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Abstract:   Model reduction and tuning rules given in the SIMC (Simple Internal Model Control) method 

are very effective in tuning PI controllers. For some processes with large lead elements, control 

performances by the SIMC method are somewhat oscillatory or sluggish. To mitigate such drawbacks, 

additional tuning rules based on the second order plus time delay model with lead term are proposed. 

Improvements for certain types of models are critical. For such processes, besides the SIMC tuning rule, 

no PI controller tuning rules that are analytic and given in terms of process parameters are not available. 

Since the proposed tuning rules are very simple, they can be used in the field, effectively complementing 

the SIMC method. 
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1. INTRODUCTION 

There are many analytic tuning rules for PI and PID 

controllers (Seborg et al., 2010; Astrom and Hagglund, 1995; 

O’Dwyer, 2009). The internal model control (IMC) method 

(Rivera et al., 1986) provides simple algebraic tuning rules. 

Applying the IMC method to a first order plus time delay 

(FOPTD) model with a Pade approximation of the time delay 

term, PI controllers can be obtained analytically. The simple 

IMC (SIMC) method (Skogestad, 2003) modifies the IMC-PI 

tuning rules slightly and utilizes model reduction rules to 

obtain FOPTD models from higher order models. The SIMC 

method is popular due to its simplicity and excellent 

performance for a wide range of processes (Grimholt and 

Skogestad, 2012) with a few exceptions. Some SIMC model 

reduction rules were modified by Lee et al. (2014) for more 

consistent performances. 

The SIMC tuning rules are based on the FOPTD model. The 

model reduction to FOPTD model can be very poor for 

processes with large lead elements due to their structural 

limitations, which appear often in process models 

(Ogunnaike and Ray, 1979; Luyben, 1986). For such 

processes, PI controllers designed by the SIMC method can 

yield somewhat oscillatory or sluggish responses. For PI 

controllers, besides the SIMC tuning rule, no PI controller 

tuning rules that are analytic and given in terms of process 

parameters are not available (O'Dwyer, 2009). Numerical 

methods that use the time-domain and frequency-domain 

optimization can be used to tune PI controllers. However, 

they can suffer from convergence and local optimization 

problems. To mitigate drawbacks of the SIMC method for 

processes with large lead elements, tuning rules based on 

second order plus time delay models with lead terms are 

proposed. Analytic tuning rules are obtained by applying the 

stability margin characteristics of the SIMC tuning rules. The 

procedure applying the SIMC model reduction rules is 

slightly modified for better approximate models and 

consistent control performance. 

The proposed method designs the proportional and integral 

gains of PI controller separately. It is very similar to the 

sequential tuning method (Lee et al, 1998). The process 

information needed are frequency responses at two 

frequencies whose phase angles are -90
o
 and -180

o
, 

respectively. They can be obtained from the process model or 

from two relay feedback tests. Hence the method can be 

applied for on-line autotuning (Lee et al., 2007). 

2. MOTIVATION 

Consider a first order plus time delay (FOPTD) process 
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For this process, one of the simplest tuning rules for PI 

controllers, skksC IC /)(  , is  

)/(1),/(  IC kkkk    (2)  

which can be derived through the direct synthesis method 

(Seborg et al., 2010), the internal model control (IMC) 

method (Rivera et al., 1986) and the SIMC method 

(Skogestad, 2003) . 

For real processes, the process transfer functions are first 

approximated by FOPTD models; 
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The SIMC method also provides simple model reduction 

rules to obtain approximate FOPTD models. However, for 

some processes with large lead terms that can appear in 
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process models (Ogunnaike and Ray column (Ogunnaike and 

Ray, 1979), Tyreus Stabilizer (Luyben, 1986)), reduced order 

models can be very poor due to its structural limitation and 

the above advantages of SIMC method are not guaranteed. 

For example, consider the 1x1 element of the Tyreus 

Stabilizer process; 
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The SIMC method uses the approximation 
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Then the PI controller is designed as kC=6/2.5/(2.1+2.1) and 

I=6 (==2.1). Figure 1(a) shows step set point responses 

when the PI controller is applied to the process of Eq. (4) and 

the FOPTD model of Eq. (5). For the FOPTD model of Eq. 

(5), the PI controller is satisfactory and the closed-loop 

response is very similar to the desired closed-loop response 

of Gcl(s)=exp(-2.1s)/(2.1s+1). However, the closed-loop 

response for the process of Eq. (4) is rather sluggish and 

much different from the desired closed-loop response. 

Secondly, consider the process 
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The SIMC method reduces G(s) to the FOPTD model of 
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Then the PI controller is obtained as kC=3.05/(1.05+1.05) and 

I=3.05 (==1.05). Figure 1(b) shows step set point 

responses when the PI controller is applied to the process of 

Eq. (6) and the FOPTD model of Eq. (7). 

 

 

Fig. 1. Step set point responses of PI control systems. 

 

Fig. 2. Stability region for G(s)=exp(-s)/(s+1). 

For the FOPTD model of Eq. (7), the PI controller is 

satisfactory and the closed-loop response is very similar to 

the desired closed-loop response. However, the closed-loop 

response for the process of Eq. (6) is rather oscillatory and is 

much different from the first order response. The tuning 

parameter should be increased for responses that are less 

oscillatory. In this process, the effective time constant 

estimated is too large. 

3. STABILITY MARGIN INTERPRETATION OF THE 

SIMC PI CONTROLLER TUNING RULE 

With approximating the time delay term in FOPTD process 

of Eq. (1) by the 1/0 Pade method, the characteristic equation 

is 
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The stable region for which Eq. (8) has roots with negative 

real parts is shown in Fig. 2. The maximum stable kC for kI=0 

is 

 /Ckk      (9) 

and the maximum stable kI for kC=0 is 

 /1Ikk      (10) 

The SIMC method can be interpreted as  /CC kk and 

 /II kk , with =/+1. The design parameter  can be 

considered as a gain margin, representing the speed of the 

control system. When the 1/1 Pade approximation for the 

time delay term is used, the stable region is enlarged (Fig. 2) 

and the margin parameter  should be increased for control 

responses similar to those of SIMC method.  

4. PROPOSED METHOD 

For a general process G(s), we tune the PI controller as 

0 1 2 
0 

1 

2 

3 

kI 

kC 

Unstable 

SIMC Tuning 

Exact kC 

Exact kI 

1/0 Pade 

approximation 
of the time delay 

1/1 Pade 
approximation 

of the time delay 

0 4 8 12 16 20 
0 

0.5 

1 

1.5 

0 4 8 12 16 20 
0 

0.5 

1 

1.5 

(a) Process Eq. (4) 

Process: Eq. (4) 

FOPTD: Eq. (5) 

Reference 

Process: Eq. (6) 

FOPTD: Eq. (7) 

Reference 

t 

t 

y 

y 

(b) Process Eq. (6) 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1188



 

 

     

 

IICC kkkk






1

,
1

    (11) 

where Ck  and Ik are the maximum stable controller gains of 

G(s) and G(s)/s, respectively.  

For some processes, kI can be very large. In SIMC tuning, 

1/kkI=+(Eq. (4)). Based on this, we limit kI as 

effIkk  /1      (12) 

Similarly, kC can be very large and should be limited as the 

SIMC method limits the controller integral time for lag 

dominant processes. The controller zero is kC/kI and its large 

value can cause sluggish load responses. We limit this to be 

less than 5 times the effective closed loop time constant of 

1/kkI=+. That is, kC/kI<5(+)=5/(kkI). Equivalently,  

5Ckk       (13) 

Equation (11) determines the controller proportional and 

integral gains independently. Instead of the independent 

design, they can be designed sequentially (Lee et al., 1998). 

First design kI based on Eq. (11) and then design kC by 

obtaining the maximum stable gain from the characteristic 

equation, 

  0)(/1  sGskk IC     (14) 

for a given kI. For the FOPTD process, this sequential design 

method provides the same results as the SIMC method when 

the 1/0 Pade approximation of time delay is used. As shown 

in Fig. 2, this sequential design procedure will guarantee the 

given stability margins. 

[Relay Feedback Autotuning] 

The proposed tuning method requires two pieces of process 

information of the maximum stable controller gains of G(s) 

and G(s)/s, equivalently frequency responses at two 

frequencies whose process phase angles are -90
o
 and -180

o
. 

They can be obtained from two relay feedback tests (Lee et 

al., 2007), one for the process itself and one for the process 

with integral action. The proposed method can be applied for 

on-line autotuning. 

5. ANALYTIC TUNING RULES: STABILITY MARGIN 

(SM) METHOD 

Analytic tuning rules can be obtained for low order 

processes. Consider a second order process with large lead 

term, 
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The characteristic equation is, with the 1/0 Pade 

approximation for the time delay term,  
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Equivalently, 

0)1)(1)(()1)(1( 21  sskskksss IC   (17) 

There are several analytic methods to find the largest stable 

gains of kC and kI such as the Routh method and the direct 

substitution method (Seborg et al., 2010; Lee et al., 2005). 

The maximum stable gain for kI with kC=0 is (Lee et al., 

2005) 
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Applying the Routh stability theorem (Seborg et al., 2010), 

we have the maximum stable gain for kC with kI=0 as 
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The proposed tuning rules of Eqs. (18) and (19) may fail to 

provide proper controller parameters for some extreme cases 

of very small , 2, and . 

[Small 2 Case] 

Consider a first order process with large lead term (2=0 in 

Eq. (15)), 
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The characteristic equation for the controller integral gain kI 

is, with the 1/0 Pade approximation for the time delay term, 

0)1)(1()1( 1  sskkss I . Applying the Routh 

stability theorem, we can obtain the maximum stable gain for 

kI with kC=0 as 
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The 1/0 Pade approximation for the time delay term cannot 

be used for kC because there is no stable kC. So we use the 1/1 

Pade approximation and the characteristic equation for the 

controller proportional gain kC is  
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The maximum stable gain for kC with kI=0 is 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1189



 

 

     

 





















otherwise

k C

,
2

2

4
,

1

1

11














   (23) 

Since there are different Pade approximations for the time 

delay terms, we use different gain margins for . Here we use 



I
I

C
C

k
k

k
k  ,

2
    (24) 

This rule is used for )/( 11  .When >1, the 

controller proportional term shows bad performance and we 

set kC=0. When )/( 11  , we apply the SIMC model 

reduction rules. 

When 2 is small in the above proposed tuning rules, kC of Eq. 

(19) becomes too small and results in sluggish responses. To 

avoid this, the half-rule for the SIMC method is first applied 

as 
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2
. Then the tuning rule of Eq. (24) is 

applied. The 2 condition is such that tuning rules of Eqs. (19) 

and (24) provide the same kC. 

[Small  Case] 

Consider a SOPTD process (=0 in Eq. (17)),  
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With 0/1 Pade approximation of the time delay term, the 

characteristic equation is 
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Routh stability theorem, we have 
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Because the controller zero is )2/(/ 21 IC kk , we limit 

this to be equal to 2/21  (τ1 is the dominant time 

constant) 
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21 , this tuning rule is used for the process 

of Eq. (15) with the SIMC model reduction as 
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[Small  Case] 

 
Fig. 3. Open-loop step responses for G(s)=1/(s+1)

5
 and its 

reduced order models. 

When SIMC model reduction yields an integrating process, 

the SIMC method is used. This case can occur for lag 

dominant processes with very small . 

[Modification of the Half -Rule] 

The above tuning rule can be applied to reduced order models 

for higher order processes. For this, the SIMC model 

reduction rules and those in Lee et al. (2014) can be used. 

Here, the half-rule of SIMC is slightly modified. We apply 

the half-rule sequentially from the smallest time constant. For 

example, for the 5
th

 order process, the original half-rule is 
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On the other hand, applying the half-order rule sequentially, 

we obtain 

)12)(15.1(

)5.1exp(

)1()15.1(

)exp(

)15.1()1(

)5.0exp(

)1(

1
)(

2

35



















ss

s

ss

s

ss

s

s
sG

  (31) 

The approximate FOPTD model becomes 

175.2

)25.2exp(

)12)(15.1(

)5.1exp(
)(











s

s

ss

s
sG   (32) 

Figure 3 shows the step responses of models for 

G(s)=1/(s+1)
5
. Integral of absolute errors (IAE) values are 

0.7023, 0.4934 and 0.2499 for models of the half-rule (Eq. 

(34)), the modified half-rule (Eq. (36)) and the second order 

one (Eq. (35)), respectively. The IAE of the modified half-

rule is 0.7 times the half rule value. We can see that the half 

rule of SIMC method provides a somewhat large time delay 

and can result in sluggish tuning.  
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6. SIMPLIFIED SM (SM
S
) METHOD 

   Oscillatory responses occur when  
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The proposed SM method is effective in this case. However, 

the tuning rule of Eq. (18) for kI is quite complicated. To 

avoid this, kI can be replaced by the SIMC method while kC is 

computed by Eq. (19). With slight degradation of 

performances, this simplified method can avoid complicated 

equations for kI. Tables 1 and 2 summarize the proposed SM 

and SM
S
 methods. 

7. EXAMPLES 

Example 1: Consider the process with inverse response 

3
)12.0)(15(

)15.0)(12(
)(






ss

ss
sG     (35) 

The SIMC method uses the reduced order model  
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The proposed method performs the model reduction as 
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Figure 4 shows closed-loop responses. The SIMC method 

shows oscillatory closed-loop responses. Such troublesome 

responses are removed in the proposed SM and SM
S
 

methods. 

 

 
Fig. 4. Closed-loop responses for the Example 1 process. 

Example 2: Consider the process 
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Assuming that the effective dead time is less than 0.1, the 

SIMC method develops the reduced order model  
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If one assumes that the effective dead time is greater than 0.2, 

the SIMC method uses the reduced order model  
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   The proposed SM method uses 
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The SM
S
 method obtains by applying the SIMC model 

reduction rules to Eq. (41), 
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Figure 5 shows closed-loop responses. The SIMC method 

based on Eq. (39) provides PI control parameters showing 

responses with large overshoot and poor robustness (the peak 

amplitude ratio of sensitivity function (Ms) is 3.2). The 

SIMC method based on Eq. (40) shows slower closed-loop 

responses. The proposed SM method increases the control 

speed and the proposed SM
S
 method shows closed-loop 

responses similar to the slow SIMC method. 

 
Fig. 5. Closed-loop responses for the Example 2 process. 

Example 3 (Tyreus Stabilizer): Consider the 1x1 element of 

Tyreus Stabilizer process of Eq. (4). The SIMC method 
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reduces the process to FOPTD model as in Eq. (5). The LCE 

method (Lee et al., 2014) uses 
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The proposed methods use the following reduced models; for 

the SM method, 

)16)(14(

)1.2exp()110(

)14(

)1.0exp()110(
)(

3 









ss

ss

s

ss
sG  (44) 

and, for the SM
S
 method,  
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Figure 6 shows closed-loop responses. The SIMC and LCE 

methods show slower closed-loop responses and their control 

speed is increased by the proposed SM and SM
S
 methods. 

 
Fig. 6. Closed-loop responses for the Example 3 process. 

 

8. CONCLUSIONS 

PI controller design method based on the stability margin 

property of SIMC method is proposed. The proportional and 

integral gains are obtained from the ultimate gains of the 

process G(s) and G(s)/s, respectively. Because such ultimate 

gains can be obtained by the relay feedback oscillations, the 

method can be applied to auto-tune PI controllers with relay 

feedback experiments. Applying the method to second order 

plus time delay models, 
)1)(1(

)exp()1(
)(

21 




ss

ssk
sG




, analytic 

tuning rules have been obtained. To obtain the SOPTD 

model, the half-rule of SIMC method is applied sequentially. 

This slight modification of the half-rule shows better 

approximations for some processes. Compared to the FOPTD 

model, our SOPTD model can provide better approximations, 

resulting PI controllers with consistent closed-loop 

performances. The proposed method can remove some flaws 

in the SIMC method, enhancing its usefulness. 
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