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Abstract: Model maintenance is the most time-consuming and cost-intensive in industrial model 

predictive control. In this paper, a drill-down diagnosis algorithm for deficient models of industrial MPC 

via a model quality index (MQI) is proposed. The CVs with poor models can be detected first by MQI 

values with all controlled variables. Then, a leave-one-out algorithm is proposed to further diagnose 

which sub-models are deficient for the CVs with poor model performance. Thus, the effort and cost of 

model maintenance can be reduced. The application result to the Wood-Berry distillation column process 

indicates the effectiveness of the proposed assessment method. 
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1. INTRODUCTION 

Industrial model predictive control (MPC) usually needs 

maintenance in less than a year after it has been put into 

operation due to process and disturbance dynamics changes 

over time. MPC controller maintenance usually leads to 

remodeling of the plant and disturbance dynamics and 

retuning of the controller accordingly, which is a costly 

practice and may require interrupting the process operation. 

Furthermore, there is a lack of analytic tools to determine 

whether it is necessary to remodel the whole plant and 

whether remodeling will definitely improve the overall 

control performance. To avoid unnecessary cost in 

remodeling and controller maintenance, it is desirable to 

study which part of the model is deficient and to what extent 

the controller or model is deficient for industrial MPC.  

Control performance monitoring is concerned with advising 

the engineers whether the MPC needs maintenance at some 

point. A popular approach is the comparison between the 

actual output variance estimated by routine closed-loop data 

and theoretical minimum variance control (MVC) benchmark. 

The method was firstly developed by Harris(1989) and many 

extensions were studied subsequently (Harris et al,1996; 

Huang,2002; Harrison and Qin,2009a; Yu and Qin, 2009). 

More recent work focuses on diagnosing the cause of control 

performance deterioration. Tian et al. (2011) presented a 

data-driven classier method to diagnose the root cause of 

performance deterioration. The detection and diagnosis 

methods of control valves stiction were presented in (Yu et 

al.,2009; Thornhill and Horch, 2007). Integral square error 

(ISE) performance for multiplexed MPC (MMPC) was 

proposed to reflect the performance of controller itself which 

helps to select suitable controller parameters in the design of 

MMPC controller (Ling et al., 2011).  

Model performance diagnosis is a key focus recently in the 

field of control performance assessment. The method in 

(Abhijit et al, 2010) has the ability to assess impact of model-

plant mismatch on control performance by the designed 

control error benchmark. The work of Ji et al. (2012) presents 

a model error detection method by comparing the tested 

process frequency responses and frequency responses of the 

current MPC model. Sun and Qin (2013) proposed a model 

quality index (MQI) to evaluate the performance of MPC by 

comparing the MPC model residual to process innovations, 

which is a theoretical minimum. The contribution of Harrison 

and Qin (2009b) is the discrimination between the 

disturbance model mismatch and process model mismatch by 

the order of innovations.  

Our proposed work in this paper focuses on the MPC model 

performance assessment and model deficiency diagnosis. The 

MQI method shows great ability to assess the model 

mismatch of MPC by simply using the routine setpoint data, 

output data and prediction model (Sun and Qin, 2013). It can 

infer whether the poor MPC performance is caused by a poor 

prediction model. In practice, there are usually many 

controlled variables (CV) in a predictive control system and 

many sub-models corresponding to each CV. Usually, not all 

the sub-models are deficient when the MQI of the overall 

predictive control system is poor. Hence, it is desirable to 

determine which CV has a poor model and further which sub-

model of the CV is deficient, which can save cost by 

updating only the deficient sub-model. 

We obtain separate MQIs of each CV from the setpoint and 

output closed-loop data, which can be obtained easily from 

the control system. Therefore, we can infer which CV model 

is poor according to the values of separate MQIs. However, 

the effect of all sub-models of each CV is considered as a 

whole in the computation of prediction errors and the MQI. 
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To isolate the response of a manipulated variable (MV) from 

the output data, we present a drill-down diagnosis algorithm 

to give elaborate advice to engineers about the necessity of 

model maintenance. Firstly, we present an MQI computation 

method by the MV and CV closed-loop data and it gives the 

information on which CV model is poor. Then, the effect of 

each sub-model is considered and corresponding MQI is 

computed for those CVs with poor models assessed before. 

Because the CV data is the overall result of the input 

response and disturbance response, and the effect of each MV 

cannot be isolated from closed-loop CV data, MQI 

corresponding to each sub-model cannot be obtained directly 

by the MQI method. Therefore, we present a leave-one-out 

method in this paper to compute MQIs corresponding to sub-

models by leaving out one MV at a time. By comparing the 

overall MQI to MQI that one MV is removed, we can infer 

the performance of corresponding sub-model.  

2. AN ALTERNATIVE MQI ASSESSMENT ALGORITHM 

Consider a MIMO predictive control system in Fig.1, where 

( )ku  is Nu*1 dimensional control input vector(MV, 

manipulate variable), ( )ky  is Ny*1 dimensional output 

vector (CV, controlled variable), ˆ ( )ky  is Ny*1 dimensional 

prediction output vector,
 

Ny* Nu 
dimensional transfer 

function
 

( )
o

qG and Ny* Ny 
dimensional diagonal transfer 

function
 

( )
o

qH are the true process model and disturbance 

model, m ( )qG and ( )qH  are corresponding control model and 

disturbance model of prediction, Nu* Ny 
dimensional transfer 

function
 

( )
c

qG  is the prediction controller, ( )
o

ke  and 

( )
o

kd  are Ny*1 dimensional process innovation and 

disturbance, respectively, ( )ke  and ( )kd  are Ny*1 

dimensional prediction error and control model error, 

respectively, ( )kr  is Ny*1 dimensional reference trajectory.  

Assuming that there is no mismatch in the control model and 

disturbance model, it is obvious that the prediction error  

-

-
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Fig.1. Schematic diagram of model predictions and residuals 

( )ke  equals to the process innovation ( )
o

ke . Otherwise, if 

there is mismatch either in control model or in disturbance 

model, prediction error ( )ke  includes some model mismatch 

information and the innovation ( )
o

ke is the projection 

component of
 

( )ke  to the space spanned by previous ( )ky  

and ( )ku  (Sun and Qin, 2013). So we define model quality 

index (MQI) as  
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where Ny*Ny dimensional matrix ( )kQ is the weight matrix 

for outputs at time k that are properly chosen at the MPC 

design stage, N is the data length of assessment period. 

1( ) [ ( ) ( )]o

y

o o T

Nk e ek ke  can be obtained by routine 

CV data ( )ky  and MV data ( )ku , and 

1( ) [ ( ) ( )]
y

T

Nk e ek ke  can be computed by the 

control model coefficients of prediction model and process 

output ( )ky . The range of MQI   is in (0, 1]. An   

approaching 1 indicates an accurate prediction model and a 

small value implies a poor control model or disturbance 

model.  

In addition, MQI corresponding to lth CV can be defined as  
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                                     (2) 

By             , the model quality of each CV can be 

evaluated. 

2.1  Estimating Disturbance Innovations From Input-output 

Data  

We summarize an algorithm to estimate disturbance 

innovations from closed loop input-output data in the 

following theorem that is similar to Sun and Qin (2013).  

Theorem 1 Consider a multi-input-multi-output (MIMO) 

process under linear-time-invariant (LTI) control in Fig.2. 

Assume Ny*1 dimensional output vector y(k) (CV) 

corresponds to Nu*1 dimensional input vector u(k)  (MV). 

-

Fig.2 Schematic diagram of a closed-loop controlled process 

Define 

      
( ) [ ( ) ( 1) ( )]

p
k k k k p  y y y y

  

( ) [ ( ) ( 1) ( )]
o o o o

p
k k k k p  e e e e
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( ) [ ( ) ( 1) ( )] 
p

k k k k p  u u u u
 

T
( 1) ,     [ ( 1 ( 2) ( )]

M p p p
k k k k M    ）Y y y y  

T
[ ]    ( 1) , ( 1)    ( 2)        ( )

N p p p
k k k k N    U u u u

 

 ( ) [ ( 1) ( 1)]  
p M N

T
k k k  Z Y U                            (3) 

where p is the time window, the dimension of ( )
p

ky and 

( )o

p ke are  Ny*p, and the dimension of ( )
p

ku  is Nu*p, the 

dimension of ( 1)
M

k Y , ( 1)
N

k U and  ( )
p

kZ are (Ny*M)*p, 

(Nu*N)*p and (Ny*M+Nu*N)*p, respectively.  

Define the projection to the orthogonal complement of the 

row space of ( )
p

kZ  

1

( )
( ) ( ) ( ) ( )

p

T T

k p p p p
k k k k




    I
Z

Z Z Z Z              (4) 

For a linear process controlled by an LTI controller, the 

sequence of disturbance innovations ( )
o

p
ke  is obtained by 

performing the orthogonal projection 

                
( )

( ) ( )   as .
p

o

p p k
k k p


 

Z
e y                          (5)  

The proof of Theorem 1 is given in the appendix. To 

implement the projection in Theorem 1 efficiently and 

robustly, LQ decomposition can be performed (Sun and Qin, 

2013) 

                         
11 1

21 22 2

( )

( )

p

p

k

k


     
     

    

Z L Q

y L L Q
                     (6) 

Thus 

†1

21 11
( )  ( ) ( )

o

p p p
k k k e y L L Z                     (7) 

where the dimensions of L21 and L11 are independent of the 

number of the data samples for they are only required to 

calculate the innovations sequence.  

2.2  Estimating Prediction Errors From Mismatched Model 

Residuals  

In MPC algorithms, one-step ahead predictive output is 

computed by Ny*Nu dimensional control model ( )
m

qG  and 

Ny*Ny dimensional diagonal disturbance model ( )qH  that 

are different from the actual plant transfer functions. 

               ( ) ( ) ( ) ( ) ( )
m

k q k q k y G u H e                    (8) 

gives the prediction and prediction errors as follows 

            

1 1

-1

ˆ ( | 1) ( ) ( ) ( )

ˆ( ) ( ) ( | 1)

        = ( ( ) ( ))

m

m

k k k k

k k k k

k k

 
   

  



Iy H y H G u

e y y

H y y

           (9) 

where ( ) ( ) ( )
m m

k q kG uy  is the MPC control model output 

at time k. In DMC it is often obtained by finite step response 

model 

                 
0

1

( ) ( ) ( )
m

N

i

i

k k k i


   y y a u                    (10) 

where ( )ky  is the initial state value of y(k), 
0

( 1, , )
i

i Na

is the ith Ny*Nu dimensional step response coefficients matrix 

of the process 

11 12 1

21 22 2

1 2

i

u

u

y y y u

i i n i

i i n i

n i n i n n i

a a a
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 

a

, 

1 2( ) [ ( ) ( ) ( )]
u

T

Nk u k u k u k    u , 
u

N  is the 

input number, and 
0

N  is the model length. Thus 

         0

1

( ) ( ) ( ) ( )

        = ( ) ( ) ( )( )

m

N

i

i

k k q k

k q kk i


 

  

y y H e

y H ea u
           (11) 

In industrial MPC, the general practice is using a step 

disturbance model, which is equivalent to a random walk 

disturbance model, hence 

             
1 1

1 1
( ) diag{

1 1
, , }q

q q
 


 

H   

Prediction error can be expressed by 

                     
 1

1

( ) (1 ) ( ) ( )

        =(1 ) ( )

m
k q k k

q k




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

e y y

d

                   (12) 

where ( ) ( ) ( )
m

k k k d y y is the disturbance estimate.  

3. DRILL-DOWN DIAGNOSIS OF DEFICIENT SUB-

MODELS 

By MQI method in Section 2, we can infer which CV has 

poor prediction model by routine CV data, MV data and 

model coefficients. However, for a multi-input CV, usually 

not all the sub-models corresponding to its MVs are deficient. 

Engineers usually hope to further know which sub-model has 

mismatch in order to reduce the work of model maintenance. 

So the model performance diagnosis is essential in practice. 

Because we cannot tell the root of deficiency by the overall 

model performance index, the isolated performance index of 

each sub-model is required to detect the deficient models. 

 Consider the MIMO control system in Fig.2. From appendix, 

the lth output ( )
l

y k  can be expressed as 
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1 1 1

( ) ( ) ( ) ( )
u

NM N

l l o

l i l ji j l

i j i

y k H y k i G u k i e k
  

           (13)  

where ( )
j

u k  is the jth input, 
l

i
H and 

l

ji
G  are the 

corresponding coefficients to the lth output ( )
l

y k , and 
u

N  is 

the number of input. We wish to assess the model quality of 

the jth sub-model. Unfortunately, it is difficult to extract the 

response of jth MV on lth CV, since only the response data 

( )
l

y k  of all MVs are available from routine closed-loop data. 

Therefore, we propose a leave-one-out method to compute 

the performance of sub-models indirectly. 

3.1 MQI of Sub-models by the Leave-one-out Method 

The leave-one-out method keeps all the sub-models but one 

MV to assess the contribution of the sub-model of the 

specific MV. For example, for lth output,  jth MV is removed 

for the evaluation of the sub-model denoting jth input to lth 

output.       
     is the corresponding disturbance innovation. 

In the computation of      
    , the contribution of  jth MV 

cannot be isolated from yl(k) and so we use the original 

output YM(k-1) and input 
( )

  ( 1)
N j

k U  (removing uj(k) )in (3) 

to construct ( )
p

kZ . Thus, the obtained disturbance 

innovations 
( )

( )
o

l j
e k  include the effect of the removed MV. 

That is, the contribution of jth MV is considered as 

disturbance. Similarly, 
( )

( )
l j

e k can be computed by (12) 

where the jth MV is removed in the computation of       by 

(10). 

Define the MQI for lth output removing jth input 

( ) ( )

1
( )

( ) ( )

1

( )

( )

( ) ( )

( ) ( )

N
o o

l j l j

k
l j N

l j l j

k

Q

Q

e k k e k

e k k e k

 







                  (14) 

If isolated MQI ( )l j  improves after removing the jth MV, 

the corresponding sub-model is deficient. So we can infer the 

sub-model performance by the comparison of the isolated 

MQI and overall MQI. Hence, we define  

                                 
( )

( )

l j

l j

l





                                      (15) 

which measures the influence on MQI by removing an input 

  . 
( )

1
l j

   indicates an improvement of model performance 

by removing
 
  , which implies that the corresponding sub-

model is deficient. Conversely, 
( )

1
l j

   shows deterioration 

of model performance after leaving input    out, which 

implies that the removal of sub-model is detrimental. 

3.2 Procedure of Drill-down Diagnosis of Model 

Performance 

The procedure to diagnose a CV prediction model is 

summarized as follows. 

1) Collect routine closed-loop data ( )ky  and ( )ku , construct 

related vectors in (3), and compute disturbance innovations 

( )
o

ke  by (5) or (7); 

2) Compute model output ( )
m

ky by (10) using routine data

( )ky , ( )ku  and model coefficients 
i
a , then further calculate 

( )ke  by (12); 

3) Calculate   by (1) using ( )
o

ke  and ( )ke obtained in step 

1) and step 2), assess the model performance by the value  . 

Compute l  one by one by (2) and evaluate the model of 

each CV. If
 l
  is below a threshold, go to step 4, else a good 

prediction model is concluded; 

4) Remove a MV, reconstruct vectors in (3) and compute 

corresponding 
( )

( )
o

l j
e k  by (5) or (7); 

5) Compute model output ( )
m

y k by (10) removing the same 

MV as that in step 4, then further calculate 
( )

( )
l j

e k  by (12); 

6) Calculate      by (14) and
( )l j

  by (15), assess the 

corresponding sub-model performance by the value of
( )l j

 ; 

7) Repeat step 4 to step 6 until all the related MVs are treated. 

4. CASE STUDY OF THE WOOD-BERRY 

DISTILLATION COLUMN PROCESS 

The presented drill-down model performance diagnosis and 

improvement via IMA(1,1) disturbance model are 

demonstrated by the Wood-Berry distillation column process. 

The process transfer function matrix(Wood and Berry, 1973) 

is  

3

7 3

12.8 18.9

16.7 1 21.0 1
( )

6.6 19.4

10.9 1 14.4 1

s s

s s

e e

s s
s

e e

s s

 

 



 




 

 
 
 
 
  

G .                             (16) 

Reflux rate and steam flow rate are inputs (manipulated 

variables) of the process in lb/min; composition of top 

product and bottom product of column in mol% are two 

outputs (controlled variables), respectively. The process 

transfer function matrix is discretized to 
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G         (17) 

with the sampling time of 1 min. The actual disturbance 

model is chosen as 

1

1

1

1

1 0.5

1
( )

1 0.7

1

o

q

q
q

q

q


















 
 
 
 
 
 

H                          (18) 

( )
o

ke  is independent white noise with covariance of 

diag{0.7442, 0.132}.The MPC prediction and control 

horizons are chosen to be 100 and 10, respectively. The 

weight matrices are diag{1,10}Q  and diag{1,10}S  . For 

simplicity, no constraint is added. The setpoints are set to 

1
90%y  and 

2
5%y  . The model length M=N=30, time 

window p=3940 in the experiment. 

  To verify the effectiveness of proposed diagnosis and the 

improvement method, MQI values in different model cases 

are calculated and the results are listed in Table 1. 

Corresponding comparison is shown in Fig.3. Case 1: 

accurate control model and disturbance model; Case 2: DMC 

with accurate control model and random walk disturbance 

model. Case 3: DMC with the mismatch control model 

2 4
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8 4
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 

 
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 
 
                                                                                             

(19) 

and random walk disturbance model; Case 4: DMC with the 

mismatch control model 

2 4

1 1

8 4
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1 0.9419 1 0.9535
( )

0.5786 1.302
3.0 *

1 0.9123 1 0.65

o

q q
q q

G q

q q
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 
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 
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 
 
  

      (20) 

and random walk disturbance model; Case 5: Diagnosis of 

CV2 model removing the first MV in Case 4; Case 6: 

Diagnosis of CV2 model removing the second MV in case 4.  

From Table 1 and Fig.3, we have these discussions: 

1) Both MQI1 and MQI2 approach to 1 in the case of accurate 

control model and disturbance model (Case 1), which 

demonstrates that MQI can precisely express the model 

performance. 

2) Once there is mismatch either in control model or in 

disturbance model (case 2, case 3 and case 4), the MQIs drop 

to some extent and indicate corresponding mismatch. 

3) There is severe mismatch in the 2th sub-model of CV2 

while other three sub-models are accurate in case 4. So the 

MQI2 related to the deficient sub-model drops greatly to 

0.119. This more less than 1 MQI value implies the 

significant mismatch exists in the second CV model. This is 

the assessment result of our first diagnosis stage.  

4) Case 5 and Case 6 belong to the second stage. To further 

diagnose which sub-model of CV2 is poor, corresponding 

two MVs are removed in Case 5 and Case 6, respectively. 

Compared MQI2 in Case 5 with that in Case 4, it decreases 

greatly and corresponding 2(1)  is 0.559. This result implies 

that the sub-model corresponding to the first removing MV is 

not bad, which is well consistent with the experiment 

condition. Differently, MQI2 in Case 6 increases remarkably 

compared to Case 4 and corresponding 2(2)  is 3.137, which 

indicates the removing second sub-model is a deficient one 

and it is also reflects the truth.  

Table 1 Assessment results of Wood-Berry process 

 Case1 Case2 Case3 Case4 Case5 Case6 

MQI1 0.99 0.784 0.768 0.792 0.798 0.793 

MQI2 1.00 0.664 0.609 0.119 0.066 0.373 


2(1) - - - - 0.559 - 


2(2) - - - - - 3.137 

 

 

Fig.3. Diagram of assessment results of Wood-Berry process 

5. CONCLUSIONS 

Timely monitoring of model performance without interfering 

with the normal operation of MPC is of great importance to 

the maintenance of MPC. The proposed model performance 

drill-down diagnosis algorithm via MQI provides an effective 

and practical method to the monitoring and diagnosis of the 

control model. Moreover, the index is easily obtained by 

using routine closed-loop data and the MPC control model. 

From the application in the Wood-Berry distillation column, 
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all poor models and deficient sub-models can be correctly 

detected by the diagnosis algorithm. The diagnosis results can 

provide model performance information. More importantly, it 

can give suggestions on which models need to be maintained 

and thus saving work and cost to the maintenance of all 

models.  
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Appendix. PROOF OF THEOREM 1 

It can be seen from Fig.2 that the closed-loop output y(k) can 

be express as the sum of response caused by input u(k) and 

disturbance ( )
o

ke , that is 

( ) ( ) ( ) 
o o o

k k k y G u H e .                    (A-1)  

From Ljung(1999), it is straightforward that one-step ahead 

prediction of the output is 

          

1 1ˆ ( 1) ( ) ( ) ( )

ˆ( ) ( 1) ( )

o o o
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k k k k

k k k k

 
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Iy H y H G u
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         (A-2) 

where 
o

H and 
o

G  are strictly causal. Denoting 

               

1

1

1

1

,  

 

i

o i

i

i

o o i

i

q

q



 





 



 







I H H

H G G

, 

where 
i

H  and 
i
G  are the coefficients. Thus (A-2) becomes 

1 1

1 1
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        (A-3) 

for sufficiently large M and N. It is clear from (A-3) that 

( )
o

ke  can be obtained from closed-loop data y(k) and u(k). 

Applying vectors expression in (3), (A-3) becomes 

               ( ) ( ) ( )
o

p p p p
k k k y L Z e                            (A-4) 

where 
1 1

[ ]
p M N
L H H G G . 

Post-multiplying (A-4) by 
( )

1

p
kp



Z
  and using 

( )
( ) 0

p
p k

k

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Z

Z   leads to 
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where ( )
o

p
ke  is uncorrelated to the past input and output data, 

i.e.,  

              
[ ( ) ( ) ] 0

o T

p p
E k k i e y

  

             [ ( ) ( ) ] 0, 1
o T

p p
E k k i i   e u                    (A-6) 

Hence, 1 ( ) ( ) 0 as 
o T

p pp
k k p e Z  , that is, 

11 ( ) ( ) [ ( ) ( ) ] ( ) 0 as 
o T T

p p p p pp
k k k k k p


 e Z Z Z Z  in (A-

5). Thus we have (5). 
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