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Abstract

In this paper a reliable H∞ controller for a class of uncertain switched linear systems is designed using the multiple Lyapunov
function technique with the property that the solvability of reliable H∞ control of the individual subsystems is not necessary.
First, reliable H∞ control is defined for this class of systems and the multiple Lyapunov function method is deployed to ensure
that the magnitude of the controlled output is upper bounded by suppressing the external disturbance while guaranteeing
internal stability. Last, the H∞ control method above for the switched systems is directly applied to the standard reliable H∞
control problem of a class of non-switched systems which a continuous control method cannot solve.
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1 Introduction

Uncertainties and external disturbances exist in al-
l practical systems. If they are not considered during
the course of controller design, the resulting closed-loop
practical system will usually exhibit degradation of
performances, even leading to instability. Thus systems
with uncertainties and external disturbances are paid
much attention [22][2]. For such systems, we hope that
not only can it be stable, but also certain least expect-
ed performances can be guaranteed or the impact of
disturbances on the output variables can be controlled.
H∞ control is one of effective methods to deal with
these issues [3] [12]. The advantage of the H∞ control
is that the norm of controlled output is upper bounded
by suppressing the external disturbance while guaran-
teeing internal stability [12][11]. For H∞ control, there
have been many results, including latest ones [3] [12][5]
[6] [7][1] [4].

Furthermore, actuator faults are another issue to impact
on both stability and performance. Thus, the existence
of uncertain faults and the possible occurrence of actu-
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ator faults must be taken care of during the course of
controller design to avoid heavy economic costs or life-
threatening prices the faults may cause [20]. Thus reli-
able control also attracts much attention [8][15][10][18].
From a point of view of robustness, in a wide sense fault-
lerant control also can be considered one of robust con-
trol methods. Therefore, actuator faults also pose diffi-
culties on our control objectives which require not only
stability but certain expected performances.

On the other hand, switched systems, as a special hy-
brid system, have received a great amount of attention
because of their importance from both theoretical and
practical points of view (see, e.g., [9] [13][21][19] and the
references therein). It is still interesting to extend some
traditional topics such as guaranteed cost and H∞ con-
trols to switched systems and in the meanwhile consid-
er some uncertain and/or random influences on the sys-
tems such as actuator faults [8]. On dealing with actua-
tor faults, there are a few results[14][16][17]. References
[18-20] designed reliable controllers for the nonlinear sys-
tems with actuator faults to guarantee reliable stability
of the systems. Their common feature is that actuators
are decomposed into two parts, one of which is fragile
to faults, but the other part is robust to faults. But in
order to implement the controller designs, the two-part
decomposition must be known a priori. It is usually diffi-
cult to obtain because of uncertain and random features
of faults.
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The difficulties above raise a question naturally: can we
propose a control strategy to H∞ control of switched
systems without necessarily identifying faulty actuators
from healthy ones and even without changing any struc-
tures and/or parameters of the controller to be designed
to realize reliability of control (i.e., regardless of whether
the faults occur or not)? This paper provides an affir-
mative answer. Specifically, this paper first describes a
representation of fault models which facilitates the real-
ization of reliable control, then presents a reliable H∞
control method for the switched systems, and last de-
velops a hybrid state feedback strategy, as a special ap-
plication of the H∞ control method , to solve the stan-
dard reliableH∞ control problem of non-switched linear
systems that a single continuous controller is assumed
unable to solve.

The main features of this paper are summarized as fol-
lows:

• The reliable H∞ control of switched systems is solved
where the solvability of the H∞ control of individual
subsystems is not necessary.
• A co-design of controllers and a state-dependent

switching rule, based on the multiple Lyapunov func-
tion technique, is proposed for reliable H∞ control,
which reduces the conservativeness that the common
Lyapunov function method causes.
• The proposed methods achieve reliable control with-

out necessarily identifying faulty actuators from
healthy ones and even without needing to change any
structures and/or parameters of the controller to be
designed regardless of whether the faults occur or not.

2 Problem Statement

Consider the following switched system

ẋ = (Aσ + ∆Aσ)x+ (Bσ + ∆Bσ)uσ +Gσw,

z = Cix,
(1)

where the function σ(t) : [0,∞) → M = {1, · · · ,m}
is the switching signal which, for simplicity, is assumed
to be a piecewise constant (from the right) function
depending on time or state or both; m is the number
of models (called subsystems) of the switched system.
x ∈ Rn and u ∈ Rqi represent state and control sig-
nal, respectively. z ∈ Rpi is controlled output. Ai and
Bi are constant matrices with appropriate dimension-
s, ∆Ai and ∆Bi are uncertain real-valued matrix func-
tions, wi is the disturbance input of the function class
w ∈ L2[0,∞), and Gi, Ci, i ∈M , are constant matrices
with appropriate dimensions.

We need the following assumptions.

Assumption 1 Assume that (Ai, Bi) is controllable,
and the state is available for feedback.

Assumption 2 Assume that ∆Ai and ∆Bi are norm-
bounded, i.e., there exist constants δ and θ such that the
following inequalities hold

‖∆Ai‖ ≤ δ, and ‖∆Bi‖ ≤ θ. (2)

Assume that the controller is in the form of

ui = Kix, (3)

where Ki ∈ Rqi×n, i ∈ M = {1, 2, . . . ,m} is a constant
matrix.

Since fault possibly occurs on each actuator, a matrix
Lis is used to represent the fault situations of the system

Lis = diag(li1, l
i
2, · · · , liqi), (4)

where lij(j ∈ 1, 2, . . . , qi) is one or zero subject to Lis 6= 0.

If lij = 1 it indicates the jth actuator works normally,

otherwise if lij = 0 the jth actuator fails completely.

Thus the closed-loop switched system is

ẋ = [(Ai + ∆Ai) + (Bi + ∆Bi)L
i
sKi]x+Giw. (5)

We will now define the reliable H∞ control of switched
systems (1).

Definition 1 For a given positive constant γ > 0, if
there exist an individual control law ui = Kix for subsys-
tem i and a switching law σ(t) such that the closed-loop
switched system for all the admissible structural uncer-
tainties and all the possible actuator faults described by
(3) satisfies:

(i) when w ≡ 0, the resulting closed-loop system (5) is
asymptotically stable,

(ii) when the initial state x(t0) = 0, ‖z‖2 < γ ‖w‖2 holds,

then the ui = Kix and the switching law σ(t) achieves
the reliable H∞ control of switched systems (1).

Before designing the reliable guaranteed cost con-
troller,we give the following notations.

The switching signal σ(t) can be characterized by the
following switching sequence:

Σ = {(x0); (i0, t0), (i1, t1), · · · , (in, tn), · · · ,
|ik ∈M,k ∈ N, } ,(6)

where t0 is the initial time, x0 is the initial state, and N
is the set of nonnegative integers. When t ∈ [tk, tk+1),
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σ(t) = ik, that is, the ikth subsystem is active. For any
j, 1 ≤ j ≤ m, we define

Σt(j) = {[tj1 , tj1+1), [tj2 , tj2+1), · · · , [tjn , tjn+1), · · · ,
σ(t) = j, tjk ∈ [tjk , tjk+1), k ∈ N} ,(7)

which is the switching sequence of the subsystem k. In
addition, we assume that the state of the switched sys-
tem (5) does not jump at the switching instants, i.e.,
the trajectory x(t) is everywhere continuous. We also
assume that σ has finite number of switchings on any
finite interval of time, which is a standard assumption
in switched systems literature to rule out Zeno behavior
[9].

3 Reliable H∞ Control

In this section, we will design the H∞ controller for a
class of uncertain switched systems (1) using the multi-
ple Lyapunov function technique.

Before presenting the main result, we need the following
well-known lemma borrowed from literature (e.g., [8]).

Lemma 1 For any real numbers x, y ∈ Rr, a positive
number ε and a symmetric positive definite matrix Π, we
have that

xT y + yTx ≤ xTΠx

ε
+ εyTΠ−1y ≤ xTΠx

ε
+
εyT y

λ(Π)
.

Now, we are ready to present the main result for the
reliable H∞ control for the switched system (1) using
the multiple Lyapunov function technique.

Theorem 1 Consider the uncertain switched system (1)
satisfying Assumption 1 and 2. If there exist positive con-
stants βij (i, j ∈M), ε, λ , and positive definite matrices
Pi, such that the following matrix inequalities hold, for
∀i ∈M ,

Λi + CTi Ci + γ−2PiGiG
T
i Pi +

m∑
j=1

βij(Pj − Pi) < 0, (8)

where Λi = PiAi + ATi Pi + 1
εPiHiPi + ε

λmin(H)δ
2Ir +

εPiBiB
T
i Pi+εθ

2PiPi+
2
εPiBi

(
λ−1

)2
BTi Pi, then, for the

switched system with all the possible actuator faults de-
scribed by (3), there exist a switching law i = i(x) and s-
tate feedback controllers ui = KixwithKi = −R−1BTi Pi
such that the reliable H∞ control of switched systems is
solvable.

Proof : For all i ∈M , we define

Ωi =
{
x ∈ Rn|xT (Pj − Pi)x ≥ 0, x 6= 0,∀j ∈M

}
, (9)

then,
m⋃
i=1

Ωi = Rn\ {0}.

It is obvious to see that for ∀x ∈ Ωi, there is an i ∈ M
such that xT (Pj − Pi)x ≥ 0, ∀j ∈ M . So, from (8) we
can obtain that:

xT
(
Λi + γ−2PiGiG

T
i Pi + CTi Ci

)
x < 0. (10)

We construct that

Ω̄1 = Ω1, · · · ,

Ω̄i = Ωi −
i−1⋃
j=1

Ωj , · · · , Ω̄m = Ωm −
m−1⋃
j=1

Ωj . (11)

It is easy to obtain that

m⋃
i=1

Ω̄i =Rn\ {0} , Ω̄j ∩ Ω̄i = ∅, i 6= j. (12)

We define the Lyapunov functional candidate

Vi(x) = xTPix, (13)

where Pi > 0 satisfies (8).

Next, we design the following switching law:

i(t) = i,when x(t) ∈ Ω̄i, i ∈M. (14)

When w ≡ 0, x(t) ∈ Ω̄i, the derivative of Vi(x) along
the trajectory of the switched system (5) is given by

V̇i(x)

= xT
(
ATi Pi + PiAi

)
x+ xT

(
∆ATi Pi + Pi∆Ai

)
x

−2xTPiBiL
i
sR
−1
i BTi Pix− xTPiBiLisR−1i ∆BTi Pix

−xTPi∆BiLisR−1i BTi Pix. (15)

Using Lemma 1 and the fact that
(
−Lis

) (
−Lis

)
= 1, we

can easily have

−2xTPiBiL
i
sR
−1
i BTi Pix

≤ xT
[

1

ε
PiBiR

−1
i

(
−Lis

) (
−Lis

)
R−1i BTi Pi

+εPiBiB
T
i Pi

]
x

≤ xT
[

1

ε
PiBiR

−1
i

∥∥(−Lis) (−Lis)∥∥R−1i BTi Pi

+εPiBiB
T
i Pi

]
x

= xT
[

1

ε
PiBi

(
R−1i

)2
BTi Pi + εPiBiB

T
i Pi

]
x, (16)

xT
(
−PiBiLisR−1i ∆BTi Pi − Pi∆BiLisR−1i BTi Pi

)
x
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= xT
[
PiBi

(
−Lis

)
R−1i ∆BTi Pi − Pi∆Bi

(
−Lis

)
×R−1i BTi Pi

]
x

≤ xT
[
εPi∆Bi∆B

T
i Pi +

1

ε
PiBiR

−1
i

(
−Lis

) (
−Lis

)
R−1i BTi Pi

]
x

≤ xT
[
εθ2PiPi +

1

ε

∥∥LisLis∥∥PiBi (R−1i )2BTi Pi]x
≤ xT

[
εθ2PiPi +

1

ε
PiBi

(
R−1i

)2
BTi Pi

]
x. (17)

Therefore, we obtain the following inequality:

V̇i(x) ≤ xT
[
ATi Pi + PiAi +

1

ε
PiHiP +

εδ2

λmin (Hi)
Ir

+ εPiBiB
T
i Pi + εθ2PiPi +

2

ε
PiBi(R

−1
i )2BTi Pi

]
x.(18)

Therefore, from (10)-(18), we obtain the following in-
equality:

V̇i < −xT
(
γ−2PiGiG

T
i Pi + CTi Ci

)
x < 0. (19)

By using the multiple Lyapunov function theory, the
closed-loop switched system (5) is asymptotically stable.
Now, we will prove that the closed-loop switched system
satisfies the following performance index J :

J =

+∞∫
0

[
zT (t)z(t)− γ2wTw

]
dt. (20)

Without loss of generality, we assume that xT0 Pi0x0 =
min
ik∈M

{
xT0 Pikx0

}
. According to the switching sequence

(6), for any w ∈ L2[0,+∞), one has

J =

m∑
i=1

∞∑
j=1

tij+1∫
tij

[
‖ z(t) ‖2 −γ2 ‖ wi ‖2 + V̇i(x(t))

]
dt

−
∞∑
k=0

tk+1∫
tk

V̇ik(x(t))dt

≤
m∑
i=1

∞∑
j=1

tij+1∫
tij

[
‖ Cix(t) ‖2 −γ2 ‖ wi ‖2 + 2xTPiGiw

+ xTΛix
]
dt−

∞∑
k=0

tk+1∫
tk

V̇ik(x(t))dt

≤
m∑
i=1

∞∑
j=1

tij+1∫
tij

‖ Cix(t) ‖2 + xT (γ−2(PiGi)
2 + Λi)xdt

−
∞∑
k=0

tk+1∫
tk

V̇ik(x(t))dt, (21)

where the last inequality is obtained from the inequality

2xTPiGiw ≤ γ−2xTPiGiGTi Pix+ γ2wTw. (22)

Then, by using (10) and (14), we obtain that

J ≤−
∞∑
k=0

tk+1∫
tk

V̇ik(x(t))dt

=− [Vi0(x(t1))− Vi0(x(t0)) + Vi1(x(t2))

−Vi1(x(t1)) + · · ·]
= Vi0(x(t0)) = xT0 Pi0x0 = 0, (23)

that is, ‖z‖ < γ ‖w‖, ∀w ∈ L2[0,+∞). 2

Remark 1 without loss of generality, the initial state
x(t0) is assumed zero in the second condition of Defini-
tion 1 and thus ‖z‖2 < γ ‖w‖2 is guaranteed. From the
above proof, it can be seen that if the initial state is not
zero the disturbances can still be suppressed by tuning γ.

Remark 2 By pre- and post multiplying both sides of
inequality (8) by Xi = P−1i and by using the Schur Com-
plement Lemma, inequality (8) is equivalent to the fol-
lowing linear matrix inequality:[

Γ̄i Ψ̄T
i

Ψ̄i Ῡi

]
< 0, (24)

where

Γ̄i =XiAi +ATi Xi + εBiB
T
i +

1

ε
Hi +BiR

−1
i BTi

+εθ2I +
2

ε
Biλ

−2BTi + λ−2GGT −
m∑
j=1

βijXi,

Ψ̄T
i = [Xi, CXi, Xi, Xi, · · · , Xi] ,

Ῡi = diag

{
−λmin (Hi)

εδ2
Ir,−β−1i1 X1,

· · · − β−1i,i−1Xi−1,−β−1i,i+1Xi+1, · · · ,−β−1imXm

}
.

4 Hybrid reliable H∞ control application

For certain class of systems in practical engineering if
only one continuous controller is designed to achieve cer-
tain control objective such as stabilization, it can lead to
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complicated structure of the controller or poor perfor-
mances, sometimes such a controller does not exist [9].
Thus for this class of systems, switching among finite
candidate controllers can give a desired solution. This
section will apply the result of Section 3 to a class of
non-switched systems and propose the hybrid control s-
trategy accordingly.
We consider the following switched system:

ẋ= (A+ ∆A)x+ (B + ∆B)ui +Gw,

z =Cx. (25)

Assume that there exist a set of candidate controllers:

ui = Kix, i = 1, 2, · · · ,m. (26)

To show the usage of the switching mechanism, we also
assume that the uncertain systems with faulty actuators
cannot be stabilized by each single controller if the sys-
tems did not have disturbance.
In the following, we use the switching technique to prop-
erly choose which individual controller is applied to the
studied system:

u = Kσ(t)x, σ(t) : [0,+∞)→M = 1, 2, · · · ,m. (27)

Theorem 2 Consider the uncertain linear system (25)
satisfying Assumption 2. If there exist positive constants
βij, ε, λ, and positive definite matrices Pi, such that the
following matrix inequalities hold, for ∀i ∈M ,

Θi + CTC + γ−2PiGG
TPi +

m∑
j=1

βij(Pj − Pi) < 0, (28)

where Θi = PiA + ATPi + 1
εPiHiPi + ε

λmin(H)δ
2Ir +

εPiBB
TPi+εθ2PiPi+

2
εPiB

(
λ−1

)2
BTPi, then, for the

system (25) with all the possible actuator faults described
by (6), there exist state feedback controllers uσ = Kσx
and a switching law σ = σ(x) such that the reliable
H∞ control of the system (25) is solvable, where Ki =
−R−1BTi Pi.

Proof : Given the proof of Theorem 2, this proof is s-
traightforward and thus omitted.

5 A Numerical Example

In this section, an example is provided to verify the de-
veloped results. Consider the switched linear systems

consisting of two subsystems described by

A1 =

[
−5 2

0 2

]
, B1 =

[
1 0

2 1

]
, C1 =

[
0.1 0

0 0.1

]
,

A2 =

[
2 0

1 −5

]
, B2 =

[
1 1

0 2

]
, C2 =

[
0.1 0

0 0.2

]
,

G1 = G2 =

[
0.01 0.02

0.02 0

]
.

We choose the initial state x(0) = (−5, 3)T and the dis-
turbance w = sin t

t . When the actuator is faulty, we set

L1
s =

[
0 0

0 1

]
, L2

s =

[
1 0

0 0

]
. (29)

The state responses of each subsystem are shown in Figs.
1(a) and 1(b), which can be seen that each subsystem
is unstable and thus the H∞ problems of the individu-
al subsystems are not solvable. On the other hand, by
using the proposed method, we can construct a reliable
state-feedback controller to achieve the asymptotic sta-
bilization when w = 0. We choose ε = 1.2, γ = 1.3,
θ = 5, δ = 5 in a trial-and-error way but satisfying the
assumptions, and from (24) then obtain that

P1 =

[
0.0012 0.0009

0.0009 0.0045

]
, P2 =

[
0.0031 0.0007

0.0007 0.0015

]
. (30)

Let Ω1 = {x ∈ Rn|xT (P1 − P2)x ≥ 0, x 6= 0}, and
Ω2 = {x ∈ Rn|xT (P2−P1)x ≥ 0, x 6= 0}. Then, one has
Ω1∪Ω2 = Rn\ {0}. We then design the switching signal
as follows:

σ(t) =

{
1, x(t) ∈ Ω1,

2, x(t) ∈ Ω2\Ω1.
(31)

The individual controller for each subsystem is

ui = −λ−1i BTi Pix, i = 1, 2. (32)

Fig. 1(c) describes the state responses of the closed-loop
switched system. Fig. 2(a) shows the switching signal. In
order to make the switching process clearer, the scope of
such a switching signal is depicted in Fig. 2(b). There-
fore, it can be seen that the proposed control strategy
can achieve the reliable H∞ control of the closed-loop
switched system containing fault actuators.

6 Conclusions

This paper first presents the reliableH∞ control method
for a class of uncertain switched linear systems using the
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Fig. 1. (a) The trajectories of subsystem 1; (b) The trajec-
tories of subsystem 2; (c) The trajectories of the switched
system.
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Fig. 2. (a) The switching signal; (b) The enlarged switching
signal.

multiple Lyapunov function technique to guarantee that
the norm of the controlled output is upper bounded by
suppressing the external disturbance. Then, theH∞ con-
trol method is directly deployed to the standard reliable
H∞ control problem of a class of non-switched systems
which a single controller cannot internally stabilize. The
on-going work is on the reliable guaranteed cost control
methods for the same class of uncertain switched linear
systems using the multiple Lyapunov function technique
to ensure the cost performance index is always guaran-
teed to be smaller than a fixed upper bound regardless
the degradation of the system performances.
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