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Abstract: Catalytic naphtha reforming is one of the most important processes for high
octane gasoline manufacture and aromatic hydrocarbons production. In this article, a modified
differential evolution (DE) algorithm is proposed to optimize an actual continuous catalytic
naphtha reforming (CCR) process. The optimization problem considers to minimize the energy
consumption and maximize the aromatics yield. The CCR process model is established by
adopting the 27-lumped kinetics reaction network, and all parameters are adjusted based on the
actual process data. The DE algorithm is modified to maintain the diversity of the population.
In this mechanism, individuals further from the best individual have larger possibilities to
be selected in the mutation operator. The modified DE is evaluated by solving 6 benchmark
functions, and the performance is compared with classic DEs. The results demonstrate that the
modified DE has better global search ability and higher computation efficiency. Furthermore, the
optimization results of catalytic naphtha reforming process indicate that the proposed algorithm
has the ability of locating the optimal operating points, in which the aromatics yield is improved,
while energy consumption is reduced. Meanwhile, the optimal operating points and results are
discussed at the end of the article.

Keywords: Catalytic naphtha reforming process, Energy consumption, Differential evolution,
Global search

1. INTRODUCTION

Continuous catalytic reforming of naphtha (CCR) process
plays a significant role for high octane gasoline manu-
facture and aromatic hydrocarbons production. The sim-
plified process flow diagram of this process is shown as
Fig.1. In the CCR process, aromatic yield is an important
assessment standard of the production quality. However,
improving the aromatics yield is often achieved at the cost
of larger material and energy consumption. Sometimes, the
losses caused by improving the aromatics yield is even larg-
er than the benefits it produced. Therefore, optimization
on the CCR process is of important significance.

Differential evolution (DE) is an efficient optimization al-
gorithm, which offers advantages over traditional population-
based stochastic algorithm in convergence speed and ro-
bustness, Das and Suganthan (2011). In decades, amount
of research works on the applications of DE algorithm
in chemical processes have been proposed. Angira and
Santosh (2007) applied trigonometric mutation operation
in the DE algorithm, and the updated algorithm were
utilized to solve seven cases of chemical process optimiza-
tion problems. Xu et al. (2013) proposed an improved the
DE algorithm based on self-adaptive strategy. Rahimpour
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Fig. 1. Simplified process flow diagram of the CCR process

et al. (2010) used the DE method to solve dynamic opti-
mization problem of the naphtha reforming process.

Despite that many research works have been investigated
on the applications of modified DEs, most of them mainly
focused on the discovery of novel mutation operators or
the novel settings of operating parameters. The problem
of population diversity decreasing has not been solved
effectively. This defect may result in repetitive counting
and weak global search ability, which are unacceptable in
solving optimization problems of the chemical processes.
In this work, a modification strategy on DE algorithm is
proposed. This method adopts distance information of the
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population to determine the possibilities that individuals
would be chosen in the mutation operator.

This work is organized as follow: Section 2 describes the
CCR process in modeling and parameter tunning, and
formulates an optimization objective including both aro-
matic yields and energy consumption. Section 3 introduces
the modified DE algorithm in detail, and computational
results are listed comparing with several distinguished
stochastic optimization algorithms. Section 4 presents the
results that the proposed algorithm used to solve opti-
mization problem for the CCR process, and the optimal
operating points are discussed. In Section 5, this article is
concluded and some lines of future research are mentioned.

2. MODELING OF THE CCR PROCESS

The CCR process is shown in Fig.1. In this process, Naph-
tha is used as catalytic reforming process feed-stock. It
usually contains more than 300 chemical compounds. The
feed-stock goes through the catalytic reformers combined
with a recycle gas stream containing high purity hydrogen.
Catalytic reformer is designed as four cascade reactors.
Each reformer is equipped with a heater to maintain the
reaction temperature at design level. The effluent from the
last reactor is cooled and sent to the product separator.
The separated hydrogen is sent back to reformers as recy-
cle gas, while liquid product is sent to the distillation unit
to obtain aromatic products.

2.1 Lumps kinetic model

As mentioned above, the naphtha feed-stock is of high
complexity. For this reason, a detailed kinetic reaction
model will be too complicated to be established. In order
to reduce the complexity of the kinetic model, components
with similar reaction performance will be grouped together
as a smaller set of kinetic lumps.

The lump theory is firstly proposed by Smith (1959). It
classified naphtha feed-stock as paraffin, naphthene and
aromatic, and contained 4 reactions. Based on this theory,
amount of researches have been taken in decades. Jenkins
and Stephens (1980) proposed 31 lumps kinetic model,
Froment (1987) developed a 28 lumps kinetic model. In
2000th, Hongjun et al. (2010) divided the reaction feed-
stock and products into 27 lumps, and evaluated the
parameters in a method of fractional steps.

In this work, A 27-lumped kinetic model proposed by
Hongjun et al. (2010) is adopted. The reaction network is
shown in Fig.2. The network takes the following assump-
tion into consideration

• Paraffin cant translate into C6 naphthene and aro-
matic directly.

• Neglect the reaction that isoparaffin reacts to form
C6 naphthene.

• Aromatic is of stability, for this reason, aromatic
hydro-cracking reaction only happens on side chain.

• The rate of naphthene isomerization and dehydro-
cyclization is extremely fast. In consequence, the
cracking reaction among naphthene can be neglected.

• Defining isomerization, dehydrocyclization, and arom-
atization as reversible reaction, while hydrogenoly-
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Fig. 2. 27-lumped reaction network of catalytic naphtha
reforming

sis and paraffin hydro-cracking are regarded as irre-
versible reactions.

Considering above assumptions, the reaction rate equa-
tions can be established as follow

paraffin dehydrocyclization (reversible)

ri = ki(Yp −
Y5N

Kepi
) (1)

naphthene isomerization (reversible)

ri = ki(Y5N − Y6N

Kepi
) (2)

naphthene dehydroaromatization (reversible)

ri = ki(Y6N − YA

Kepi
) (3)

paraffin hydrocracking (irreversible)

ri = ki(Y6N − YA

Kepi
) (4)

Where, ki is reaction rate constant, which can be expressed
as

ki = koi · exp(
−Ei

RT
) · P bi

h · ϕi (5)

Where, ϕi, 0 < ϕi < 1 denotes the catalyst active factor.

Radial-flow reactors are adopted as catalytic reformers
in the CCR process. The modeling of the radial-flow
reactors is usually assumed that under the normal reformer
operating conditions, radial and axial dispersion effects are
negligible, Iranshahi et al. (2010), Gyngazova et al. (2011).
The global material and the heat balance equations are
given as follow

dY

dR
=

2πR ·H
(LHSV · Vc)

·Kr · Y (6)

dT

dR
=

2πR ·H
(LHSV · Vc)

· Σ(rj ·∆Hj)

(Cp · Y )
(7)

Where, Y is the vector of the molar flow rates including
27 lumps and hydrogen. LHSV denotes the short of liquid
hourly space velocity.

2.2 Parameter tunning

In order to adjust the process model to reflect the actual
the CCR process accurately, 10 sets of actual operating
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Table 1. Operating data from the actual CCR
process

F AP T1 T2 T1 T4 p AY

(t/h) (%) (◦C) (◦C) (◦C) (◦C) (Mpag)(%)

set 1 198.33 42.43 526.99 526.81 524.98 529.02 1.02 64.02

set 2 198.37 39.98 527.04 527.11 525.08 528.86 1.02 62.48

set 3 198.34 43.85 526.99 527.02 524.99 529.03 1.02 64.27

set 4 198.38 41.18 527.01 527.00 524.71 529.03 1.02 63.54

set 5 198.27 40.85 526.97 527.00 525.00 528.99 1.02 63.54

set 6 198.33 40.34 526.99 527.00 525.05 528.99 1.02 63.21

set 7 198.30 40.10 525.99 525.97 524.00 527.97 1.02 63.92

set 8 198.31 40.08 526.01 525.96 524.04 527.99 1.02 62.75

set 9 198.31 40.10 526.00 525.98 523.95 528.05 1.02 62.50

set 10 198.30 40.13 525.88 526.14 523.88 527.97 1.02 61.69
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Fig. 3. Comparison between the adjusted kinetic model
and the original model on the values of aromatic yields

Table 2. Results of model predict and plant
actual data (record main components among

set 1 only)

composition actual predict difference

NP4 5.09% 5.36% −0.27%

NP5 1.42% 0.00% 1.42%

SBP6 3.12% 1.88% 1.23%

NP6 1.66% 0.66% 0.99%

A6 8.07% 7.11% −0.04%

A7 20.25% 20.31% −0.06%

EB 5.37% 5.39% −0.02%

OX 7.88% 7.35% 0.53%

MX 11.78% 11.70% 0.08%

PX 5.61% 5.47% 0.14%

A9 20.50% 20.72% −0.22%

data collected from a certain catalytic reforming unit is
used to estimate the reaction parameters. The values of the
data are listed in Table.1. Where, F is the mass flow rate
of feedstock. AP denotes the aromatic potential content.
T1 T4 are the values of inlet temperature in each reactor,
p denotes the reaction pressure, and AY is the aromatic
yields of the products.

In this article, the sum of the squared differences of all
components in products is taken as the objective function.
Therefore, the parameter estimation problem is converted
into an optimization problem. DE is applied to solve
this problem. The difference between the adjusted kinetic
model and the original model is presented in Fig.3. The
data reflect the products aromatic yields of each set.

Table.2 shows the detail result of the parameter tunning. It
can be observed that the difference value of main aromatic
components are all below 1%. Thus, it could be concluded
that the adjusted CCR model is able to reflect the special
actual CCR unit accurately.

2.3 Optimization problem for the CCR process

In the CCR process, aromatic yields are important as-
sessment standard of the production quality. Meanwhile,
in order to form more C8− aromatic, the yield of heavy
aromatic should be limited. Considering the fact that the
price of energy is rising and low-carbon is a world-wide
issue. In this article, energy consumption is also taken into
consideration.

As mentioned above, this work considers three optimiza-
tion factors, which are maximizing aromatic yields, mini-
mizing heavy aromatic yields, and minimizing energy con-
sumption. Due to the fact that the heat duty from heaters
is the uppermost energy consumption in the CCR process.
In this work, energy consumption is expressed as the fired
duty of the four heaters.

The function of optimization problem could be formulated
as follow

max f(x) = ω1AY + ω2HAY − ω3Q (8)

where, AY indicates aromatic yield and HAY indicates
heavy aromatic yields. Q denotes the fired duty in heaters.
ωi, i = 1, 2, 3 are weight values. These values are all
determined by the actual price of the relevant variable. The
decision variable x selected are reactors inlet temperature
(T1, T2, T3 and T4), reaction pressure (p), and hydrogen-
to-oil molar ratio (nH2/nHC). According to the actual
operation data, the constraint of the decision are presented
as

510 6 T1, T2, T3, T4 6 540 (9)

0.9 6 p 6 1.1 (10)

2.5 6 nH2/nHC 6 540 (11)

3. DISTANCE BASED DE

Since an accurately modified CCR model and an opti-
mization problem have been established in section 2. In
this section, a modified differential evolution algorithm is
proposed to solve this problem.

3.1 Differential evolution

The differential evolution (DE) is a population-based s-
tochastic optimization algorithm, Price (1996). The per-
formance of DE is distinguished, especially in convergence
speed and robustness.

In the DE algorithm, mutation and crossover are utilized
to generate trial vectors. For the former operation, the
classic mutation strategy is presented as follow

vti = xt
r1 + F (xt

r2 − xt
r3) (12)

Where ri(i = 1, 2, 3) indicates mutually integers selected
randomly within [1, NP ], and the value of each ri must be
unique. xt

ri indicates individual selected from the popula-
tion at generation t, and xbest

t is the best vector among
the population. F denotes the scale factor predetermined
mutually. The value of F is usually chosen within (0, 1).

The strategy that accomplishes the crossover operator is
shown as follow

ut
i,j =

{
vti , if(rand 6 CR)
xt
i,j , otherwise

(13)

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 375



-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5

x1

x
2 Set 1

Set 2

Set 3

Set 4

Fig. 4. The illustration of population distance

Where ut
i,j indicates j-th element of i-th new trial vector

at generation t.

Finally, offspring can be generated in the use of selection
operation which is presented as follows

xt+1
i =

{
ut
i, if(f(ut

i) 6 f(xt
i))

xt
i, otherwise

(14)

3.2 Modified DE based on population distance

Due to the advantage of high convergence and robustness,
the DE algorithm is widely used in solving optimization
problems. In decades, a number of modified strategies have
been proposed to develop the performance of DE, some of
which are of high effectivity, such as Fan and Lampinen
(2003), Brest et al. (2006), Rahnamayan et al. (2008), and
Qin et al. (2009). However, most of these researches mainly
focused on the discovery of novel mutation strategies or
the setting of operating parameters, such as F and CR
mentioned above. The importance of population structure
at each generation is always being neglected.

Fig.4 shows a case that the DE algorithm solves a multi-
modal optimization problem with 2-dimensional variables
at a certain generation. It can be observed that individuals
in current population are mainly divided into 4 sets
naturally. In fact, each set surrounds a local optimal. It
can be found that most individuals located in set 1, and
this set also contains the best vector. However, the global
optimum is near set 4.

In this phenomenon, there is high probability that all
xt
ri would be chosen in set 2. According to the mutation

strategy 12 listed above, if xt
ri are similar with each other,

the trial vector could not be much different from the
current individuals. That might lead to the deficiencies
of population diversity and too much repetitive counting.
For the reason that calculating the CCR process model is
time consuming, duplicated calculation is unacceptable in
the process optimization.

In order to solve this problem, a modified DE algorithm
based on distance information (DisDE) is proposed in this
work. In this method, individuals at each generation are
distributed into Sn sets by the Euclidean distance from
individuals to the current best vector. Sn is the number
of sets. The equation of counting the Euclidean distance
is presented as follow

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5

x1

x
2 Set 1

Set 2
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Set 4

prob4

prob3
prob2

prob1

Fig. 5. The illustration of the main idea of the DisDE
algorithm

dti =

√√√√ n∑
j=1

(xt
i,best − xt

i,j)
2

(15)

Where dti denotes the distance from i-th vector to the
current best vector at generation t. n is dimensionality of
variables. According to the distance value of each vector,
population could be divided into Sn sets by cluster algo-
rithm, where Sn is an operating parameter predetermined.
Thus, the mean distance of each set could be calculated as

d̄tsetk =
∑ dtsetk

Nsetk

(16)

Where probtset indicates the number of vectors that belong
to set k, k = 1, ..., Sn. In the use of mean distance value,
selection probability could be obtained as

probtsetk =
d̄tsetk

N∑
i=1

d̄tseti

(17)

Where probtsetk is the probability that trial vector is chosen
from set k. it is obvious that a set with larger distance
value from the best vector might obtain higher probability
to be chosen. In this method, the trial vectors chosen to
generate offspring would be more different from current
individuals. the diversity of population could be kept. The
illustration of the main idea of the DisDE algorithm is
shown in Fig.5. The flowchart of the proposed algorithm
is presented as Fig.6.

3.3 simulation and analysis

In order to demonstrate the performance of the proposed
algorithm, DisDE is calculated by solving 6 benchmark
functions from CEC 2005. These functions are listed in
Table.3. Where D is variable dimensionality, S denotes the
range of variables, and fmin is the global optimal value of
each function. Among the 6 functions, F1 to F4 are single-
modal functions,which are used to test the convergence
speed of algorithms. While F5 and F6 are multi-modal
functions, and these functions are applied to assess the
global search ability.

As comparison, the traditional DE algorithm adopting
DE/rand/1 and the TDE, Fan and Lampinen (2003), are
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Table 3. Benchmark functions from CEC 2005

Benchmarkfunction D S fmin

F1(x): Shifted Sphere Function 30 [−100, 100]D 0

F2(x): Shifted Schwefel’s Probblem

1.2

30 [−100, 100]D 0

F3(x): Shifted Schwefel’s Probblem

1.2 with Noise in Fitness

30 [−100, 100]D 0

F4(x): Schwefel’s Problem 2.6 with

Global Optimum on Bounds

30 [−100, 100]D 0

F5(x): Rotated Hybrid Composition

Function

2 [−5, 5]D 0

F6(x): Rotated Hybrid Composition

Function with Global Optimum on

the Bounds

2 [−5, 5]D 0

selected to make experimentations. All the algorithms
are predetermined the same operating parameter and
maximum generation, as F = 0.4, CR = 0.9, Gm = 3000,
Pop = 200, and calculated 30 times for each function.
Where Gm denotes the maximum generation and Pop
indicates the population size. And Mt = 0.15 for TDE,
Md = 0.2 for DisDE.

The results of each algorithm solving the mentioned func-
tions are listed in Table.4. In each function, the best result
is in bold type. For the functions F1 to F4, the DisDE
performs the bestin F2 and F4, and the results of DisDE
in F1 and F3 is still much better than the original DE
algorithm.

Table 4. Results of 6 benchmark functions

DisDE DE TDE

min 7.25E − 18 2.53E − 15 1.88E-22

F1(x) mean 1.19E − 17 2.28E − 14 5.64E-21

std 1.90E − 18 1.71E − 14 1.23E-20

min 2.79E-09 2.35E − 07 3.76E − 08

F2(x) mean 4.98E-08 7.78E − 07 2.10E − 07

std 6.60E-08 4.33E − 07 2.83E − 07

min 4.85E − 05 7.49E − 05 1.15E-07

F3(x) mean 1.30E − 04 2.03E − 04 4.72E-07

std 1.75E − 04 1.71E − 04 5.36E-06

min 3.14E-01 2.58E + 01 1.30E + 00

F4(x) mean 3.86E-01 3.84E + 01 6.24E + 00

std 7.17E-02 2.64E + 01 2.69E + 00

min 0 0 0

F5(x) mean 200 300 300

prob 0.8 0.63 0.5

min 0 0 200

F6(x) mean 200 300 300

prob 0.73 0.27 0.10

Table 5. Price of aromatics

Ben Tol A8 A9 A10

$/t 1548 1389 1683 1270 1222

mass frac 0.11 0.37 0.52 0.58 0.42

It can be observed from the results of F5 and F6 that
DisDE both performs best. Especially in solving F6, due
to the global optimum is located on the bounds, it is very
difficult for algorithms to discover the global optimum.
This feature can be reflected from the results. It is obvious
that the probability of DE and TDE locating the global
optimum in F6 is low, the value of which are below 30%.
While, the proposed algorithm located the global optimum
more in 30 calculation times. Thus, it can be concluded
that the modification strategy that we adopt in the DE
algorithm is able to improve the global search ability and
promote the computation efficiency.

4. OPTIMIZATION OF CCR PROCESS BY DISDE

As the optimization objective function established in 8,
it can be observed that the function is composed of AY ,
HAY , Q, and their weight values. AY and HAY can be
estimated as follow

AY =
(FA6 + FA7 + FA8)

Finlet
(18)

HAY =
(FA9 + FA10)

Finlet
(19)

Where FAi, i = 6, 7, 8, 9, 10+ denotes the mass flow rate
of structure of aromatic. Finlet is the mass flow rate
of naphtha feedstock. The value of ω1, i = 1, 2, 3 is
determined by actual price of the relevant variable, which
is listed in Table.5.

In addition to the aromatic price and mass flow rate,
energy consumption data is also available as

1kg oil = 41.868MJ

oil price = $770/t

According to all data listed above, values of ω1, i = 1, 2, 3
can be estimated as

ω1 = 3

ω2 = 2.5

ω3 = 1.8× 10−10
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Table 6. Results of optimization for the CCR
process

actual optimal effect

F (t/h) 198.333

AP (%) 42.425

T1() 525.882 522.307 −3.575

T2() 526.137 522.586 −3.551

T3() 523.877 525.368 1.491

T4() 527.967 533.07 5.103

p(MPag) 1.020 0.962 −0.058

nH2/nHC(mol/mol) 3.07 2.78 −0.29

AY (%) 61.68 64.02 2.34

HAY (%) 20.63 17.60 −3.03

Q(kJ/h) 3.16E + 08 3.09E + 08 −7.00E + 06

The result of solving this objective function problem
applying the proposed algorithm is shown in Table.6. From
the optimization, it can be observed that the increasing
of T1, T2, p, and hydrogen-to-oil molar ratio might lead
to both decreasing of the aromatic yields and heavy
aromatic yields. With the temperature increasing, more
energy would be consumed in vain. An increasing in T3

could obtain higher aromatic yields, but the effect is slight.
Meanwhile, a larger value of T4 could result in significant
increase in aromatic yields, while decreasing in heavy
aromatic yields. Despite that higher temperature means
more energy consumption, in the mean of increasing T4,
the benefits from higher aromatic yields would be much
larger.

In Table.6, actual denotes the normal operating point in
the CCR process, optimal lists the suggestion operating
points, and effect records the difference value between
actual and optimal. It can be observed that the aromatic
yields are increased by 2.34% by optimization. Such im-
provement is remarkable. Meanwhile, the heavy aromatic
yields decreased by 3.03%, which means more heavy aro-
matic is formed A6 to A8. Additionally, the total heat
duty decreased by 7.00E+06kj/h. The reason is that the
modified algorithm decreased the temperature which has
slight effort to obtain more aromatic, while increased the
effective ones. Based on such result, it can be concluded
that in the way of redistributing the operating points,
including heatertemperature, pressure and hydrogen −
to−oilmolarratio, the efficiency of the CCR process could
be promoted, while more energy is economized.

5. CONCLUSION

In this article, a modified DE algorithm is proposed. The
validity of modification is verified by solving 6 benchmark
functions, and the proposed algorithm is applied to the op-
timization of the continuous catalytic naphtha reforming
(CCR) process successfully.

The future work will pay attention focus on the investiga-
tion of classification method used to distribute individuals,
and attempt to make the individuals distribution more
reasonable.
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