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Abstract: Batch processes are of great importance in process industry. However, the control
algorithm design is difficult for those with constraints. This is because stability and recursive
feasibility along directions of time and batch should be guaranteed simultaneously. In this paper,
a stable model predictive control strategy with zero terminal state constraints is proposed.
Stability and recursive feasibility along two directions are guaranteed and proved. Simulation
results are given to show the effectiveness of the algorithm.
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1. INTRODUCTION

Batch process plays an important role in chemical indus-
tries, such as injection molding, pharmaceutical industry
and so on. It is often used to produce products with
high value. An important characteristic of batch processes
is repetitiveness. Based on repetitiveness, information of
previous batch can be collected to improve current batch’s
performance. Iterative Learning Control (ILC)(Arimoto
et al. (1984), Uchiyama (1978)) is a good alternative to
exploit repetitiveness. The time and batch indexes are
denoted as t and k respectively. Then a general iterative
learning control law can be given as

u(t, k) = u(t, k − 1) +Ke(t+ 1, k − 1). (1)

It uses the tracking error and input signal from the
previous batch to correct the input signal of current batch.
In nature, it is a batch-wise feedback control. Currently, a
lot of papers have discussed the convergence properties
of ILC, referring to Amann et al. (1996), Norrlöf and
Gunnarsson (2002) and Bristow et al. (2006). However,
most of them only discuss about batch-wise convergence.
From the view of time direction, ILC is a feedforward
control. That is why conclusions about time-wise stability
are hard to be obtained based on the simple ILC law in
Equ. (1).

In order to guarantee time-wise stability, feedback control
along the direction of time is combined with ILC. In
general, a feedback controller incorporated with ILC is
taken as a two-time dimensional controller (time and batch
dimensions). In this way, rich results in two dimensional
control theories, such as those shown in Kaczorek (1985)
and Du et al. (2001), can be applied. Shi et al. (2005a)
and Shi et al. (2005b) introduced a 2D Lyapunov function
and used this to induce a control law based on LMIs to
guarantee 2D stability. The above mentioned idea has been
widely applied in process industries. In Wang et al. (2007),

the idea was applied to a three-tank system with sensor
faults. Shi et al. (2006) applied this idea to the nozzle
packing pressure control in a injection molding process.
In addition to this idea, Lee and Lee (2003) combined
model predictive control with ILC to control a semi-batch
reactor. However, these methods do not address issues on
constrained systems.

From the perspective of practical requirements in pro-
cess industries, constraints on either states, inputs or
outputs are unavoidable. Without explicitly considering
constraints, both control performance and system stabil-
ity will deteriorate. Lee et al. (1999) and Wang et al.
(2008) directly incorporated the constraints into on-line
optimization, but stability was not proved. System sta-
bility depends on tuning of parameters. In Liu and Wang
(2012), a 2D Lyapunov Function was used to guarantee 2D
stability. This 2D Lyapunov Function, together with input
and state constraints, was formulated as constraints in on-
line optimization. One important issue is that they did not
consider feasibility of the optimization. Without consider-
ing feasibility, at some time spot, constraints may be so
stringent that the feasible solution set is empty. When an
optimization-based control strategy occurs in infeasibility,
performance will deteriorate rapidly, and stability can not
be guaranteed either. Thus, the key concern is how to de-
sign a control strategy to guarantee 2D stability, constraint
fulfillments and 2D recursive feasibility simultaneously.

Lee and Lee (2000) is an important work to guarantee
2D stability and recursive feasibility for batch processes.
They combined MPC with ILC based on a FIR model. The
results of this work are based on the following assumptions:
1, the process is stable. A FIR model can thereby be used;
2, the length of a batch is not long, since for each step of
optimization, they have to predict the tracking error for
the whole batch; 3, The reference is admissible, since the
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convergence of the algorithm is based on the existence of
a feasible solution to make the objective function 0.

In this paper, we aim to propose a control strategy which
can guarantee 2D stability and 2D feasibility at the same
time with fewer assumptions compared with Lee and Lee
(2000). The foundation of this work is a zero terminal
state constraint. This type of constraint is common and
usefull in MPC for continuous processes. In MPC, there
are four ways to guarantee stability and feasibility, namely
infinite prediction horizon (Keerthi and Gilbert (1988),
Kothare et al. (1996)), zero terminal state constraints
(Kwon and Pearson (1977), Rawlings and Muske (1993)),
terminal weighting matrix (Kwon et al. (1983), Kwon and
Byun (1989)), terminal set (Mayne et al. (2000), Wan
and Kothare (2003)). For our problem, since not only the
time-wise feasibility is considered, but also the batch-wise
feasibility, the zero terminal state constraint method is
adopted.

This paper is organized as follows. In Section 2, the
formulation of the problem is given firstly, and then the
control strategy design is described in details. In Section
3, properties on feasibility, stability and optimality are
analyzed. In Section 4, simulations are conducted to show
the effectiveness of the method. Finally, conclusions are
made.

2. CONTROL STRATEGY DESIGN

2.1 Problem Formulation

A batch process can be described in state space as

x(t+ 1, k) =Ax(t, k) +Bu(t, k) + d(t),

y(t, k) =Cx(t, k), t ∈ [0, tn], k ∈ [1,∞). (2)

Constraints are

−um � u(t, k) � um (3)

−Xm � x(t, k) � Xm (4)

Here t is the index of time and k is the index of batch.
tn is the length of a batch. x ∈ Rnx is system states.
The initial states x(0, k) for each batch are the same
by assuming that the process resets. y ∈ Rny is system
outputs. u ∈ Rnu is system inputs. The reference to be
tracked is denoted as yr(t) ∈ Rny and it is identical for
each batch. d(t) ∈ Rnx denotes exogenous disturbances
and it is repetitive along the direction of batch. The matrix
A, B and C are arranged in proper dimensions according
to x, y and u. The bounds um, um, Xm and Xm are
all positive point-wisely. ’�’ denotes ’≤’ in terms of each
coordinate of vector x. For simplicity, it is assumed that
states and outputs are measurable.

In order to eliminate repetitive disturbances and incorpo-
rate ILC, difference of two consecutive batches is taken
as

∆kx(t+ 1, k) =A∆kx(t, k) +B∆ku(t, k)

∆ky(t, k) =C∆kx(t, k), (5)

with ∆kx(0, k) = 0 for each batch. The constraints in (3)
and (4) become

−um − u(t, k − 1) � ∆ku(t, k) � um − u(t, k − 1), (6)

−Xm − x(t, k − 1) � ∆kx(t, k) � Xm − x(t, k − 1). (7)

In addition, in batch process control, constraints on ∆ku
and ∆kx may also be added to control convergent rate as
follows.

−δkum ≤ ∆ku(t, k) ≤ δkum (8)

−δkXm � ∆kx(t, k) � δkXm (9)

Feedback control strategies incorporated with ILC are in
general designed based on system in (5) and directly taking
∆ku as the input variables. Then, the constraints in (6)
and (7) are not uniform since u(t, k − 1) and x(t, k − 1)
can be any value within the bounds in (3) and (4). This
poses great difficulties for controller design when batch-
wise recursive feasibility is required.

Next, it will be shown that how to design a MPC with zero
terminal state constraints based on the system in (5) to
guarantee 2D stability and 2D feasibility simultaneously.

2.2 Control Algorithm

For simplicity, we denote

e(t, k) = yr(t, k)− y(t, k).

System in (5) is equivalent to

∆kx(t+ 1, k) =A∆kx(t, k) +B∆ku(t, k)

e(t, k) =− C∆kx(t, k) + e(t, k − 1). (10)

The constraints in (6), (7), (8) and (9) on ∆ku(t, k) and
∆kx(t + 1, k) for the kth batch are denoted as Ω(t, k).
Thus, constraints in (6), (7), (8) and (9) are simplified as

∆kx(t+ 1, k),∆ku(t, k) ∈ Ω(t, k).

Assume that prediction horizon and control horizon are
both pn. Then, a prediction model can be derived as

∆kxp(t+ i+ 1, k) =A∆kxp(t+ i, k) +B∆kup(t+ i, k)
(11)

ep(t+ i+ 1, k) =− C∆kxp(t+ i+ 1, k)+

e(t+ i+ 1, k − 1). (12)

with i = 0, 1, . . . , pn − 1.

For k ≥ 2, the control law can be induced by an optimiza-
tion as

min
∆kxp(t+1

t+pn
,k),∆kup(t

t+pn−1
,k),ep(t+1,k

t+pn
,k)
e(t+1

t+pn
, k)T e(t+1

t+pn
, k)

(13)

subject to constraints

(11)(12)

∆kxp(t+ i+ 1, k),∆kup(t+ i, k) ∈ Ω(t+ i, k), (14)

∆kxp(t+ pn, k) = 0, i = 0, 1, . . . , pn − 1. (15)

With such an optimization, ∆ku(tt+pn−1, k) are calculated.
According to the philosophy of receding horizon strategy,
only the first step is implemented and the input can be
computed as

u(t, k) = u(t, k − 1) + ∆ku(t, k). (16)

Since a batch process has a finite length of tn, when t >
tn−pn, a shrinking prediction horizon strategy is adopted.
That means when t = tn − pn + i, with i = 0, 1, . . . , pn,
the prediction horizon becomes pn − i.
Remark 1: As claimed above, the algorithm is implemented
from the second batch, excluding the first batch. Some
other methods guaranteeing stability and constraint ful-
fillments can be applied to the control of the first batch,
such as that shown in Hu et al. (2002).

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 515



Remark 2: It is noted that the optimization in (13) is a
quadratic programming with linear constraints. Computa-
tion complexity is of O(n2) by interior point mehtod.

3. FEASIBILITY, STABILITY AND OPTIMALITY

In this section, feasibility, stability and optimality of the
algorithm will be analyzed by the following theorems.

Theorem 1. (Time-wise recursive feasibility): If there
is a feasible solution for the problem in (13) at (t, k), then
there exists a feasible solution for (13) at (t+ 1, k).

Proof. Since the optimization in (13) is feasible at
(t, k), denote the feasible solution as ∆kûp(t, k),∆kûp(t+
1, k), . . . ,∆kûp(t+pn−1, k), corresponding states ∆kx̂p(t+
1, k), . . . ,∆kx̂p(t + pn, k), and tracking errors ep(t +
1, k), . . . , ep(t + pn, k). Since the terminal state ∆kx̂(t +
pn, k) = 0, according to (15), we can prove that ∆kûp(t+
1, k),∆kûp(t+2, k), . . . ,∆kûp(t+pn−1, k), 0 and the cor-
responding states and tracking errors are feasible solutions
at (t+ 1, k). Fulfillments of (11), (12) and (14) are trivial.
For (15), since ∆kx̂(t+pn, k) = 0, and ∆ku(t+pn, k) = 0,
according to Equ. (11), ∆kx̂(t + pn + 1, k) = 0. Thus,
the constraint (15) is satisfied. The problem is feasible at
(t+ 1, k).�

Theorem 2. (Batch-wise recursive feasibility): If the
problem in (13) is feasible at (0, k), then it is feasible at
(0, k + 1), ∀k ∈ [1,∞).

Proof. Due to the assumption ∆kx(0, k) = 0,∀k ∈ [2,∞),
take ∆kûp(0, k) = ∆kûp(1, k) = · · · = ∆kûp(pn−1, k) = 0.
Then the inputs and induced states are feasible to all
constraints.�

Lemma 3. (2D recursive feasibility): If the process can
be stabilized by a control law that makes all constraints
fulfilled in the first batch, the optimization problem in (13)
is feasible for ∀(t, k) with t ∈ [0, tn], k ∈ [2,∞).

Proof. Firstly, according to Theorem 2, (13) is feasible
at (0, 2). Furthermore, by Theorem 1, (13) is feasible at
∀t ∈ [0, tn] in the 2nd batch. By induction, (13) is feasible
at ∀(t, k) that t ∈ [0, tn], k ∈ [2,∞).�

Based on feasibility, we can further discuss stability and
optimality. Before that, a performance index at (t, k) is
defined as

Φ(t, k) =

t∑
i=1

e(i, k)
2

+

t+pn∑
i=t+1

ep(i, k)
2

+

tn∑
i=t+pn+1

ē(i, k)
2

(17)

At (t, k), the tracking error e(1, k) to e(t, k) can be directly
measured. ep(t+ 1, k) to ep(t+ pn, k) can be calculated by
implementing ∆ku(t, k) to ∆ku(t + pn − 1, k) computed
by (13). ē(t + pn + 1, k) to ē(tn, k) is the tracking error
by applying ∆ku(t + pn, k) = · · · = ∆ku(tn, k) = 0. Since
∆kxp(t+ pn, k) = 0, ē(t+ pn + i, k) = e(t+ pn + i, k − 1).
Thus, this index can be calculated after the optimization
in (13) is conducted at time t of the kth batch. Based on
this Φ(t, k), stability of the method can be proved.

Theorem 4. (Time-wise stability:) For t ∈ [0, tn], k ∈
[2,∞), by deriving control law from the optimization in
(13), it is guaranteed that Φ(t+ 1, k) ≤ Φ(t, k).

Proof. Assume the optimal inputs at (t, k) obtained from
(13) are ∆kûp(t, k),∆kûp(t+1, k), . . . ,∆kûp(t+pn−1, k).
With these inputs, the tracking errors from t+ 1 to t+ pn
are ep(t+ 1, k), . . . , ep(t+ pn, k). According to Theorem 1,
at (t+ 1, k), ûp(t+ 1, k), . . . , ûp(t+ pn − 1, k), 0 is a group
of feasible inputs. If these inputs are implemented, the
tracking errors will be ep(t + 2, k), . . . , ep(t + pn, k), ē(t +
pn+1, k). Assume the performance index corresponding to

∆kûp(t+1, k), . . . ,∆kûp(t+pn−1, k), 0 is Φ̂(t+1, k). Then

Φ̂(t + 1, k) = Φ(t, k). By the optimization (13), it can be
guaranteed that the objective function corresponding to
the optimal inputs

∑t+pn+1
i=t+2 ẽp(i, k)

2 ≤
∑t+pn

i=t+2 ep(i, k)
2

+
ē(t + pn + 1). This implies that the optimal Φ(t + 1, k)
satisfies

Φ(t+ 1, k) ≤ Φ̂(t+ 1, k) = Φ(t, k).

�
Theorem 5. (Batch-wise stability): For ∀k ∈ [0, tn],
k ∈ [2,∞), Φ(t, k + 1) ≤ Φ(t, k).

Proof. Similar to the proof of Theorem 4, according to
Theorem 2, ∆kûp(0, k) = ∆kûp(1, k) = · · · = ∆kûp(pn −
1, k) = 0 is a group of feasible solution at (0, k + 1).

By implementing these inputs, Φ̂(0, k + 1) = Φ(tn, k).
According to the optimality of the optimal solution,, we
can guarantee that

Φ(0, k + 1) ≤ Φ̂(0, k + 1) = Φ(tn, k).

By applying Theorem 4 t times, we have Φ(t, k + 1) ≤
Φ(0, k + 1). Similarly, Φ(tn, k) ≤ Φ(t, k). Thus,

Φ(t, k + 1) ≤ Φ(t, k).

�

Stability is easily guaranteed, but all the above inequalities
are ′ less than or equal to ′, not necessarily strictly ′ less
than ′. How to guarantee optimality is an important issue.
Next, optimality of the algorithm is discussed.

Theorem 6. Define performance index Φ corresponding
to a MPC with prediction horizon pn as Φpn(t, k), then
Φpn(t, k) ≤ Φpn+1(t, k).

Proof. Assume at (t, k), when prediction horizon is pn,
the optimal inputs are ∆kûp(t, k),∆kûp(t + 1, k), . . . ,
∆kûp(t + pn − 1, k), and the corresponding performance
index is Φpn(t, k). If the prediction horizon is increased
to pn + 1, it is easy to see ∆kûp(t, k),∆kûp(t + 1, k), . . . ,
∆kûp(t+pn−1, k), 0 is a group of feasible inputs. Assume
the corresponding performance index for this group of
inputs is Φ̄pn+1(t, k). Furthermore, by the optimization
in (13), it is possible that there exists another group of
feasible inputs which can make the performance index
smaller. Thus,

Φpn+1(t, k) ≤ Φ̄pn+1(t, k) = Φpn
(t, k).

�

Theorem 6 implies that larger prediction horizon induces
better performance. The extreme case is to take pn = tn,
which is the largest prediction horizon can be chosen. Next,
with only constraints in (6) and (7) included in (13), we
can prove the optimal solutions can be obtained.

Theorem 7. (Optimality): Taking pn = tn, the inputs
induced by (13) are the optimal solutions with (6) and (7)
imposed.
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Proof. By taking pn = tn, the objective function in (13) is
the same as the performance index Φ. The optimal inputs,
with the corresponding states and prediction errors are a
group of feasible solutions to (13). Since (13) is convex, it
is sure that optimality can be obtained.�

Remark 3: When the reference is admissible, the optimal
solution u(0, k), . . . , u(tn, k) can make Φtn = 0. As Φ ≥ 0,
u(0, k), . . . , u(tn, k) is the optimal solution to the problem
(13). Thus, perfect tracking is obtained.

Remark 4: In general, for the sake of robustness against
exogenous disturbances and model uncertainty, the objec-
tive function used in a MPC is of the form

min
∆kxp(t+1

t+pn
,k),∆kup(t

t+pn−1
,k),ep(t+1,k

t+pn
,k)
e(t+1

t+pn
, k)TRe(t+1

t+pn
, k)

+ ∆ku(tt+pn−1, k)TQ∆ku(tt+pn−1, k) (18)

instead of that in (13).

Remark 5: When constraints in (8) and (9) are included
in (13), or objective function (18) is adopted, conclusions
in Section 3 still hold except for Theorem 7. However,
Theorem 7 holds when k → ∞. That means neither
(8,9) nor (18) affects optimality of the method. They only
determine the rate the method converges to the optimal
solution along the batch direction. Due to limitation of
space, the proof is omitted.

According to Theorem 7, by taking pn = tn, the optimal
solution can be obtained. However, due to the significant
computation burden, this is usually not realistic. Theorem
6 shows that there is a tradeoff between the length of
prediction horizon and optimality. The larger prediction
horizon is, the better the performance is. Thus, prediction
horizon is regarded as a tuning parameter. One can use
it to balance computation burdens and optimality of the
performance.

4. SIMULATIONS

• Case 1: stable system

In this part, control of injection velocity in injection
molding process is taken as an example to test the method
proposed. Injection velocity in the filling phase is a key
variable for product quality. Thereby, it is very important
to make it follow a pre-designed optimal profile tightly.
According to Wang et al. (2008), the dynamic model of
injection velocity versus valve opening in state space is as

x(t+ 1, k) =

[
1.582 −0.5916

1 0

]
x(t, k) +

[
1
0

]
u(t, k) + d(t)

y(t, k) = [ 1.69 1.419 ]x(t, k), t ∈ [1, 50]. (19)

d(t) is taken as

[
0.01sin(6t)
0.01sin(5t)

]
. It is repetitive for each

batch. The eigenvalues of A are 0.9756 and 0.6064. The
system is stable. Fig 1 shows the reference. The constraints
are

−2 ≤ u(t, k) ≤ 2 (20)

−0.3 ≤ ∆ku(t, k) ≤ 0.3 (21)

−10 ≤ xi(t, k) ≤ 10 i = 1, 2 (22)

For the first batch, firstly the dynamic model is integrated
as

 x(t+ 1, k)
t∑

i=1

e(i, k)

 =

[
A 0
−C I

] x(t, k)
t−1∑
i=1

e(i, k)

+

[
B
0

]
u(t, k)

+

[
d(t)
yr(t)

]
.

Based on this model, the method shown in Hu et al. (2002)
can be applied to induce a feedback control law as

K = [−0.8088 0.2016 0.0506].

A performance index E2 is defined as

E2(k) =

√√√√(

tn∑
t=1

e2(t, k)).

Fig. 2 shows the outputs of the method. It is easy to see
that the outputs gradually converge to the reference. This
can also be seen from Fig. 3. After 10 batches, the tracking
error for each batch converges to 0. Furthermore, from Fig.
4 and Fig. 5, we can see neither inputs nor states violate
constraints.

In order to show the length of prediction horizon impacts
optimality, simulation is conducted for prediction horizon
taken as 2, 3, 5, 10, 25. E2 for each case is shown in Fig.
6. We can see when pn = 2, constraints are too tight and
feasible region is too small. There is no batch-wise learning.
Thus, tracking errors are kept to be the same. With the
increase of prediction horizon, the errors converge to 0 at
a faster speed. When pn ≥ 5, the performance keeps to
be the same and no longer gets better. This also shows,
to choose a proper prediction horizon, not necessarily
extremely large, the performance can be close to the
optimal one.

• Case 2: an unstable system

In order to show the method is applicable to unstable
systems, we assume system in (19) is disturbed and the
dynamic model becomes

x(t+ 1, k) =

[
1.682 −0.5916

1 0

]
x(t, k) +

[
1
0

]
u(t, k) + d(t)

y(t, k) = [ 1.69 1.419 ]x(t, k), t ∈ [1, 50].

Now the eigenvalues of A are 1.1811 and 0.5009. The
system is unstable. The feedback control law for the first
batch is taken as

K = [−0.8168 0.2182 0.041].

Prediction horizon is taken as pn = 10. Constraints are
the same as (20), (21) and (22). Fig. 7 and Fig. 8 show the
tracking performance. From these figures, we can conclude
that although the system is unstable, the method can still
stabilize the system and make the tracking errors converge
to 0 finally.

5. CONCLUSION

In this work, a two-dimensional model predictive control
strategy with zero terminal state constraints is proposed.
Feasibility, stability and optimality of the method are
analyzed. Simulation results show that the method is
applicable to both stable and unstable systems. In future,
the method will be improved and extended to batch
systems with non-repetitive disturbances.
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Fig. 2. Case 1: outputs for batch 1,2,5,9,10 and 15.

0 5 10 15
0

1

2

3

4

5

batch

E
2

Fig. 3. Case 1: the performance index E2
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Fig. 4. Case 1: inputs for batch 1,2,5,9,10 and 15
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Fig. 5. Case 1: states for batch 1,2,5,9,10 and 15
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Fig. 6. Case 1: E2 for prediction horizon taken as 2, 3, 5,
10, 25
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Fig. 7. Case 2: outputs for batch 1,2,5,9,10 and 15.
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