternative nonlinear function that depends on the error signal 

magnitude to generate the control signal. For example using 

the following nonlinear feedback to determine the control 

action u:  

  esigneu


                                             (2) 

The control error signal, e, can reach zero much rapidly in 

finite time with α ˂ 1.     
                                                                                       

C. Extended State Observer  

ESO is the first observer which is independent of the 

mathematical model and is introduced in the context of 

ADRC (Yi et al., 2014). The main idea of ESO is to estimate 

on-line the variables which are often inaccessible 

instrumentation wise, such as model errors, external 

disturbances and internal nonlinear dynamics of the physical 

plant, and to effectively compensate for the unexpected 

disturbances. ADRC can successfully drive the controlled 

process output signal to the desired target if ESO has an 

accurate estimation for the external disturbances, model error 

and internal nonlinear dynamics of the plant and to 

effectively compensate for the unexpected disturbances in 

control effort. ESO can enhance the adaptability of the 

control strategy (Xia et al., 2007).  

Consider the following 2
nd

 order system (Han, 2009): 
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where y is the controlled output, u is the manipulated 

variable, and f(x1,x2,de,t) represents a multivariable function 

of the states, the external disturbance and time. This 

multivariable function corresponds to the total disturbance 

dt(t). Using the total disturbance dt(t) as an additional state 

variable,  Eq(3) can be modified as follows: 
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The three states x1(t), x2(t), and x3(t) can then be estimated by 

an ESO and the estimated states are denoted as z1(t), z2(t), and 

z3(t) respectively. Upon observation of Fig. 1 and to eliminate 

the effect of the total disturbance, the control law of the 

ADRC strategy can be written as: 
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where g is the desired closed loop dynamics, z3(t) is the 

estimate of the total disturbance dt(t), and b0 is a rough 

approximation of the parameter b in Eq(3).  

2.2 Inferential control  

Composition analyzers are typically utilized to measure 

product compositions in distillation columns. Many 

composition analyzers like gas chromatography commonly 

have substantial time delays. The other drawback is that the 

reliability of composition analyzers is usually quit low. Thus, 

utilizing this type of analysers in distillation column 

composition control will consequently involve high 

maintenance cost. As a result, the achievable composition 

control performance is reduced significantly (Shinskey, 

1979). In these cases, an estimate of the difficult-to-measure 

controlled variable should be acquired from an inferential 

model. Inferential control is commonly done by measuring 

secondary process variables which are then used in 

estimating the primary controlled variables (Kano et al., 

2000). It can be supreme to conventional PID feedback 

control especially for processes which has long dead times 

and high order. It circumvents several of the issues associated 

with composition analyzers. The control scheme introduced 

by Shiren et al. (1997) utilizes the easily available tray 

temperatures to estimate the product compositions and uses 

the estimated compositions in feedback control. In a binary 

distillation column, the top product composition can be 

controlled by controlling the top tray temperature and the 

bottom product composition can be controlled by controlling 

the bottom tray temperature because the temperature 

measurements are more economic, more reliable and almost 

without any time delay.  It is mentioned by Joseph (1999) 

that the tray temperatures have strong correlation with the 

product compositions. Kister (1990) mentions that tray 

temperatures are commonly utilized in distillation 

composition control unless the difference between the boiling 

points is small. However, a single tray temperature may not 

give good representation of product composition. Joseph and 

Brosilow (1978) developed techniques for constructing 

optimal and sup-optimal estimators and compared these two 

approaches for inferential control of product composition in a 

simulated multi-component distillation column. Alataiqi and 

Abdel Jabbar (1997) introduced an inferential feed-forward 

control algorithm for a petroleum fractionator with 

indeterminate blends of hydrocarbons as the feed. 

Unspecified and unmeasured disturbances of feed 

composition are estimated from secondary measurements and 

the manipulated variables are changed to keep the product 

quality at its desired level. Multiple linear regression (MLR) 

is usually not suitable for building inferential estimation 

models for distillation columns due to the colinearity among 

tray temperatures. Instead, PCR or partial least squares (PLS) 

regression should be utilized due to the following reasons 

(Kasper et al., 1992): 

o The strong correlations among the measurements of 

tray temperatures; 

o PCR and PLS are capable of providing a robust 

solution in the case of correlated or collinear input 

variables, where MLR encounters the ill-conditioned 

issue. 

Mejdell and Skojested (1991) presented PCR estimator to 

estimate the distillation columns product composition from 

flow rate measurements and secondary temperature 

measurements. PCR is applied to tackle the strong 

collinearity among the temperature measurements. Zhang 

(2001) reports that inferential feedback control of distillation 

compositions can be implemented by using PLS and PCR 

models. Zhang (2006) presents a new method for removing 

the static estimation and control off-sets using intermittent 

mean updating technique.  

 

3. INTEGRATED ADRC AND INFERENTIAL CONTROL 

The proposed inferential ADRC scheme for distillation 

column product composition control is shown in Fig. 2. In the 

considered distillation column, the primary controlled 

variables are top composition (y1) and bottom composition 

(y2), secondary measurements (x) are the tray temperatures 

and the disturbances are feed flow rate and feed 

compositions. Product composition control is done by 

measuring secondary variables, tray temperatures, which are 

used to estimate the controlled variables through soft sensors. 

PCR models are built to estimate the top and bottom product 

compositions from tray temperature measurements. 

Alternatively, PLS models can also be used. The static 

estimation and control off-sets due to the operating condition 

variations and model inaccuracy are eliminated via 

intermittent mean updating introduced by Zhang (2006). 

 

Fig. 2. ADRC scheme integrated with the inferential control 

 

4. PCR MODEL BASED SOFTWARE SENSORS 

The distillation column considered in this paper is a 

comprehensive nonlinear simulation of a methanol-water 

separation column which has 10 trays. A nonlinear tray by 

tray mechanistic model has been developed utilizing mass 

and energy balances. The following assumptions are used: 

negligible vapour holdup, constant liquid holdup and perfect 
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mixing in each stage. The simulated column is based on the 

Wood and Berry’s column at University of Alberta in 

Canada. The nominal operation data for this specific column 

are given in Table 1. The nominal operating point considered 

in this study is the top composition at 93% and the bottom 

composition at 7%. To generate data for building PCR 

inferential estimation models, series of random disturbances 

were added. Fig. 3 shows the top and bottom product 

compositions in the generated data. Fig. 4 shows the 

corresponding tray temperature data. It can be seen that 

correlation exists among tray temperature measurements. 

 

Table 1. Nominal distillation column operation data 

Variables Nominal values 

Top composition (y1) 93% (wt) methanol 

Bottom composition (y2) 7% (wt) methanol 

Reflux flow rate (u1) 10.108 g/s 

Steam flow rate (u2) 13.814 g/s 

Feed composition (d1) 50.12% (wt) methanol 

Feed flow rate (d2) 18.23 g/s 
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Fig. 3. Top and Bottom product compositions  
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Fig. 4. Tray temperatures 

 

The inferential model links the compositions at time t with 

tray temperatures at time t. The model can be defined in the 

following form: 

 )()()()(
10102211

tTtTtTty     (6) 

where y represents the product compositions, T1 to T10 

represent the tray temperatures from tray 1 to tray 10 

respectively, θ1 to θ10 are model parameters corresponding to 

tray temperatures, and t indicates the discrete time. The data 

are scaled to zero mean and unit variance before model 

building. The data is divided into training data set (samples 1 

to 1189) and the testing data set (samples 1190 to 1982). PCR 

models with different numbers of principal components were 

developed on the training data and tested on the testing data.  

The PCR model with the lowest error on the testing data is 

considered as having the appropriate number of principal 

components.  
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Fig. 5. SSE of different PCR models  

 

Fig. 5 shows the sum of squared errors (SSE) of several PCR 

models on the training and testing data. It has been seen that 

the PCR model with 4 principal components offers the best 

performance for the top composition on the testing data and 9 

principal components give the best performance for the 

bottom compositions on the testing data. As a result, 4 

principal components are used in the top composition model 

and 9 principal components are used in the bottom 

composition model. The developed PCR models for top and 

bottom product compositions are as follows: 

yD = 93 + 0.04500ΔT1 – 0.03572ΔT2 – 0.130424ΔT3 + 

0.189102ΔT4 – 0.034529ΔT5 + 0.08806 ΔT6 – 0.31151ΔT7 – 

0.32551ΔT8 – 0.0666ΔT9 – 0.67369ΔT10                              (7) 

yB = 7 – 0.39444ΔT1 + 0.071845ΔT2 – 0.22059ΔT3 

+1.356745ΔT4 + 0.21753ΔT5 + 0.88404ΔT6 – 0.98501ΔT7 – 

0.87577ΔT8 – 1.75977ΔT9 – 0.71489ΔT10                           (8) 

where yD and yB are top and bottom compositions (wt%) 

respectively, and ΔT is the deviation of a tray temperature 

from its nominal mean values.  

Fig. 6 shows the PCR model predictions. It can be seen from 

Fig. 6 that the model predictions are very accurate, especially 

for the top product composition. However, some prediction 

offsets are visible for the bottom product compositin. Table 2 

gives the SSE for top and bottom product compositions of the 

PCR models. 
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Fig. 6. Predictions from the PCR model 

 

5. INFERENTIAL FEEDBACK CONTROL 

In the composition control studied here, the manipulated 

variables for the top and bottom product compositions are 

reflux flow rate (L) and steam flow rate (V) to the reboiler 

respectively. The tray temperatures are fed to the PCR 

software sensor and the estimated compositions are utilized 

in feedback control as shown in Fig. 7. The feedback 

controller is designed as an ADRC controller. The considered 

disturbances are feed rate and feed composition disturbances.  

To study the performance of the control scheme, the 

following disturbances were added to the simulated column. 

The feed rate was increased by 15% at the 1200
th

 minutes, the 

feed composition was increased by 15% at the 600
th

 minutes. 

Furthermore, series setpoints changes are applied to both top 

and bottom product compositions.  

 

 

 

 

 

 

 

Fig. 7. Inferential feedback control of product composition 

The inferential ADRC control schemes are compared with 

tray temperature control. Through investigating and analysing 

the data presented in Fig. 3 and Fig. 4, it was found that 

temperature of the 8
th

 tray (from the bottom column) has the 

largest correlation coefficient with the top product 

composition and the temperature of the 2
nd

 tray has the 

largest correlation coefficient with the bottom product 

composition. Thus, temperatures of 2
nd

 and 8
th

 trays were 

controlled to indirectly control the bottom and top product 

compositions respectively. Temperatures at 2
nd

 and 8
th

 trays 

corresponding to top composition of 93% and bottom 

composition of 7% are 85.9° C and 70.5° C respectively. 

Hence, the setpoint for tray 2 and 8 temperatures were set at 

85.9° C and 70.5° C respectively. Temperature setpoints 

corresponding to other product compositions were identified 

from simulated process operation data. Multi-loop PI 

controllers were used to control both tray temperatures.  

Fig. 8 shows the control performance of tray temperature 

control. It can be seen from Fig. 8 that tray temperature 

control has large offsets in product compositions when the 

process operating condition changes. This is due to the fact 

that the relationship between a product composition and a 

single tray temperature can be substantially affected by 

process operating condition variations such as the presence of 

disturbances and changes of setpoints.  

Fig. 9 shows setpoint tracking and disturbance rejection 

performance of inferential ADRC across a wide range of 

setpoint changes, feed composition and feed rate 

disturbances. The setpoint was smoothed by TPG. It can be 

seen that the top product composition is well controlled with 

negligible static control offsets, but large static control errors 

exist for the bottom product composition after process 

operating condition changes. This static control error is due 

to the PCR model errors, which can get large when operating 

condition changes, e.g. setpoint and/or disturbance changes.  
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Fig. 8. Control performance of tray temperature control  

0 200 400 600 800 1000 1200 1400 1600 1800 2000
92

94

96

98

time (minutes)

To
p 

co
m

p 
y D. (

%
)

 

 

Actual y
D

Estimated y
D

Setpoint y
D

0 200 400 600 800 1000 1200 1400 1600 1800 2000

4

6

8

10

time (time)

B
ot

 c
om

p 
y B. (

%
)

 

 

Actual y
B

Estimated y
B

Setpoint y
D

Fig. 9. Responses of actual and estimated product 

compositions (without mean updating) 

To overcome the static control offset problem due to the 

changes in process operating conditions, the intermittent 

process variable mean updating strategy proposed by Zhang 

(2006) is used here. When a new steady state is reached, the 

static values of tray temperatures and product compositions 

are used to replace the mean values of these variables in the 

PCR models. It should be noticed here that only occasional 

product composition measurements are required. Fig. 9 

shows the control performance with mean updating. It can be 
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shown from Fig. 9 that, by using the mean updating 

technique, the static control offsets are eliminated. 
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Fig. 10. Responses of actual and estimated product 

compositions (with mean updating) 

 

6. CONCLUSIONS 

An inferential ADRC control method is proposed for 

distillation column composition control. Inferential 

estimation models for product compositions are developed 

from process operational data using PCR. The estimated 

product compositions are then used in an ADRC controller. 

Intermittent mean updating of process variables is used to 

eliminate static model estimation offsets due to variation in 

process operating conditions and the associated static control 

offsets. The proposed control method is applied to a 

simulated methanol-water separation column. Simulation 

results indicate the effectiveness and success of the proposed 

inferential ADRC control method. As a future work the 

inferential ADRC control method will be applied to high 

purity distillation columns and heat integrated distillation 

columns. 
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