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Abstract: Optimal scheduling of maintenance and improvement on the water main system
is a substantial problem since it can greatly reduces the potential threat of failure and the
expenses. The Markov decision process (MDP) based methodology to find the optimal schedule
which minimizes the cost is proposed. Since it needs the information about the current state of
pipe, cost, and deterioration model, the definition and the usage of auxiliary information are
also presented. The objective function and detailed algorithm of dynamic programming (DP)
are modified due to the difficulty of implementing the conventional DP approaches. The result
is compared to two simple policies via Monte Carlo simulation. Validity of the solution and
improvement in computational time are proved. Proposed decision framework provides an easy
way to obtain the comprehensive and local-specialized policy.

Keywords: Markov decision processes, Dynamic Programming, Monte Carlo simulation,
Periodic replacement, Weibull distribution

1. INTRODUCTION

Various kinds of policies for appropriate combination of
maintenance and improvement on water main system are
implemented, and heuristic policy or myopic policy is the
most widely used policy among them. The former is to
improve the pipe every 15-30 years, and the latter is to
improve the pipe when failure occurs. It is trivial that
both policies are very different from an effective policy.
The objective of this research is to suggest a systematic
decision-making framework for deriving an optimal policy
that minimizes the total cost and reflects the overall cir-
cumstance of pipe.
A mathematical model explaining the deterioration of
water pipe is necessary since the direct investigation of
a water main system is time-consuming and costly. A
statistical approach has been made to explain the failure
risk of the pipe in Andreou et al. (1987a) and Andreou
et al. (1987b), which is called survival data analysis. A
proportional hazards model is used in the early stage
of deterioration, while a Poisson model is used in the
late stages. Le Gat and Eisenbeis (2000) applied survival
analysis for the number of real data.
Markov model is one of the most widely used models
to describe the deterioration model. It classifies the pipe
into finite state with some criteria such as the number
of failures (Li and Haimes, 1992) or current performance
of pipe (Cesare et al., 1992). Once the state classification
criteria has been declared, the state transition probability
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can be obtained in two ways. One is to combine sur-
vival analysis with Markov model (Li and Haimes, 1992;
Kleiner, 2001). It is an extended version of survival analy-
sis. While survival analysis only considers two states (fail-
ure or not), Markov model makes a relationship between
multiple states. The other method is to use a statistical
method directly without using survival analysis (Madanat
et al., 1995; Baik et al., 2006; Guignier and Madanat, 1999;
Madanat and Ibrahim, 1995; Cesare et al., 1992; Wira-
hadikusumah et al., 2001; Micevski et al., 2002). Transition
probabilities are calculated by regression methods.
The deterioration model explained above is then combined
with the cost model to formulate the objective function.
Objective function is expressed as minimizing the total
expectation cost within the decision horizon. Several re-
searchers added extra objective criterion such as pipe
resilience or production rate by workers to make a mul-
tiobjective optimization problem (Dandy and Engelhardt,
2006; Nafi et al., 2008; Fwa et al., 2000). Heuristic opti-
mization algorithms such as genetic algorithm (GA) are
used to obtain the Pareto optimal set of these problems.
Various kinds of formulation have been suggested and a
corresponding optimal poilcy has been withdrawn. Lo-
ganathan et al. (2002) used threshold break rate which
concerns the failure history of a single pipe. Kleiner et al.
(1998a) and Kleiner et al. (1998b) added the analysis
of hydraulic pressure in order to expand the single pipe
problem into the pipe network system. Both researches
use the exponential failure rate which is the most simple
form of deterioration models.
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Fig. 1. Illustration of sequential decision problem (Puter-
man, 2009)

More complex optimization strategies have also been stud-
ied. Linear programming based optimization strategies
have been suggested in Li and Haimes (1992) and Guignier
and Madanat (1999). A basic concept of implementing
Markov decision process to the scheduling problem for
infrastructure is suggested by Madanat and Ben-Akiva
(1994). Monte Carlo simulation is also used to solve the
optimization problem by Boston and Bettinger (1999) and
Buxey (1979).
Those formulations are intuitive and convenient to get a
solution, but the computational burden grows exponen-
tially with the problem size. To overcome the problem,
this work proposes a novel dynamic programming formu-
lation to solve the Markov decision process. Monte Carlo
simulations are used to show the validity of the result and
reduction in computational time.

2. MARKOV DECISION PROCESS (MDP) FOR
OPTIMAL SCHEDULING

2.1 Fundamentals of Markov decision process

Consider a single water pipeline in the water main system.
Decision maker should decide whether to maintain the
pipe or not at each decision epoch based on the informa-
tion of system. Markov decision process is an appropriate
decision-making method for a system whose system fol-
lows a Markov property. The fundamentals are treated in
Puterman (2009) with considerable detail.
At each time step, the state of system is observed or
calculated and the decision maker may choose any action
which accompanies cost. At the next time step, the process
moves into a new state and a corresponding cost occurs.
The probability of the process moves into its new state
is influenced by the chosen action. Given the state and
action, they are conditionally independent of all previous
states and actions; in other words, the state transitions of a
Markov decision process possess the Markov property. The
objective of Markov decision process is to find the sequence
of action, which is called optimal policy, to minimize the
total cost. Fig. 1 is the brief illustration of Markov decision
process. The following data are given:
T = {1, . . . , N} is a set of decision epoch.
S = {1, . . . , |S|} is a finite set of states; state 1 denotes
good, brand-new pipe and state n denotes failure.
A = {1, . . . , |A|} is a finite set of actions; 1: maintenance,
2: rehabilitation, 3: replacement.

Ct(st, at) is a cost function at decision epoch t.
pt(st+1|st, at) is a transition probability at time t that
gives the probability; when the state is in st and action at
is taken, then the next state will be in st+1 with probability
of pt(st+1|st, at).
Xt = [x1, x2, . . . , x|S|] is a state distribution at decision
epoch t.
γ is a discount factor; future costs are discounted when
converted into present value.

2.2 Deterioration and action matrix

It is convenient to express the transition probability as
a matrix form. A Markov transition probability matrix
Pt(at) is a matrix whose element of ith row and jth column
denotes the transition probability pt(st+1 = j|st = i, at).
It is assumed that the process can move from state i to
state j only if j > i. And the pipeline can deteriorate only
one state at a time (Kathuls and McKim, 1999). When
|S| = 5, transition probability matrix can be expressed as
follows.

Pt(at) =
pt(1|1, at) pt(2|1, at) 0 0 0

0 pt(2|2, at) pt(3|2, at) 0 0
0 0 pt(3|3, at) pt(4|3, at) 0
0 0 0 pt(4|4, at) pt(5|4, at)
0 0 0 0 pt(5|5, at)


(1)

Decision maker can employ three kinds of action, which
means |A| = 3, at each time step; maintenance, reha-
bilitation, and replacement. Transition probability matrix
pt(st+1 = j|st = i, at) can be decomposed to a dete-
rioration matrix Dt and an action matrix Rat . Action
matrices have the same dimension with the transition ma-
trix. Replacement and rehabilitation transfer the inferior
states to state 1. When the improvement performance is
r, corresponding action matrix is given by

M(r) =


1 0 0 0 0
r 1− r 0 0 0
r 0 1− r 0 0
r 0 0 1− r 0
r 0 0 0 1− r

 (2)

Maintenance does not alter the state distribution and its
matrix is R1 = M(0). Assume that replacement recover
the pipe perfectly and rehabilitation recover the pipe 70
percent, thus R2 = M(0.7), R3 = M(1).
State distribution at the next time step can be calculated
by the left multiplication of action matrix and transition
matrix to state distribution at current time step. Gener-
ally, state distribution at time τ , Xτ can be obtained by

Xτ = X1

τ−1∏
t=1

Pt(at) = X1

τ−1∏
t=1

RatDt (3)

3. DETERIORATION MODEL OF WATER PIPE

3.1 Deterioration matrix evaluation using waiting time

The pipe would deteriorate naturally if no improvement
had been employed. Deterioration matrix Dt can be eval-
uated by the deterioration model of water pipe. The basic
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idea of the deterioration model is to estimate a survival
function or a hazard function for a water pipe. Estimating
those functions is called survival analysis which has been
widely studied. Models developed by Weibull are the most
prominent, but they only considers the two state system
(|S| = 2); failure or not. Kleiner (2001) generalizes the
deterioration model to n state variables, and provides the
methods to evaluate the deterioration matrix.
Let {T1, T2, . . . , T|S|−1} be random variables representing
the waiting time in states {1, 2, . . . , |S| − 1}. For example,
it takes Ti for the process to go from state i to i+ 1.
When we define the random variable Ti→k as the sum of
waiting times in states {i, i+ 1, . . . , k − 1}, we can obtain
the cumulative waiting time between states i and k. In gen-
eral, summation of two or more random variables can be
calculated analytically by convolution integral. Probability
density function (PDF), survival function (SF) of Ti→k are
denoted as fi→k(Ti→k), Si→k(Ti→k). Then the transition
probability of state i to state i+ 1 is the generalization of
hazard function which can be expressed as follows.

Pr[st+1 = i+ 1|st = i] = pt(i+ 1|i, 1)

=
f1→i(t)

S1→i(t)− S1→i−1(t)
(4)

for all i = {1, 2, . . . , |S| − 1}
Once the PDF and SF of waiting time Ti(t) are established,
every element of the deterioration matrix Dt can be
calculated.

3.2 Weibull distribution of waiting time

The waiting time Ti of state i follows the Weibull proba-
bility distribution. Weibull model is the special case of the
proportional hazards model whose physical interpretation
is explained by Andreou et al. (1987b). Weibull model has
two parameters and takes the following.

SF : Si(t) = Pr[Ti ≥ t] = exp[−(λit)
βi ]

PDF : fi(t) = λiβi(λit)
βi−1 exp[−(λit)

βi ] (5)

Parameters λi and βi can be calculated by regression using
the survival history of water main system of target region
(e.g. x% probability of being in state i more than t years).
The criteria of classifying the state of water main pipe has
been suggested by many researchers (Cesare et al., 1992;
Madanat and Ibrahim, 1995) and municipal government.
The data on which the time a pipe takes to shift from
one state to other without any action employed would
be recorded. Decision maker uses those historical data to
find the parameters of Weibull model and evaluate the
deterioration matrix Dt, t ∈ T .

4. DYNAMIC PROGRAMMING

4.1 Fundamentals of dynamic programming and Bellman
equation

Dynamic programming algorithm is implemented to solve
the Markov decision process. Dynamic programming is the
method for solving the complex optimization problems by
breaking down the big system into smaller subproblems.
We need to get solutions of the subproblems, then take

the solutions into account to reach an overall solution.
This bottom-up approach method reduces the repeated
calculation and complexity of a large-scale optimization
problem.
The goal is to find an optimal policy (action) that mini-
mizes the total cost over the whole period of the decision
process. The optimal policy π∗ = (a1, a2, . . . , aN ) is the
sequence that minimizes the total cost and can be found
by solving the following objective function.

Vπ∗ = min
π

E[

N∑
t=1

γtCt(st, at)] (6)

Define the value function at the kth time-step as

Vk(sk) = min
ak,ak+1,...,aN

E[

N∑
t=k

γt−kCt(st, at)|] (7)

Then we can find the optimal policy by working backwards
from N, which is called Bellman equation.

Vk(sk) = (8)

min
ak∈A

(Ck(sk, ak) + γ
∑
s′∈S

P (st+1 = s
′
|st, at)Vk+1(s

′
))

Let vt the column vector with ith element be Vt(st = i),
and ct(at) the column vector with ith element be Ct(st, at).
Then the standard Bellman equation can be expressed by
a vector-matrix form.

vk = min
ak∈A

(ck(ak) + γvk+1Pk+1(ak+1)) (9)

4.2 Modified DP algorithm

According to equation (4), deterioration matrices are time-
varying. So proper matrix should be substituted to Bell-
man equation. Consider when replacement action takes
place at decision epoch k. ”Replacement” means replacing
the deteriorated or aged pipe into the new pipe. Deteriora-
tion rate is then initialized at the next decision epoch k+1;
Dk+1 = D1. In order to choose the deterioration matrix
at decision epoch k, decision maker should know all infor-
mation about policy employed before (a1, a2, . . . , ak−1), or
just know about when the pipe was replaced recently. How-
ever, it is impossible to know that information since the
optimal policy is evaluated from aN to a1, in a backward
manner.
To avoid the algorithmic difficulty, replacement action
should be separated from dynamic programming. Based
on the idea that replacement initialize the time index
of deterioration matrix, this problem also can be consid-
ered as a periodic problem. Let the replacement period
τ , then the pipe would be replaced at decision epoch
{τ, 2τ, . . . ,

⌊
N
τ

⌋
τ}. During the decision epoch within the

first period Tτ = {1, 2, . . . , τ − 1}, define the objective
function V τη .

V τη = min
η

E[

|Tτ |∑
t=1

γt−1Ct(st, at)] + γτ−1Cτ (sτ , 3) (10)

η = {a1, a2, . . . , a|Tτ |} ai ∈ A \ {3}
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Decision epoch

repair repair repairrepair

Fig. 2. Illustration of periodic subproblem

Optimal policy η∗ minimizes the total cost within the first
period, which can be found by using backward dynamic
programming. The last period of the decision horizon is
TF = {

⌊
N
τ

⌋
τ + 1,

⌊
N
τ

⌋
τ + 2, . . . , N} and a corresponding

objective function is defined as follows.

V Fζ = min
ζ

E[

|TF |∑
t=1

γt−1Ct(st, at)] (11)

ζ = {a1, a2, . . . , a|TF |}, ai ∈ A \ {3}

Due to the periodic property of the problem, optimal
policy π∗ is equal to {η∗, 3, η∗, 3, . . . , η∗, 3, ζ∗}. The cost
incurred during the kth period is equal to γk−1V τη when
discount factor γ is taken into account. The total cost of
whole decision horizon is evaluated as follows.

Vπ = E[γb
N
τ cτV Fζ +

bNτ c∑
k=1

γk−1V τη ]

= E[γb
N
τ cτV Fζ +

1− γb
N
τ cτ

1− γτ
V τη ] (12)

The object is to find the replacement period τ∗ which
minimizes the total cost Vπ, where the minimum cost is
Vπ∗ . The global optimality of proposed algorithm can be
proofed as following.

Vπ∗ = min
π

E[

N∑
t=1

γtCt(st, at)]

= min
τ,η,ζ

E[γb
N
τ cτV Fζ +

1− γb
N
τ cτ

1− γτ
V τη ]

= min
τ

E[γb
N
τ cτ min

ζ
V Fζ +

1− γb
N
τ cτ

1− γτ
min
η
V τη ]

= min
τ

E[γb
N
τ cτV Fζ∗ +

1− γb
N
τ cτ

1− γτ
V τη∗ ] (13)

The scheme explained above is illustrated in Fig. 2. And
Fig. 3 is the flow diagram of the proposed algorithm of
decision process. Denote the MDP problem with decision
horizon N as G(N). Then the optimal policy of G(τ) is
solved by dynamic programming explained in Section 4.1.
The total cost of G(N) can be calculated by following the
procedure explained in Section 4.2. The optimal replace-
ment period τ∗ is found exhaustively; solve the optimiza-
tion problem by searching for all possible candidates.

Solve via 

dynamic 

programming

Reduce to 

subproblem

Construct the 

op!mal policy for 

Calculate the total 

cost of using 

Find minimizes 

via exhaus!ve 

search

Fig. 3. Modified DP algorithm flow diagram
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Fig. 4. Total cost of each subproblem

5. SIMULATION RESULTS

5.1 Example data

An illustrative example case is solved to validate the
proposed algorithm to find the minimum cost. Given that
there are 5 states (|S| = 5), and the decision horizon is 100
years (t = 100). Parameters of Weibull distribution model
are arbitrarily chosen which makes the pipe deteriorate for
the decision horizon. In this example, the parameter data
of Kleiner (2001) are used. The rehabilitation performance
is set to be 70 percent. The discount factor γ is 0.99. The
opportunity cost of failure, rehabilitation and replacement
are assumed to be 200, 80, 100 (dimensionless).

5.2 Optimal policy from proposed algorithm

The proposed decision framework with the example data of
Section 5.1 was implemented in MATLAB environment to
verify the concept. Calculated optimal policy has the form
of 5×100 matrix; ith row is the 100 years plan of the pipe
whose initial state is estimated to be i. Fig. 4 shows the
variation of the total cost of G(N) as subproblem G(τ)
changes when the initial state is given. All graphs have
global minimum point and it is clear that those points are
the optimal replacement period of a corresponding initial
state.

Table 1. Optimal replacement period

Initial state State1 State2 State3 State4 State5

τ∗(year) 53 53 54 80 53
V ∗ 94.04 97.40 234.88 256.06 476.52

Table. 1 shows the optimal replacement period and mini-
mum total cost of an example case. Various constraints can
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be added on this algorithm. For example, when the upper
bound of the replacement period is set to be 50 years, then
τ∗s are altered like Table. 2.

Table 2. Optimal replacement period with con-
straint

Initial state State1 State2 State3 State4 State5

τ∗(year) 39 38 40 21 50
V ∗ 104.90 107.63 240.59 263.60 525.95

5.3 Comparison with other policies via Monte Carlo(MC)
simulation

Monte Carlo simulation is widely used to solve the op-
timization problem of sequential stochastic process. This
algorithm generates a set of random samples to obtain
numerical results and to observe a stochastic dynamics.
Total cost and state variation would be simulated at each
policy. And the global optimal policy would be found by
enumerating the whole possibility. However, the number
of cases in this problem is |A|N×|S|, which is too huge
to enumerate. Nevertheless, it is very useful to observe the
state variation over the decision horizon and the cost when
the action set is given.
To prove the validity and speed of the proposed algorithm,
heuristic policies and optimal policies in Section 5.2. are
compared by Monte Carlo simulation. The whole map of
state transition probability pt(st+1|st, at) is revealed when
the action set is given. Monte Carlo simulation creates the
path regarding the revealed map from decision epoch 1
through 100 by using uniformly distributed random num-
bers. Each experiment is repeated 5000 times to reduce
the effect of randomness.

Table 3. Policy comparison

Initial state State1 State2 State3 State4 State5

Proposed 94.04 97.40 234.88 256.06 476.52
Heuristic15 369.54 369.54 369.54 369.54 469.54
Heuristic30 174.50 177.92 460.70 687.80 275.22
Myopic 642.40 648.70 946.30 1070.7 730.90

Monte Carlo simulation results of widely implemented
policies are compared to the policy obtained by proposed
algorithm and shown in Table. 3. Policies named Heuristics
15 and 30 replace the pipe every 15 and 30 years, respec-
tively, regardless of its initial state. Myopic policy is to
replace the pipe when failure occurs. Rehabilitation action
is not considered in these reference policies. Simulation
results show that the proposed algorithm leads to the
smallest value on all initial states.
The strength of proposed algorithm is emphasized when
the computational times are compared. The time com-
plexity of proposed algorithm is O(N2) while Monte Carlo
simulation is O(2N). Thus, applying the dynamic program-
ming method to solve the stochastic optimization reduces
the computational time greatly.

Proof. Time complexity of subproblem G(τ) is O(τ), since
dynamic programming has a linear time complexity. G(N)
is consisted of

⌊
N
τ

⌋
units of G(τ), so time complexity of

G(N) is O(N). Total time complexity is then O(N2) since
G(N) is solved N times to find optimal τ in the exhaustive
manner.
In order to use Monte Carlo method to find the optimal
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Cost func�on 

Fig. 5. Decision process flow diagram

policy, every possible cases (|A|N×|S|) should be explored.
Which makes the time complexity exponential.

6. SUMMARY AND CONCLUSION

Fig. 5 summarizes the whole decision process. Decision
maker needs the pipe characteristics such as geometry,
pH, soil type, weather, population, etc. Using those raw
data, MDP can be formulated by following the procedure
in Section 2 and 3.
Due to the non-homogeneous property of transition prob-
ability matrix, conventional DP algorithm cannot be im-
plemented. Hence, a modified method is proposed to get
a global optimal policy; tear the problem into small-size
subproblem and apply DP of each part, and reassemble
them.
Calculated optimal policy is compared with two sim-
ple policies (heuristic policy, myopic policy) using Monte
Carlo simulation in order to prove the validity and perfor-
mance of the proposed algorithm. As a result, the proposed
algorithm not only achieves the global optimal policy, but
also reduces the computational time greatly.
Moreover, local-specialty would be one of the major differ-
ence compared to existing policies. It considers the effect
of current state, property, cost, decision horizon compre-
hensively while heuristic and myopic policies do not. So
the policy can be altered flexibly on frequently varying
circumstance. By regular inspection, properties of pipe are
updated and optimal policy can be varied regularly.
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