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Abstract: A robust tuning problem for a two-degree-of-freedom model predictive controller
is explored for single-input, single-output uncertain paper-making processes. The objective is
to achieve satisfactory closed-loop responses, as measured by overshoots, settling times and
output oscillations with user-specified parametric uncertainties. As the output variation cannot
be easily specified by the end users, two methods are proposed to connect a total variation
specification to user-friendly indices, based on which two algorithms are designed to solve the
tuning problem. An application to a process extracted from the pulp and paper industry is
employed to verify the effectiveness of the proposed algorithms.
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1. INTRODUCTION

In the pulp and paper industry, two types of control
problems are involved in the papermaking process: ma-
chine directional (MD) control and cross directional (CD)
control; the objectives of which are to ensure that the
paper products satisfy certain quality requirements (Chu,
Forbes, Backström, Gheorghe, and Chu, 2011). The con-
troller tuning of the MD Model Predictive Control (MPC)
then becomes an important factor in successful paper
production. However, the existing tuning approaches nor-
mally focus on objectives provided in a norm space (Qin
and Badgwell, 2003), which is not intuitive for the end
users to understand and specify compared with the time
domain performance requirements, e.g., overshoots and
settling times. Additionally, model uncertainty, which is
unavoidable in process operation and modeling, is nor-
mally considered as unstructured uncertainty, which is also
not familiar to the end users compared with parametric
uncertainty.

Considering these facts, a robust MPC tuning approach
that guarantees the required time domain performance
with parametric uncertainty is developed in this work. A
large number of approaches for the MPC tuning problem
have been reported in the literature. The first type of
the tuning approaches achieved the desired closed-loop
performance by matching the closed-loop controller or per-
formance with a pre-assigned controller or performance,
see e.g., Di Cairano and Bemporad (2010) and Shah and
Engell (2010). Another type of approaches investigated the
relationship between the system outputs and the effect of
MPC tuning parameters by approximation, see e.g., Al-
Ghazzawi, Ali, Nouh, and Zafiriou (2001) and Garriga and
Soroush (2008). Besides, some analytical approaches were
proposed in Wojsznis, Gudaz, Blevins, and Mehta (2003)
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and Bagheri and Sedigh (2013). In the above MPC tuning
approaches, only a small number of them take model un-
certainty into account. In Han, Zhao, and Qian (2006), the
authors employed a min-max strategy to handle model un-
certainty explicitly, which could achieve strong robustness
and small overshoots. Júnior, Martins, and Kalid (2014)
proposed an optimal tuning approach based on particle
swarm optimization, in which the Morari resiliency index
and the condition number were applied as the performance
measure. In Tran, Özkan, and Backx (2012), the tuning
parameters were computed by searching for an optimal
bandwidth that gave a trade-off between robustness and
nominal performance. In Garriga and Soroush (2010), an
in-depth review of the results on MPC tuning was pro-
vided. Despite of the progress made in the area, an easy-
to-use robust MPC tuning approach is still missing and is
desired in the pulp and paper industry.

The starting point of this work is the MPC tuning struc-
ture in Chu, Forbes, and Backström (2013); the tuning
problem is formulated as a two-degree-of-freedom (2-DOF)
optimization problem. This framework is also employed
in Shi, Wang, Forbes, Backström, and Chen (2014), the
purpose of which amounts to automatic computation of
the tuning parameters of the MD-MPC to achieve perfor-
mance requirements on worst-case overshoots and settling
times. Although the almost-optimal tuning results can
be obtained by the algorithm in Shi et al. (2014), the
responses can be oscillatory as aggressive control signals
are needed to achieve the smallest setting time without
limiting the variations in the process response. These os-
cillations lead to additional wear and tear of the control
valves and make the system more sensitive to actuator sat-
uration (Shi, Wang, and Ma, 2011), causing performance
downgrade as well as the increase of the maintenance
cost. To overcome this difficulty, the requirement on total
variation is taken into account in this work. Compared
with classical performance indexes like overshoots and
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settling times, the total variation is normally not familiar
to the end users, and thus it is neither suitable nor user-
friendly to invite the end users to manually specify the
requirement on total variation. Therefore, the specification
on total variation is implicitly made according to the
requirement on either overshoots or other familiar time
domain performance measures in this work.

The main contributions are summarized as follows:

• Two methods to specify the output oscillation via
overshoots and decay ratios are designed. The method
based on overshoots leads to a simple and fast tuning
algorithm while the method via decay ratios can
significantly reduce the conservativeness of tuning.
• Two efficient contour-line based parameter auto-
tuning algorithms under user-specified parametric un-
certainties are proposed by using the unimodality
and monotonicity properties of the conflicting time
response measures. The efficiency of the tuning al-
gorithms is verified on process models used for MD-
MPC of a paper machine at an industrial site.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In the MD-MPC control problem, the 2-DOF MPC control
structure and its components proposed in Chu et al. (2013)
are first introduced (see Fig. 1), and then the tuning
problem is formulated.
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Fig. 1. The 2-DOF MPC control system.

2.1 MD Model and Model Uncertainty

Normally, it is the preferred industrial practice to model
the SISO MD process (Gp in Fig. 1) using a FOPDT model
structure:

Gp(s) =
g

Tps+ 1
e−tds, (1)

where g, Tp and td denote the MD process gain, time
constant and time delay, respectively. The discrete model

is Gp(z) = g bz�1

1−az�1 z
−Td (a = e−∆T/Tp , b = 1−a, Td is the

discretized version of td, and ∆T is the sampling period).
Since Gp(s) cannot be exactly known, a MD model G0(s)
is identified to approximate Gp(s):

G0(s) =
g0

Tp0s+ 1
e−td0s. (2)

The MD model parameters g0, Tp0, and td0 are identified
via the input/output data of the real process, and is used
to predict the state for the MD-MPC; the discrete model
of G0(s) is obtained in the same way as that of Gp(s).
However, it is inevitable that the identified model G0(s)
is different from Gp(s). To take into account the model
mismatch, the parametric uncertainty is used, which refers
to the difference in the model parameters, namely,

g ∈ [g, g], Tp ∈ [T p, T p], td ∈ [td, td], (3)

based on which a set of possible perturbed plant models
can be denoted as

Π :=
{
Gp(s) : g ∈ [g, g], Tp ∈ [T p, T p], td ∈ [td, td]

}
. (4)

The parametric uncertainty is employed in this work, be-
cause it is easier for the end users to understand and spec-
ify compared with the unstructured uncertainty, which
requires additional knowledge of robust control theory.

2.2 MPC formulation

In the 2-DOF MPC structure, the MD-MPC controller
basically accounts to the following quadratic programming
problem

min
∆U

J =(Ŷ −Yref)
TQ1(Ŷ −Yref) + ∆UTQ2∆U

+ (U−Uref)
TQ3(U−Uref)

s.t. x̂(k + i) = Aix̂(k) +

min{Hu,i}∑
j=1

Ai−jB∆u(k + j − 1),

ŷ(k + i) = Cx̂(k + i), for i = 1, 2, . . . ,Hp,

where

Ŷ =


ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k +Hp)

 ,∆U =


∆u(k)

∆u(k + 1)
...

∆u(k +Hu − 1)

 , (5)

U =


1
1
...
1

u(k − 1) +


1 0 · · · 0

1 1
. . .

...
...
. . .

. . . 0
1 · · · 1 1

∆U, (6)

where Hp and Hu are prediction and control horizon, Uref

and Yref are the reference signal vector of U and Ŷ,
respectively, and Q1, Q2 and Q3 are weighting matrices.
In the paper-making MPC tuning problem, the constraints
are normally first ignored and will be re-introduced and
checked after obtaining of the tuning parameters (Chu
et al., 2011).

2.3 2-DOF Tuning Structure

In the 2-DOF MPC control system, the filters Fr and
Fd also form an essential part. These filters are employed
for filtering the output target, ytgt(k), and the estimated

disturbance, d̂(k) := y(k) − ŷ(k), respectively. With the
filtered signals, the reference trajectory is obtained as
below:

Yref(k) =

 yref(k + 1)
...

yref(k +Hp)

 = Frytgt(k)− Fdd̂(k).

Fr and Fd are projection filters generated with fr(z) and

fd(z), based on yref(z) = fr(z)ytgt(z) − fd(z)d̂(z) (Chu
et al., 2013); fr(z) and fd(z) are the so-called reference
tracking filter and disturbance rejection filter:

fr(z) =
brz

−1

1− arz−1
z−Td0 , fd(z) =

bdz
−1

1− adz−1
z−Td0 , (7)

where ar = e
− ∆T

λTp0 , br = 1−ar, ad = e
− ∆T

λdTp0 , bd = 1−ad,
∆T is the sampling period and Td0 is the discretized ver-
sion of td0. Thus, the MPC performance can be adjusted
by tuning λ and λd (which we also refer to as λ-parameters
hereafter) and setting Q1 = I, Q2 = Q3 = 0, which
simplifies the tuning problem.
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2.4 Performance Measures and Tuning Problem

Overshoots and settling times are used as the main perfor-
mance measures for MPC tuning in this work, as they are
straightforward and well-suited for practitioners to evalu-
ate control performance. Since the performance concerned
here is for a set of perturbed systems in Π, the worst-
case performance has to be considered. The worst-case
overshoot and settling time are defined as follows.

Definition 1. (Worst-case overshoot). The worst-case over-
shoot OS of a set of step responses with the same final
value is the maximum value in all responses minus the
final value divided by the final value.

Definition 2. (Worst-case settling time). The worst-case
settling time Ts of a set of step responses with the same
final value is the time required for all the responses to reach
and stay within a range of a pre-specified percentage of the
final value.

Since the traditional approach is not applicable to the
characterization of the OS and Ts for a set of systems,
a heuristic approach introduced in Shi et al. (2014) is
employed, which obtains the OS and Ts via the following
eight extreme-case systems:

ΠE :=
{
Gp(s) : g ∈ {g, ḡ}, Tp ∈ {T p, T̄p}, td ∈ {td, t̄d}

}
.
(8)

Since OS and Ts depend on the values of λ and λd in
the tuning problems, the notations OS(λ, λd) and Ts(λ, λd)
can be used to express these relationships.

Another key time-domain performance index is the total
variation (Skogestad and Postlethwaite, 1996), which mea-
sures the output oscillation for general systems. Mathe-
matically, it is defined as

tv := sup
∆T

∞∑
k=0

|y(k + 1)− y(k)|. (9)

For ease of implementation, we may ignore the effect of
the sampling time and replace ∞ by n, assuming that the
system converges to the target value within n steps. Based
on these simplifications, the worst-case total variation can
be defined as below:

Definition 3. (Worst-case total variation).

TV := max
Gp∈Π

n∑
k=1

|y(k)− y(k − 1)|. (10)

As the extreme behavior of step responses mostly happens
at the extreme process parameters, the OS, Ts as well
as TV can be respectively approximated using the worst
overshoot, the worst settling time and the worst total
variation of the extreme-case systems.

In this work, the tuning objective is to determine λ and
λd so that the closed-loop system in Fig. 1 is robustly
stable and the output tracks its target with a fast response,
a small overshoot and small output oscillation. However,
there exist multiple conflicts in achieving the targets. For
example, a small overshoot often results in a large settling
time; while a small settling time can be associated with
a large overshoot and a large total variation. To make
a tradeoff in the tuning process, we tune λ and λd by
minimizing the settling time with the resultant OS and
TV lie in certain tolerable regions. Mathematically, it can
be formulated into the following optimization problem:

min
λ,λd

Ts(λ, λd)

s.t. OS(λ, λd) ≤ OS∗, TV(λ, λd) ≤ TV∗,
(11)

where OS∗ and TV∗ refer to the specifications on OS(λ, λd)
and TV(λ, λd), respectively.

Apart from the difficulties in solving this problem, the
choice of TV∗ is a nontrivial issue. Unlike the specification
of the worst-case overshoot OS∗ (which can be intuitively
chosen, for example, 10% by the end users according
to their requirements), the appropriate value of TV∗ is
not easy to be determined by the end users. Thus, TV∗

should be determined either automatically or based on
the specification of decay ratios (another well-understood
performance measure in quality control in the pulp and
paper industry), to maintain the user friendliness of the
proposed tuning algorithms.

3. EFFICIENT TUNING WITH TIME-DOMAIN
PERFORMANCE

The first approach to the optimization problem in (11)
is presented in this section, and the TV∗ is determined
automatically in this approach. As the constraint on total
variation is introduced to limit the potential oscillations
in the responses, it is possible to design the value of TV∗

based on OS∗, for which we have the following relationship.
Due to space limitations, the proof is not shown here.

Proposition 4. If TV(λ, λd) ≤ TV∗ and OS(λ, λd) > 0,
then

OS(λ, λd) ≤ (TV∗ − 1)/2. (12)

Proposition 4 indicates that the specification on TV∗ can
be chosen as 1 + 2OS∗ to guarantee a smooth response
according to the specification on OS∗. Note that by choos-
ing TV∗ = 1 + 2OS∗, the requirement on overshoots can
be fulfilled, which simplifies the problem in (11). This
further reduces the requirement of users’ knowledge on
the process, as only the requirement on overshoot OS∗ is
needed, which is normally familiar to the end-users of a
commercial quality control software.

Thus, the problem in (11) now reduces to

min
λ,λd

Ts(λ, λd)

s.t. TV(λ, λd) ≤ TV∗,
(13)

where TV∗ = 1 + 2OS∗.

3.1 Empirical Monotonicity Properties of TV with Respect
to λ and λd

The empirical unimodality and monotonicity properties of
TV with respect to λ and λd are investigated and utilized
to solve the tuning problem in (13), because analytical
expressions of TV, even for standard second-order systems,
seem not to exist (Shi et al., 2014). As λ controls the
speed of the response, a larger value of λ leads to a
smoother response and thus a smaller total variation.
In this regard, TV(λ, λd) can be empirically treated as
a monotonically decreasing function of λ. This property
is illustrated through numerical simulations, and Fig. 2
shows the typical monotonicity relationship.

3.2 The Contour-line Optimal Tuning Algorithm

The contour-line based tuning algorithm is proposed based
on the monotonicity and unimodality properties. Here we
assume the amount of total variation allowed (or equiv-
alently, the overshoot specification according to Proposi-
tion 4) is relative small such that the constraint in problem
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Fig. 2. Empirical monotonicity properties of the worst-case
total variation with respect to λ and λd.

(13) is active for the optimal solution; this is intuitive in
that for small total variation specifications, the optimal
λ-parameters will behave aggressively to speed up the
response, to achieve a small settling time. This assumption
is mainly made to reduce the computational burden of
solving the tuning problem, as the line-search procedure
to find the value of λ that corresponds to the smallest
Ts given a fixed value of λd and TV(λ, λd) ≤ TV∗ can
be avoided. Based on the above analysis, the optimization
problem can be converted to

min
λ,λd

Ts(λ, λd)

s.t. TV(λ, λd) = TV∗.
(14)

In this way, it suffices to minimize the settling time
Ts(λ, λd) along the contour line TV(λ, λd) = TV∗. To
solve this problem, two algorithms are proposed: the first
algorithm (Algorithm 1) finds the corresponding λ on the
contour for a fixed value of λd (denoted as λc), while
the second algorithm (Algorithm 2) is utilized to find
the optimal λd that leads to a smallest value of settling
time, based on Algorithm 1. The algorithms are further
interpreted in details in the following.

Algorithm 1 Find λc(TV∗, λd) and T c
s (TV

∗, λd).

1: Input TV∗, λd and the uncertainty intervals [g, g],

[T p, T p] and [td, td];
2: Input ε; . ε = 0.1 by default
3: λ← 0.02; λ̄← 100;
4: while λ̄− λ > ε do
5: λ← (λ̄+ λ)× 0.5;
6: Evaluate the total variation TV(λ, λd) via (10);
7: if TV(λ, λd)− TV∗ > 0 then
8: λ← λ;
9: else

10: λ̄← λ;
11: end if
12: end while
13: λc(TV∗, λd)← (λ̄+ λ)/2, T c

s (TV
∗, λd)← Ts(λ

c, λd);
14: end

Interpretations for Algorithm 1: Since TV(λ, λd) is a
monotonic function of λ for a fixed λd, the search of λc

can be achieved by a bisection search. Here T c
s (TV

∗, λd)
represents the dependence of the worst-case settling time
on TV∗ and λd.

Algorithm 2 Tuning of λ and λd

1: Input the uncertainty intervals [g, g], [T p, T p] and

[td, td];
2: Input the overshoot specification OS∗;
3: Calculate the total variation specification according to

TV∗ = 1 + 2OS∗;
4: Input ε; . ε = 0.1 by default
5: λd ← λ?

d; λ̄d ← 100;
6: while λ̄d − λd > ε do
7: λd1 ← λd + (λ̄d − λd)× 0.382;
8: λd2 ← λd + (λ̄d − λd)× 0.618;
9: Numerically evaluate the settling times

T c
s (TV

∗, λd1) and T c
s (TV

∗, λd2) based on Algorithm 1;
10: if T c

s (TV
∗, λd1) > T c

s (TV
∗, λd2) then

11: λd ← λd1;
12: else
13: λ̄d ← λd2;
14: end if
15: end while
16: λd ← (λ̄d + λd)/2, λ← λc(TV∗, λd);
17: end

Interpretations for Algorithm 2: The assumption utilized
here is that T c

s (TV
∗, λd) is a unimodal function of λd; the

underlying cause is that λd controls the stability of the
system. In this way, the algorithm uses golden search to
find the optimal λd that achieves the smallest worst-case
settling time.

4. DETERMINE TV∗ FROM THE DECAY RATIO

In Section 3, an efficient auto-tuning approach is designed
to determine TV∗ with OS∗. It gives a fast and simple
tuning procedure while OS ≤ OS∗ is guaranteed; but
it may introduce conservativeness in the tuned OS due
to overlooking oscillation in the output response. In this
section, we aim at providing an alternative heuristic user-
friendly approach for specifying TV∗ through decay ratios
to reduce the conservativeness in the tuning results.

4.1 Determine TV∗ Using Decay Ratios

The decay ratio (denoted as DR) is defined as the ratio
between two consecutive maxima of the step output, which
is often used to measure the output oscillation for second-
order linear systems. From the engineering perspective,
the response of the system in Fig. 1 can be approximated
by that of a second-order system; and therefore it is
reasonable to set TV∗ equal to the total variation of
a second-order linear system with a maximum allowed
decay ratio DR∗, which is specified by users with process
knowledge (e.g., 1/4).

In this approach, we assume that the DR∗ is chosen by
users. When users have limited knowledge of the process
or have no specific requirement on the output oscillation,
DR∗ will be set to 1/4 by default, as “one quarter decay
ratio” is normally used as the design criterion for controller
tuning (Levine, 2010). By empirically assuming that each
lower peak amplitude is a half of the previous upper peak
amplitude in the output response, which is based on “one
quarter decay ratio” criterion, we arrive at the following
formula to approximate TV∗ from DR∗:

TV∗ = 1 +
3OS∗

1−DR∗ , (15)

based on which Algorithm 3 is designed as below.
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The above formula (15) can be obtained based on the
definitions of the worst-case total variation and decay ratio
with DR=DR∗; the key factor utilized here is that the
amplitude of the first upper peak of the step output of a
system is also equal to the overshoot.

Algorithm 3 Find λc and T c
s with TV∗ specified by (15)

1: Input TV∗, λd and [g, g], [T p, T p] and [td, td];
2: Input ε; . ε = 0.1 by default
3: λ← 0.02; λ̄← 100;
4: whichInUse =‘TV’;
5: while λ̄− λ > ε do
6: λ← (λ̄+ λ)× 0.5;
7: Numerically evaluate TV(λ, λd) and OS(λ, λd);
8: switch whichInUse
9: case ‘TV’

10: if TV(λ, λd)− TV∗ > 0 then
11: λ← λ;
12: else
13: if OS < OS∗ then
14: λ̄← λ;
15: else
16: whichInUse =’OS’;
17: λ← λ;
18: end if
19: end if
20: case ‘OS’
21: if OS(λ, λd)−OS∗ > 0 then
22: λ← λ;
23: else
24: λ̄← λ;
25: end if
26: end switch
27: end while
28: λc(TV∗, λd)← (λ̄+ λ)/2, T c

s (TV
∗, λd)← Ts(λ

c, λd);
29: end

The above approach of specifying TV∗ reduces the con-
servativeness in controlling output oscillation; but it also
leads the possibility that the tuned OS is greater than OS∗.
To avoid this issue, we introduce a switching tuning mech-
anism in the tuning of λc, which guarantees OS ≤ OS∗.
The detailed tuning procedure is given in the Algorithm 3.

4.2 Comparison of Algorithms 2 and 3

To solve the tuning problem in (11), Algorithms 2 and
3 are proposed in this work. Algorithm 2 determines the
specification on the worst-case total variation automati-
cally by exploiting the relationship between the overshoot
and total variation of a step response. For the same speci-
fication on worst-case overshoots, Algorithm 3 potentially
leads to a smaller settling time, as the corresponding spec-
ification on the worst-case total variation made according
to (15) is greater than that of Algorithm 2; however, the
sacrifice is that end users are required to specify the pref-
erence on decay ratios and the relationship between the
overshoot specification and the total variation specification
is heuristic rather than rigorously proven. For the same
specification on the worst-case total variation, the tuning
results of Algorithm 2 inherit a larger chance of optimality
as the worst-case settling time is directly minimized, while
the switching mechanism in Algorithm 3 has a potential
effect of deviating the tuning results from the optimal
values.

Table 1. Comparison of different tuning algo-
rithms (OS∗ = 20%)

TV∗ TV OS TS λ λd

A2 1.4 1.39 0.1% 2760s 10.1277 3.9868
A3 1.8 1.7920 5.4% 2385s 8.1844 3.4943

OSAl � 2.52 16.4% 2055s 6.7059 2.8709

5. INDUSTRIAL EXAMPLES

In this section, we apply the proposed results to an ex-
ample extracted from real applications of machine direc-
tional paper machine control to illustrate the efficiency of
the tuning algorithms. The following nominal system is
considered:

G0(s) =
0.0135

60s+ 1
e−90s. (16)

This models a papermaking process from stock to con-
ditioned weight. This model was identified using an ad-
vanced industrial control software package and used by an
MPC controller for a real paper machine. The prediction
and control horizons are set to Hp = 42 and Hu = 20,
respectively; Q1, Q2 and Q3 are the same as shown in
Section 2.3. The uncertainty level is defined as [−r%, r̄%],
which means that the real model parameters are within
the following ranges:

Tp ∈ [(1− r%)Tp0, (1 + r̄%)Tp0],

td ∈ [(1− r%)td0, (1 + r̄%)td0],

g ∈ [(1− r%)g0, (1 + r̄%)g0].

(17)

A large uncertainty level [-50%, 90%] is used for this
model. First, we apply the proposed tuning algorithms,
i.e., Algorithms 2 and 3, on this model, and then compare
the obtained tuning results with the result obtained by
the algorithm proposed in Shi et al. (2014), which we
call “OS Algorithm” hereafter 1 . The specification of the
worst-case overshoot is set to be OS∗ = 20%, and the
tuning results for all algorithms are shown in Fig. 3 and
Table 1, where we use OSAl, A2, A3 to represent the OS
Algorithm, Algorithm 2, and Algorithm 3, respectively.
From these results, the effect of considering total variation
in the MPC tuning is apparent: 1) the obtained envelope
responses by Algorithms 2 and 3 are much smoother than
that of the OS Algorithm, although the responses obtained
by Algorithm 3 is faster than that of Algorithm 2; 2) the
resultant settling times of responses via Algorithms 2 and
3 are increased compared with that by the OS Algorithm,
which is a natural tradeoff that has to be paid for smoother
responses.

Now, we apply the tuning results to the Honeywell real
time MPC + Simulator environment. To account for the
model mismatch, the real time process is taken as

G0(s) =
0.0246

109.2s+ 1
e−163.8s, (18)

which lies within the uncertainty level [-50%, 90%] of the
nominal process in (16). The initial operating conditions,
y(0) = 432, u(0) = 3790, are obtained from the actual
operating conditions. The optimization parameters of the
MPC (Hp, Hu, Q1, Q2 and Q3) are chosen to be the same
as in the above tuning procedure, and the constraints on
the control signals are designed as follows:

3411 gpm ≤ U ≤ 4169 gpm,
−379 gpm ≤ ∆U ≤ 379 gpm.

(19)

To consider possible changes of the operating conditions,
a set-point change of 2 lbs/1000 ft2 is made at t = 300s;

1 Note that the OS Algorithm finds the MPC tuning parameters that
minimize the worst-case settling time while considering the upper
bound OS∗ on the worst-case overshoot.
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Fig. 3. Step response envelopes obtained by the OS Algo-
rithm, Algorithm 2 and Algorithm 3
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Fig. 4. Real time MPC + simulator results

an output disturbance of 2 lbs/1000 ft2 is introduced at
t = 2250s; an input disturbance of 80 gpm is in effect at
t = 4500s; the measurement noise is zero-mean Gaussian
with standard deviation 0.1 lbs/1000 ft2. The tuning
results in Table 1 are applied to the process simulator and
Honeywell real-time MPC for performance comparison.
The tuning results are shown in Fig. 4. Despite the huge
model-plant mismatch and the measurement noise, the
responses of the system corresponding to all the three
pairs of λ-values always robustly track the set-point for all
the changes of the operating conditions, which indicates
the effectiveness of the proposed algorithms. In addition,
Fig. 4 also shows that the proposed algorithms lead to
much smoother responses compared with that obtained
without taking total variation into account, namely, the
OS Algorithm, which further illustrates the effectiveness
of considering total variation in design.

6. CONCLUSION

In this work, the proposed technique provides a solution
to the challenge of finding MD-MPC tuning parameters to
meet intuitive, time-domain, robust performance specifi-
cations for a process that can be described by a first-order
plus deadtime model with easy to understand parametric
uncertainties. The overall concept behind this approach
may also be relevant to other applications where robust
tuning is desired, but practitioner capabilities dictate that
performance and uncertainty specifications should take a
simple and intuitive form.
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