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Abstract: The water supply network has a complex structure especially in cities with high
population density. A damage to the water pipe can occur in the form of a leakage or a burst
and the technique for early detection of the occurrence and for the exact determination of the
location is required. In this paper, we propose a novel method that can detect the leakage of the
water supply network using the pressure data. After the noise is eliminated using the Kalman
Filter, the mean of normal state pressure is calculated and deviation with the mean is obtained.
By calculating the cumulative integral of the pretreated data and applying a floor function,
the leakage can be detected. Once the leakage is detected, the time of occurrence is refined by
radius of curvature and the location is estimated by using that time and a statistical method.
The verification test is conducted with respect to the two different field data. It is found that
the prorposed method is more robust and practical to implement and shows a higher precision
compared to the previous methods.

Keywords: Fault detection, Fault location, Statistical analysis, Kalman filters, Cumulative
Integrals, Pipe networks,

1. INTRODUCTION

Water supply network facilities are increased and become
complex as people gather in a big city. Once pipelines
are installed underground, the fault detection becomes
very difficult owing to the inaccessibility and complex
structure. Therefore if a fault such as the rupture, leakage,
and burst occurs, solutions are usually made for the post
management. As the time for fault diagnosis and trouble
shooting is delayed, direct and indirect losses including the
water loss, pipeline network repair cost and damage to the
surrounding facilities increase exponentially. Therefore, it
is necessary to develop a proactive pipeline network man-
agement system to prevent the accidents and minimize the
losses.
Methods for monitoring the leakage or the rupture of the
water distribution network is classified into two methods;
model-based method(Wu et al. (2010); Perez et al. (2014))
and measurement-based method(Covas and Ramos (2010);
Mulholland et al. (2014)). The measurement-based method
is further classified into two types; the volume balance
method and the pressure point analysis method.
Jung and Lansey (2014) propose a method of detecting the
burst based on model, using flow data and Kalman Filter.
After calculating the flow rate requirements using Kalman
filter, the prediction to estimate the flow rate at the point
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of flow meter is made by hydraulic model. The decision on
burst occurrence is made based on the difference between
the estimated flow rate and the real measurements.
It is shown that the burst could be detected by fuzzy
analysis using the residual value of flow measurement
by Ragot and Maquin (2006). They calculate the error
between residual value of the predicted flow rate and
actual residual value. After that, the highest potential
leak points are determined using a fuzzy-based isolation
method. Including these two studies, some algorithms use
a flow rate.
However, it is easier to install and manage the pressure
gauge than the flow meters in the real water distribution
network and the number of flow meter is much smaller
than that of pressure gauges. The leak detection algo-
rithms based on the pressure measurement have been
suggested from these reasons (Ponce et al. (2014)).
Misiunas (2005) proposes the algorithm based on the
cumulative summation(CUSUM). Using this, the abrupt
changes in pressure can be expressed as peaks. If those
peaks exceed a threshold value, it is concluded that the
burst event occurs. Srirangarajan et al. (2013) use the pres-
sure measurement and multiscale wavelet analysis(MWA)
to detect the burst. The pressure data is decomposed into
approximation and detail coefficients up to level 4. First,
the time when the coefficients at level 3 and level 4 are
large are recorded. If the coefficient magnitudes at higher
level are larger than those at lower level around that time,
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the algorithm indicates that the burst occurs.
However, these two algorithms can only detect large and
abrupt pressure change and cannot detect sustained pres-
sure reduction. If the small scale leakage occurs, these
two algorithms cannot detect the event. Because there
are unknown disturbances such as water demand in real
water network, it is not enough to find the abrupt pressure
change.
To overcome these problems, this study suggests a new
robust algorithm. It uses only the pressure data without
flow rate data and detects a small scale leakage. First,
the measured pressure is filtered by Kalman Fliter and
the cumulative integral is applied to amplify the effect of
leak. Second, a floor function and a curvature function
are introduced based on the characteristics in the pres-
sure data when the leakage occurs. Finally the statistical
method is applied to estimate the leakage location with a
specific mathematical confidence. This proposed algorithm
was validated by false alarm and leakage detection tests.

2. PROPOSED ALGORITHM

2.1 Basic Assumption

In this paper, only the pressure data is used. Although
there are flow meters in water distribution network, the
number of the flow meters is very small compared to
that of the pressure gauge. Because the flow meter is
relatively difficult to install, maintain, and repair(Ponce
et al. (2014)).

2.2 Data Generation

Because only the burst case data of real water distribution
network can be obtained from the field test we performed,
it is necessary to generate the leakage case data. Based on
the real burst data, the leakage data is generated.

Pleak = Kfactor × Pburst,e+ (1)

(1−Kfactor)× Pburst,e[k0] + noise

The specific process is as follows:

(1) Using the Kalman Filter (KF), separate the real burst
pressure data into the pressure estimation (Pburst,e) and
noise.

(2) Multiply a scaling factor Kfactor by Pburst,e.

(3) Correct the initial point by adding ((1 − Kfactor) ×
Pburst,e[k0]).

(4) Add the noise separated in step (1).

2.3 Data Filtering

To reduce the computational load, only the one-tenth of
generated data was used resulting in the change of the
sampling frequency from 250 Hz to 25 Hz. These data is
filtered using KF and we obtain the estimated pressure
value(Pleak,e). The period of sampling(T ) is 0.04 s. Let
P [k] be the pressure of leakage case, w[k] be the model
error, z[k] be the measurement, and v[k] be the sensor
noise at kT s. In model equation, the current pressure
is assumed equal to the pressure of previous time and

Q which is the covariance of w[k] is set small because
the pressure is sampled in a very short interval. When
observing the pressure data in the normal state, noise due
to the pressure sensor is shown about ± 5 kPa. Based on
this, R which is the covariance of v[k] is set 3. C0 is the
error covariance of the predicted initial value and is set to
be same as that of R, because initial pressure measurement
is assigned as the initial value.

P [k + 1] = P [k] + w[k] (2)

z[k] = P [k] + v[k]

Q = 0.001

R = 3

C0 = 3

2.4 Data Shifting

Because the range of the measured pressure is different for
each sensor, it is required to correct the average pressure
value to near zero in normal state before the leakage
occurs. For this purpose, the average value is subtracted
from the measured pressure.

Pm =

j∑
i=1

Pleak,e[i]

Pshift[k] = Pleak,e[k]− Pm (3)

Here j is obtained by calculating 50s
0.04s , which means the

sampling time is 0.04s and the interval for obtaining the
average value is 50s. Note that the value of 50 s can
vary but it does not cause significant change in the result
because it means a simple shifting. The data shifting and
the subsequent process are applied in a receding horizon
fashion with the time window size of W and update
interval Tu. For example, if the first window for observation
is between t0 and t0+W , then the second window will be
between t0+Tu and t0+Tu+W . It is necessary because an
aperiodic fluctuation exists in data of the day caused by
water usage. The size of W and Tu can be chosen randomly
by users because they don’t have effect on the performance
of the proposed algorithm unless the size of W is too large.

2.5 Cumulative Integral

The major difference between the burst and leakage is
the degree of pressure change. The change in leakage is
much smaller than that in burst(Rashid et al. (2014)).
In other words, it is not easy to separate the pressure
changes caused by leakage from by others in the presence
of disturbances such as water consumption. To overcome
this obstacle, we focus on the tendency to maintain the
reduced pressure value after the leakage occurrence. By
using cumulative integral, it is possible to make that ten-
dency visible.

PCI [k] =

k∑
i=1

Pshift[i]∆(iT )
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2.6 Floor Function

Although we modify the measured pressure data with
various methods, the method which can identify the re-
duced pressure value which is maintained is needed. Most
researches apply the methods to determine the time of the
instantaneous pressure drop, which can cause false alarms
if the amount of the leakage is small in the noisy situation.
The floor function with following method can filter out the
small pressure drop by the disturbances and can identify
the decreasing tendency of PCI caused by leakage.

Pfloor(k) =

[
PCI(k)

Pm

10

]
(4)

φ ≡ the threshold value of the time where the floor
function is constant.

N ≡ the threshold number of the consecutive decrease in
the floor function.

By observing Pfloor with φ and N which is selected by
normal pressure data, leakage is detected and an alarm is
generated if the continuous decreasing tendency of Pfloor

occurs C times with the time interval ψi (i = 1, 2, · · · , C)
such that C ≥ N and ψ ≤ φ for all i. And the first time of
Pfloor decrease(tdrop) is recorded. Three parameters are

closely related: the denominator (Pm

10 ), φ, and N . The
denominator affects the frequency of the segment and it is
determined by the size of leakage or burst that user want
to detect. In this study, we set the denominator as a form
of Pm

10 to make the PCI over the 10% of Pm to be recorded.
After setting the denominator, φ and N is determined
by using the normal pressure data. The maximum time
duration and the maximum number of continuous decrease
in Pfloor are respectively M ′ and N ′ in normal pressure
data. Then user can set M which is lager than M ′ by
considering margin and M means φ × N . User also set N
which is larger than N ′. By M and N , φ is determined
automatically.

2.7 Curvature Function

Although tdrop is recorded, the arrival time of the leakage
effect to sensor can be refined by finding the cusp in PCI

near the tdrop. For this, we introduce a curvature function,
κ(k), which can present the smoothness of the graph. It is
possible to find sudden cusp points based on the curvature.
Unlike MWA method, the curvature function has no loss
of time information resulting in the improvement in the
accuracy of the estimation results.

κ(k) =
1

R(k)
(5)

Here, R(k) is the radius of the circle which is constructed
by adjacent three points of PCI . Applying the curvature
function to PCI , the cusp can be detected by finding the
maximum of the curvature near the tdrop, which is used as
wave arrival time to sensor.

2.8 Location Estimation

Previous studies estimate the burst location using the
estimated wave speed and the result is presented as a point

with distance error. However, it is unrealistic to investigate
the specific point obtained from the leak detection algo-
rithm even if the error is very small. When the leak is
observed, the section of the water pipeline rather than the
point is investigated. Considering these, a new method for
the location estimation is proposed.

Time of Occurrence The leakage in the water distribu-
tion system can be expressed by two variables : occurrence
time(tocc) and the location of leakage(Lleak). Instead of
calculating the wave speed, if we assume the wave speed
due to the leakage has a constant value, the degree of
freedom can be reduced to one and we only need to find
one of tocc and Lleak.

Confidence Bound Estimation Based on the detection
time in each sensor, confidence bound is estimated.

a. Node Generation

The GIS data for the water distribution network is used.
The distances between the adjacent nodes, Di, are divided
into [Di

10 ] + 1 segments with an equal length if Di is larger
than 10 m for precision of location estimation.

b. Selection of Basis Sensors

Let n be the number of the sensors (n ≥ 4). Two sensors
are needed to calculate the time of occurrence(tocc,s) at
node s where it is assumed that the leakage occurs. Thus,

nC2 is the possible number of bases. The time of occur-
rence at the selected node is calculated as follows.

dis : djs = (ti,basis − tocc,s) : (tj,basis − tocc,s), (i < j) (6)

Here, dis and djs are the distances from the basis sensors
(the ith and jth sensor) to the selected node, respectively.
ti,basis and tj,basis are the recorded time at each basis sen-
sors. There is no verification points with two basis sensors
for n = 2 and the confidence of interval is low for n = 3.
Therefore, for 2 ≤ n ≤ 3 we used the method proposed
by Srirangarajan et al. (2013) which estimated the burst
location by searching for the node s that minimize (7).
There is no solution for n = 1.

J(s) =

n∑
i,j=1

|(ti,obs − tj,obs)− (τi − τj)|, (i > j) (7)

Here, ti,obs means the recorded arrival time of each sensor
and τi is the calculated arrival time of wave to each sensor
by using estimated wave speed.

c. Verification of the Measured Time

From the calculated tocc,s based on two basis sensors, it
is possible to obtain the estimated times which the shock
wave arrives at each other sensors.

dis : dls = (ti,basis − tocc,s) : (t′l − tocc,s), (l 6= i, j) (8)

Since ti,basis and tj,basis are related via (6), dis and ti,basis
can be replaced by djs and tj,basis. After calculating the
t′l for (n− 2) sensors, we can set the objective function, J ,
as the sum of the squared errors of estimated arrival time.
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J(s) =

n∑
l=1

(t′l − tl,obs)2, (l 6= i, j) (9)

Here, tl,obs means the recorded arrival time of each sensor.
By finding the node s which has minimum of J(s), we can
obtain at least one point for each sensor combinations.
This means that the result is shown as more than nC2

points in the water distribution system.

d. Statistical Estimation

If the leakage location is estimated by a point, the pipeline
in all direction should be investigated. However, if the
location is estimated by the interval of pipeline, then only
that interval is needed to be observed. Hence, we need
to estimate the specific interval where the leakage occurs.
Considering the condition of the equipment, we can set the
length of the excavation, Lexc.

Lexc = kexc × Lelement, (kexc ≥ 1) (10)

Because there is a possibility to replace the buried pipeline
element, k should be equal to or greater than 1. After
setting Lexc, we can find an interval, U , which contains the
most estimated points we obtained before and the length
of U is Lexc.
For si(i = 1, 2, · · · , I) which are included in U , it is
possible to define the mean (mU ) and the variance (σ2

U ) by
introducing the origin point of the interval U . The origin
point is selected as the end of the selected interval, U .

d′i ≡ the distance between Si and the origin point

mU = E(d′i)

σ2
U = V (d′i) (11)

Now, we can finally have the estimated interval where the
leakage occurs with the following confidence.

Ufinal = [mU − Z ×
σ′U√
I − 1

,mU + Z × σ′U√
I − 1

] (12)

Here, Z is the confidence coefficient from the normal
distribution. For example, if we estimate the leakage point
with a 95% confidence, Z=1.96.

3. RESULTS AND DISCUSSION

To verify efficacy of the prorposed algorithm, two field
tests were conducted in different water distribution net-
works of two cities in South Korea, Yeongwol and Yangsan.
For the comparison, CUSUM test(Misiunas (2005)) and
MWT(Srirangarajan et al. (2013)), were applied to the
same data.

Case I. Yeongwol The distribution network in Yeong-
wol has six sensors and the total length of pipelines is
7266.4356 m with 861 number of nodes.
For the case I, the parameters for false alarm test and
leakage detection test are φ=20 s and N=10 which is
selected based on 1 h normal state data. The CUSUM test
was used with parameter values, λ = 0.7, ν = 0.01kPa,
and h = 8kPa. The wave speed for the location algorithm
of MWA is 1200 m/s.

[False Alarm Test]

This test uses another 1 h normal state pressure data with
the moving window size of 400 s and the update period of
200 s.

In Table 1, CUSUM test shows the number of false alarms.
Because CUSUM test needs a threshold value, h, it is not
suitable to the networks with unknown disturbances such
as water usage. Figure 1 shows the first 3 window CUSUM
results with Tu=200 s and W = 400 s for the sensor 1.

Fig. 1. CUSUM test for the normal state data in Yeongwol
(λ = 0.7, ν = 0.01kPa, h = 8kPa)

The MWA was applied and the number of the false
alarms is 53 in six sensors during 1 h, which is written
in Table 1. Because the normal state data oscillates with
the disturbances, the false alarms are detected in normal
situations. Figure 2 shows the first 3 window MWA results
with Tu=200 s and W = 400 s for the sensor 1.

Fig. 2. MWA for the normal state in Yeongwol

There is a small number of false alarms in normal state
situation when the proposed algorithm is applied because
the sudden and continuous decreasing tendency is not
frequently found in the normal state data. And the first
3 window results with Tu=200 s and W = 400 s for the
sensor 1 are shown in Figure 3

Table 1. False alarm test of 6 sensors for 1 h in
Yeongwol

CUSUM MWA Proposed Algorithm

False Alarm 47 53 9

[Leakage Detection Test]
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Fig. 3. Proposed method for the normal state in Yeongwol

This test uses the 400 s leakage data which was constructed
from the real burst data in Yeongwol by (1) with the
scaling factor of 0.1. The leakage occured in 190 s - 210 s.

CUSUM test cannot estimate the location of the leakage
because two sensors have missed alarms and other two
sensors have false alarms. The missed alarm means that
there is no alarm when leakage occurs and the false alarm
means that the alarm occurs long before the leakage
occurs.

Fig. 4. CUSUM test for the leakage in Yeongwol (λ = 0.7,
drift=0.01, h=8)

When the MWA is applied, the location of the leakage
point was obtained with the error of 110.1695 m. Although
there are many false alarms in the normal state data,
the MWA method can detect the sudden cusp point
resulting in the relatively small error in the location
estimation while the CUSUM method cannot find the
leakage location. Figure 5 shows the first window with W
= 400 s for the 6 different sensors.

Fig. 5. MWA for the leakage in Yeongwol

Using the proposed algorithm, the average point of the
leakage points and the interval around that point was
estimated. The result is shown in Figure 6. The length
between the average point and real leakage point is 54.7365
m and the leakage point is included in the estimated
interval. The summarized result for the case I leakage

Fig. 6. The estimated interval and average point for the
leakage in Yeongwol

detection test is shown in Table 2.

Table 2. Leakage detection test in Yeongwol

CUSUM MWA Proposed Algorithm

False Alarm 2 1 0
Missed Alarm 2 1 1

Error[m] N/A 110.1695 54.7365

Case II. Yangsan The pressure data from Yangsan was
used to compare the three different algorithms. Three
sensors are located in the network and the total length
of pipelines is 10167.9709 m with 1154 number of nodes.
For the case II, the parameters for false alarm test and
leakage detection test are φ=24 s and N=10. CUSUM test
was used with parameter values, λ = 0.7, ν = 0.01kPa,
and h = 10kPa. The wave speed for location algorithm in
MWA is 1200m/s.

[False Alarm Test]

Using CUSUM Test, many false alarms were detected in
the normal state.
The MWA method shows 16 false alarms in 3 sensors
during 0.5 h. It shows the largest number of the false
alarms because there exist disturbances.
The proposed algorithm has a small number of false alarms
in normal state situation as with the case I. The results
are summarized in Table 3 and the first 3 window results
with Tu=200 s and W = 400 s for the sensor 1 are shown
in Figure 7.

Table 3. False alarm test of 3 sensors for 0.5 h
in Yangsan

CUSUM MWA Proposed Algorithm

False Alarm 11 16 1

[Leakage Detection Test]
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Fig. 7. Proposed method for the normal state in Yangsan

This test uses the 400 s leakage data which is made from
real burst data in Yangsan by (1) with scaling factor 0.5.
The leakage occurs about 190 s - 210 s.
CUSUM test cannot estimate the location of the leakage
because two sensors alarm long before the leakage occurs
The location of the leakage point is obtained with the error
of 870.2474 m when the MWA is applied.
Using the proposed algorithm, the leakage point is esti-
mated. The result is shown in Figure 8. The length between
the estimated point and real leak point is 161.2870 m.
Although the interval estimation is not possible because
of the number of the sensors which is less than 4, the error
is relatively small compared to that of MWA and CUSUM
cannot find the leak point. The summarized result for the
case II leakage detection test is shown in Table 4.

Fig. 8. The estimated location for the leakage in Yangsan

Table 4. Leakage detection test in Yangsan

CUSUM MWA Proposed Algorithm

False Alarm 2 0 0
Missed Alarm 0 1 0

Error[m] N/A 870.2474 161.2870

4. CONCLUSION

This paper proposes a robust method using cumulative
integral, floor function, radius of curvature, and statistical
estimation for detecting the leakage and estimating the
location of the leakage in water distribution network. The
characteristic of the leakage is amplified by using cumu-
lative integral while the small disturbance is eliminated.
The floor function make the detection of pressure decrease
maintenance possible and the exact detection of the leak-
age occurrence time can be obtained by observing the
curvature value. Finally, the statistical estimation based
on the confidence interval makes it possible to estimate
the location of the leakage as a interval with a specific

confidence. The proposed method shows a better perfor-
mance compared with two previous methods: CUSUM test
and MWA. It makes less false alarms in normal state and
detects the leakage with high precision. It is also applicable
even if a small amount of the leakage occurs in noisy
circumstances.
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