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Abstract: Valve stiction is one of the most common causes for poor performance in industrial
control loops. Therefore, a non-invasive method which can detect and quantify stiction is
urgently needed in the process industry. Most of the current stiction estimation methods use
time domain criterion, e.g. Mean Square Error, to jointly identify the stiction and process model
parameters. However, stiction induced oscillation is a phenomenon which has some specific
characteristics in the frequency domain. Thus, extracting frequency domain information in the
routine operation data will provide a more reliable and accurate stiction estimation. In this
work, under the framework of Hammerstein model identification and global optimization, a
new stiction quantification method based on time and frequency domain criterions is proposed.
Several simulation case studies are demonstrated to validate the proposed method.
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1. INTRODUCTION

Control performance monitoring has attracted consider-
able research effort due to the increasing tightened en-
vironmental regulations and commercial profits. Among
various causes of poor performance in industrial control
systems, valve stiction is known as the most commonly
encountered one and results in about one third of the con-
trol loops to oscillate. (Ender (1993), Bialkowski (1993),
Paulonis and Cox (2003)) Given that oscillation has a great
negative impact on product quality and safety operation,
modeling, detection, quantification and compensation of
valve stiction is of significant importance in both industrial
and academia.

Quantification of stiction is still a highly challenging
problem even though many methods have been proposed
in the literature. Srinivasan et al. (2005) presented a
model-based method which can jointly identify the process
model and the stiction parameter under a Hammerstein
model framework. This method is then extended to a two
parameter model by Choudhury et al. (2008). Choudhury
et al. (2006) proposed a non-invasive method by fitting the
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filtered pv and op signal to an ellipse. By applying global
search techniques, Jelali (2008) presented a two-stage
procedure for valve stiction quantification. Firstly, genetic
algorithms or pattern search method is used to obtain the
stiction parameters, then a linear low-order process model
is identified by a least square estimator. Farenzena and
Trierweiler (2012) improved this method by introducing
a single-stage scheme without the dependency of initial
guesses of the parameters. Araujo et al. (2012) proposed
a describing function analysis based estimation method
which requires the knowledge of process and controller
models. Most recently, He and Wang (2014) presented a
modified valve signature based on a physical and semi-
physical valve model. Then a curve fitting method is used
to quantify the model parameters on the basis of the
proposed signature.

While many researchers have discussed the stiction and
process model identification under Hammerstein struc-
ture or Wiener-Hammerstein structure, (Srinivasan et al.
(2005), Jelali (2008), Farenzena and Trierweiler (2012),
Romano and Garcia (2011), Nallasivam et al. (2009)) there
is a lack of the identifiability analysis of these models.
Romano and Garcia (2011) claimed that in order to im-
prove the process model estimation, a test signal added
at the set-point should be considered whenever possible.
Bacci di Capaci and Scali (2014) proposed a systematic
method to discard the identification data for which the
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estimation is very likely to fail, thus improving the relia-
bility of stiction quantification. In a most recent work of
Wang and Zhang (2014), the identifiability of the proposed
extended Hammerstein model is analyzed, however, the
overall identifiability is guaranteed by the identifiability of
the nonlinear part and linear part separately. Hence, this
analysis can not be applied directly to the identification
framework where the stiction nonlinearity is identified
integrally with that of the linear process model.

It is discussed in Srinivasan et al. (2005) that with a one
parameter stiction model, the persistence of excitation can
be guaranteed by a sufficiently high stiction value since
it makes the closed loop system approximately behave as
an open loop one. And when there is no stiction and the
process is operating around steady state for long periods
of time, the identification procedure will fail due to the
lack of excitation. However, in the following sections, it
is showed that when using Choudhury’s two parameter
stiction model and the data obtained when the process
is operating around steady state, even with a sufficiently
high stiction, the identification procedure will still fail to
give accurate parameter estimations, especially for the slip
jump (J), which is essential to capture the real behavior
of a sticky valve but usually difficult to detect since it
does not have a clear pattern which can be observed in
the input and output data. (Choudhury et al. (2008)) In
this work, by exploring the time domain and frequency
domain information content of the routine operating data,
a method which is capable of giving reliable stiction
parameter estimations is proposed.

The paper is organized as follows: Section 2 introduces
some preliminaries and gives an example to demonstrate
that with time domain identification criterion, whether
different data sets contain enough process information
so that they can deliver accurate parameter estimations.
The proposed two step stiction quantification method is
elaborated in Section 3. Section 4 presents some simulation
examples and Section 5 concludes the paper.

2. PRELIMINARIES

2.1 Stiction Model

The valve models can be grouped into two categories: phys-
ical model and data-driven model. Physical models can
provide detailed and essential descriptions of the stiction
phenomenon, nevertheless, these models are difficult to
implement in practice since they contain several unknown
parameters which cannot be easily observed. Data-driven
models, on the other hand, usually have fewer parameters
and provide a simplified relationship between the con-
troller output and the valve position. The most commonly
used data-driven model by researchers is the two parame-
ter model proposed by Choudhury et al. (2005). The model
can be interpreted by Fig.1, where S and J stand for
deadband plus stickband and slip jump, respectively.

2.2 Motivation Example

In this section, an example is given to illustrate that
whether different identification data sets are informative
enough to give accurate parameter estimations. The ex-

Fig. 1. Typical output-input behaviour of a sticky valve
(redrawn from Choudhury et al. (2005))

Fig. 2. Process control loop with valve stiction within an
identification framework

ample is taken from Choudhury et al. (2005) as shown
in Fig.2. The stiction parameters S=7 and J=5 are used
to generate the data for estimation. The linear process is
modeled by a first order plus time delay (FOPTD) process,
which is shown as:

G(s) =
3

10s+ 1
e−10s (1)

The parameters of the discrete transfer function, which
is modeled by a first order ARX process, are: [a1 b1] =
[0.9048 0.2855] . The controller is a PI controller and its
transfer function is given by:

Gc = 0.2(1 + 0.1
1

s
) (2)

The reference signal r(t) is assumed to be 0. The white
noise affecting this system is Gaussian distributed with
mean 0 and variance 0.01.

To generate a data set which contains more process vari-
ations, a step signal is added at time 0. 3000 data points
are generated in the Matlab Simulink. Fig.3 shows the
time series plot of the PV and OP signal, respectively.
Two data sets are chose as identification data set. Data
Set 1 contains the first 1000 data points right after the
step test, while Data Set 2 contains the last 1000 data
points which is the typical closed loop operating data with
a clear oscillation pattern. The estimation method used
is the two stage stiction quantification method proposed
by Jelali (2008). The identification criterion is the Mean
Square Error (MSE) between the real output y(t) and
the predicted output ŷ(t). The results of the estimated
stiction parameters and the model parameters are shown
in Table.1.
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Fig. 3. Time series plot of PV and OP signal

Table 1. Estimation results comparison

Stiction Parameters Model Parameters

Data Set 1 S=7.073;J=5.202 [0.9032 0.2816]

Data Set 2 S=7.004;J=1.667 [0.8480 0.6423]

It is shown from Table 1 that for Data Set 1, the estimated
parameters are quite close to the true values, however,
for Data Set 2, the estimated stiction parameter ‘J’ is
far from the true value and the same goes for the model
parameters. The cross validation plot of the estimated
model parameters based on Data Set 2 is shown in Fig.4,
it is shown that for Data Set 2, even though the stiction
and model parameters are biased from the real values, the
predicted output PVpre matches the real output PV very
well, which indicates a very small MSE value. It can be
concluded that although Data Set 2 represents the most
common routine operating data for a oscillated loop, it is
not informative enough to give accurate estimations of the
stiction and model parameters. On the other hand, Data
Set 1 contains more process variations due to the step
response, thus it can give a better estimation. However,
step responses or test signals added at the set-point would
disturb the normal process operation and thus may not be
allowed as a technique to improve the identifiability of the
model.
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Fig. 4. Cross validation of PV and PVpre for Data Set 2

The reason for this is two fold: firstly, the closed loop
oscillating data is not informative enough to discriminate
different stiction and model parameters; secondly, the i-
dentification procedure, which jointly identify the stiction
and model parameters under a Hammerstein model frame-
work, can not yield unique estimates which is equal to the
true system with the time domain criterion only.

3. QUANTIFICATION OF STICTION USING TIME
AND FREQUENCY DOMAIN CRITERION

While the selection of identification methods is of great
importance in system identification, the choice of different
identification criterion will also affect the properties of
resulting estimates (Ljung (1987)). Most of the current
works in stiction estimation consider the Mean Square
Error between the predicted output and the real output
as an objective function and by minimizing the MSE,
different optimization methods are applied to find the
optimal stiction parameters and model parameters. It is
known that MSE or the norm of prediction errors is the
most commonly used time domain criterion in identifi-
cation. However, frequency domain criterions should be
considered in stiction estimation since the stiction leads
to an oscillating loop which has specific characteristics in
the frequency domain.

The frequency of the stiction induced oscillation in a
closed loop can be approximately determined by Describ-
ing Function (DF) Analysis, providing that the linear part
can be considered as a low-pass filter (Slotine et al. (1991),
Vander Velde (1968)). Compared with the current works
which apply time domain criterion only, the proposed
method considers both time domain and frequency domain
criterions which will yield more accurate and more reliable
stiction parameter and model parameter estimates. The
two step identification criterion is given by:

Step 1 : JT (θ̂, Ŝ, Ĵ) =
1

N
ΣN

k=1ε
2
θ̂,Ŝ,Ĵ

(k) (3)

Step 2 : JF (θ̂, Ŝ, Ĵ) = |εω̂,Ŝ,Ĵ | (4)

where εθ̂,Ŝ,Ĵ is the prediction error between the real output

y and the estimated output ŷ, εω̂,Ŝ,Ĵ = ω − ω̂ is the
error between the real frequency ω and the estimated
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frequency ω̂. The real frequency can be determined directly
from the output data pattern or can be calculated by
the methods proposed by Thornhill and Hägglund (1997),
etc. The estimated frequency ω̂ is calculated by solving
Eq.5, which is the existence condition of oscillations in a
feedback control loop as shown in Fig.2.

G(jω̂) = − 1

N(A)
(5)

where G(jω̂) is the transfer function of the controller and
linear process, N(A) is the describing function of a sticky
valve derived based on Choudhury’s data-driven model
and is given by Choudhury et al. (2005):

ϕ = sin−1(
A− S

A
)

Pim = −3A

2
+

A

2
cos(2ϕ) + 2Asin(ϕ)− 2(S − J)sin(ϕ)

Pre =
A

2
sin(2ϕ)− 2Acos(ϕ)−A(

π

2
+ ϕ) + 2(S − J)cos(ϕ)

N = − 1

πA
(Pre − jPim) (6)

where A is the magnitude of the harmonic input, and
S and J are stiction parameters introduced in the data-
driven model.

It can be seen from Eq.5 and Eq.6 that the estimated
frequency ω̂ is directly related to the stiction parameters
S and J in the frequency domain. Thus integrating the
frequency criterion into the identification objective func-
tion can improve the estimation results since it provides
the frequency domain information which is critical to
the stiction induced loop oscillation and is also a useful
supplement to the time domain criterion. The procedure
of the proposed estimation method is described in Fig.5.
The process model is identified in the time domain step for
different settings of the stiction parameters S and J , then
the optimal model parameters and stiction parameters
are determined by minimizing both the time domain and
frequency domain identification criterions.

Remark 1

One of the basic assumptions of describing function anal-
ysis is that the oscillation at the input is sinusoidal, thus,
the accuracy of the describing function analysis mostly
depends on how well the oscillation can be described by
a sinusoidal wave. This assumption can be fulfilled if the
linear part has a nice low-pass filtering quality.

Remark 2

It is difficult to get an analytical solution of estimated
frequency ω̂ from Eq.5 since the describing function of
stiction is very complicated as shown in Eq.6. Therefore,
the value of ω̂ is determined numerically. In this work, the
estimated frequency is determined by the intersection be-
tween the describing function and process transfer function
trajectories.

4. SIMULATION EXAMPLE

The FOPTD process and PI controller described in
the motivation example are investigated in this section.

Fig. 5. Flowchart of the proposed method

Choudhury’s stiction model is used and simulation results
of different values of S and J are given. The overshoot
and offset scenarios where J ≥ S are not considered since
they are not typical in practice. The sampling time is 1
second. Genetic Algorithm (GA) is chose as the global
optimization method. The lower and upper bounds of the
parameters are set as 1 ≤ S ≤ 8, 1 ≤ J ≤ 8. The
comparison of the estimation results are shown in Table
2 and Table 3.

It can be shown from Table 2 that when using the time
domain criterion only, the estimation of the slip jump J is
far from the real value. In case 2 and case 3, the estimation
of J hit its lower bound, indicating that the time domain
estimation method can not extract enough information
from the identification data set and give accurate results.
In Table 3, the estimated model parameters using time
domain criterion only and time and frequency domain
criterion are compared. It is clearly shown in Table 3
that the proposed method can give more accurate model
parameter estimations than the method using time domain
criterion only.

Fig.6 and 9 show the time series plots of OP and PV used
for identification in case 1 and case 3, respectively. The
corresponding frequency response and describing function
trajectories of case 1 and case 3 are shown in Fig.8 and
Fig.11, while the OP vs PV plot are shown in Fig.7 and
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Table 2. Estimation results comparison

Scenario
Estimated Stiction Parameters

Actual Stiction Parameters
Time and Frequency Domain Criterion Time Domain Criterion

1 Ŝ = 7.005; Ĵ = 4.705 Ŝ = 7.001; Ĵ = 1.664 S = 7; J = 5

2 Ŝ = 6.000; Ĵ = 4.213 Ŝ = 6.048; Ĵ = 1.000 S = 6; J = 4

3 Ŝ = 5.029; Ĵ = 3.756 Ŝ = 5.161; Ĵ = 1.000 S = 5; J = 3

Table 3. Estimation results comparison

Scenario
Estimated Model Parameters

Actual Model Parameters
Time and Frequency Domain Criterion Time Domain Criterion

1 [0.8902 0.3285] [0.8480 0.6723]
2 [0.8918 0.3033] [0.8310 0.7930] [0.9048 0.2855]
3 [0.8813 0.2935] [0.8082 0.8608]
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Fig. 6. Time series plot for case 1(S=7;J=5)
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Fig. 7. OP&PV plot for case 1(S=7;J=5)

10, respectively. In case 1, the estimated frequency by the
describing function analysis is 0.0558 rad/s as shown in
Fig.8, while the real frequency estimated from the PV
data in Fig.6 is 0.0554 rad/s. The estimated frequency
and the real frequency estimation from process data in
case 3 are 0.0479 rad/s and 0.0510 rad/s, respectively. It
indicates that the DF method indeed provides a reliable
estimation of the oscillation frequency and the frequency
domain information is extracted and then utilized through
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Fig. 8. Describing function and frequency response for case
1(S=7;J=5)
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Fig. 9. Time series plot for case 3(S=5;J=3)

the proposed time and frequency domain criterion method.

5. CONCLUSION

In this work, a two step stiction quantification method is
proposed. Both time and frequency domain information
carried by the routine operation data is extracted by
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Fig. 10. OP&PV plot for case 3(S=5;J=3)
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Fig. 11. Describing function and frequency response for
case 3(S=5;J=3)

utilizing the two domains criterions. The proposed method
needs the parameters of the controller and the process time
delay. The stiction parameters estimation, especially for
the slip jump J , is improved significantly compared to the
traditional methods. The proposed analysis is validated by
some simulation examples.

However, the method assumes that the stiction induced
oscillation has one dominated frequency for which the
process output signal has a clear sinusoidal shape. Future
research should focus on the situations where multiple
oscillations are present in a system and the scheme to
explore the frequency domain information carried by the
process data when describing function method can not be
directly applied under such situations.
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