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Abstract: In this contribution, the effects of different degrees of uncertainty description are investigated
experimentally using an exothermic chemical reaction with safety constraint on the temperature. For
that purpose, two robust trajectories are designed that respect the artificially created uncertainties of
the experiments either coarsely using a single multivariate normal distribution (1GMD) or in a more
detailed fashion using a Gaussian mixture density (GMD) consisting of 32 multivariate normal densities
(32GMD). For the optimization, the uncertainties are propagated using the unscented transformation.
Both trajectories were run 71 times in an open-loop manner. The more detailed trajectory (32GMD) leads
to a 9% higher yield without increasing the risk of constraint violation. Furthermore, many experimental
realizations of two robust closed-loop process control schemes are being compared. They differ again
only in the degree of the underlying uncertainty description. Although the frequent corrections of
the controller marginalize the advantage of a more detailed stochastic process prediction, the 4GMD-
controller still allows for 3% more educt conversion compared to the 1GMD-controller.

Keywords: Uncertain Dynamic Systems, Nonlinear Systems, Gaussian Distributions, Probabilistic
Simulation, Reactor Control, Safety-Critical, Robust control, Validation

1. INTRODUCTION

Technical processes are influenced by a variety of uncertain
input and model parameters. The variation of these values often
has a significant impact on the development a process. The
specific process behavior is especially important when safety
constraints come into play. While the exact values of the uncer-
tain parameters are not known, their probabilistic description
is often available. In most cases, normal densities are used to
reflect the uncertain parameters. In order to obtain a prediction
of the uncertainties, the normal densities have to be propagated
through the nonlinear model equations. A numerically efficient
stochastic simulation is the Unscented Transformation (UT)
presented by Julier and Uhlmann. It represents each uncertain
parameter by its mean value and two so-called sigma-points.
The statistical moments of the output are calculated by solving
the model equations for the mean vector as well as for all sigma-
points and applying an explicit formula on these solutions. It
thus corresponds to a gradient-free approximation of 2nd order
[Julier and Uhlmann (1996); Julier et al. (2000); Nørgaard et al.
(2000); van der Merwe (2004)].

The method is limited, however, in that the process variables are
only represented as normally distributed, and, thus, being sym-
metrically uncertain. In nonlinear systems, however, normally
distributed inputs will inevitably lead to distorted, asymmetri-
cal probability densities. In order to describe arbitrary process
input densities, and to better account for effects in nonlinear

⋆ A version in German language of this contribution has been presented in

”at Automatisierungstechnik 68, Issue 1, 2014, Page 14-22”.

density propagation a Gaussian mixture density (GMD) can be
used [Rossner et al. (2010)]. As here each individual density has
a lower variance, nonlinear deforming effects will be less pro-
nounced during propagation. A linear combination of normal
densities can be simulated by superposition of the Unscented
Transformations of the individual densities. This method has
been proposed before [Rossner et al. (2010)] to design robust
processes. Results, as with other methods, have been presented
so far only with simulation studies. Hence, the primary goal of
this work is to give an experimental validation.

In this contribution, the impact of different degrees of un-
certainty description, single multivariate normal density and
Gaussian mixture density, on open- and closed-loop process
control is investigated experimentally. For that purpose a fully-
automated semibatch reactor for the catalytic decomposition of
hydrogen peroxide H2O2 is set up. Defined disturbances on the
initial amount of catalyst V0 and the cooling temperature TM are
introduced to the individual process runs. Over all process runs
these disturbance samples are normally distributed. Moreover,
an upper safety-constraint on the reactor temperature is intro-
duced. This limits the production rate of the exothermic process
and the process result, thus, highly depends on the prediction of
the probability density along that constraint. If an overestima-
tion of its variance can be avoided, the production capabilities
can be better exploited and more yield can be expected.

In the first part of this contribution, the fully-automated chemi-
cal reactor is presented and the underlying mathematical model
is introduced. Subsequently, the experimental results of both ro-
bust open-loop process designs (TP), 1GMD-TP and 32GMD-
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Fig. 1. P&I-Diagram of the automated reaction system. 01: Re-
actor temperature. 02: Thermostat temperature. 03: Cool-
ing temperature, supply. 04: Cooling temperature, return.
05: Feed Temperature. 06: O2 volume flow. 07: Weight
of buffer tank, H2O2. 08: Voltage for dosing pump, Feed.
09: Magnetic valve to storage tank of educt. 10: Weight
of buffer tank, catalyst. 11: Voltage for dosing pump,
catalyst. 12: Magnetic valve to storage tank of catalyst.
13: Motor voltage for stirrer. 14: Magnetic valve to dump
vessel.

TP, are shown. The more detailed prediction of process un-
certainties using 32 normal densities leads to a 9% higher
productivity compared to the 1GMD design. Hereafter, online-
optimization is introduced, and, thus, the results of the closed-
loop process designs are presented. Due to the frequent cor-
rections of the controller uncertainties have less impact on the
process result. However, the control design based on the more
detailed uncertainty description still leads to a 3% higher yield
compared to the one based on a single normal distribution. The
contribution finally ends with a brief discussion of the obtained
results.

2. EXPERIMENTAL SETUP

In order to run a large number of specifically disturbed pro-
cesses with a high repeatability a fully-automated reactor sys-
tem has been set up. This allows for running the semibatch reac-
tion all around the clock, and, thus, enables the realization of all
process runs in a timely manner. For each disturbance sample,
the different control designs are run in an alternating fashion
to ensure that remaining non-modeled disturbances affect both
designs similarly.
Fig.1 shows the experimental setup with all sensors and ac-

tuators using a piping and instrumentation (P&I) diagram. The
jacket-cooled reactor has a diameter of d = 0.1m and holds a
maximum of 2L. When a process is initiated the disturbance
samples for the initial volume of catalyst V0 and the cooling
temperature TM are read from the database. In order to ensure
an isoperibolic 1 process campaign, the cooling temperature
TM is send to the thermostat (02) and the initial volume V0 is
used as set-point for a pump-scale-controller of the catalyst.
The dosage of the catalyst is realized with a tolerance of 0.1g.
In order to reach the starting reactor temperature T (t0) = TM

1 The disturbance is constant during each process run. Over all runs these

values are normally distributed.

more quickly, the stirrer (13) is activated with the dosage of
the catalyst. Moreover, before the catalyst enters the reactor
it is pre-cooled or -heated by a heat exchanger embedded in
the reactor cooling circuit. This heat exchanger is also used
to ensure a defined feed temperature Tfeed = TM. Once the
temperature of the catalyst has reached the cooling temperature
with a tolerance of ∆T0 = 0.5K the process is initiated. Now,
the sensor signals are being written to the database using the
sample interval ∆tmeas. At the same time, the feeding profile
qf of the specific process run is read from the database and
transferred to the feed-controller (07, 08) using a zero-order-
hold scheme. The stirrer is used to homogenize the reaction
mixture, to improve the heat transfer to the cooling jacket, and
to avoid an over-saturation of dissolved oxygen for a more
direct measurement of its evolution rate (06) during the model
identification experiments (not shown). Once the end of the
process tend is reached, the reaction will be cooled down to the
exit temperature Tab and then released via the magnetic relief
valve (14). The weight controlled buffer tanks for educt H2O2

and the catalyst are automatically refilled by opening the valves
(9,12) to the tanks. Because the tanks are positioned higher
than the buffer vessels this procedure is driven by hydrostatic
pressure. A new process cycle is initiated as soon as the control
system is connected to the next prepared database.

3. PROCESS MODEL

The chemical decomposition of hydrogen peroxide (H2O2, In-
dex ’hp’) involves at least four substances. Due to the presence
of potassium iodine (PI) the educt H2O2 will be catalytically de-

composed into the products H2O(l) (Index ’w’) and O
(g)
2 (Index

’o’). Oxygen leaves the reactor as exhaust gas. The exothermic
reaction has reaction rate r and reaction enthalpy (-∆HR). It can
thus be written as:

H2O2
PI−−−→
r

H2O +
1

2
O2 + (−∆HR) . (1)

In this reaction scheme, PI is modeled as a perfect catalyst that
is not being consumed. This is a slight simplification compared
to the more complex reaction scheme of the Bray-Liebhafsky
reaction [Bray and Liebhafsky (1931); Liebhafsky and Moham-
mad (1933); Schmitz (2011)] which also involves other sub-
stances, e.g., the formulation of Iodine I2. The reaction enthalpy
in (1) is approximately (−∆HR) = 100.4 kJ/mol (Steudel et al.
(2008)). Since both educt and catalyst concentration influence
the reaction rate r, the rate has been modeled as a reaction of
second order:

r = k0 e
−EA
RT chp cPI

[
mol

Ls

]

. (2)

Here, chp and cPI are the molar concentrations of hydrogen
peroxide and potassium iodine, respectively. The constants k0 ≈
109 L/mol/s and EA ≈ 54kJ/mol (Liebhafsky and Mohammad
(1933)) represent the rate factor and the activation energy, re-
spectively, and allow for the temperature depending description
of the reaction rate according to Arrhenius. The factor k0, how-
ever, will still be treated as a free parameter in order to create
a degree of freedom for the model identification based on the
obtained data.

Mole Balance
Based on the description of the reaction rate r the amounts of
the reactants can be balanced. In a semibatch process the rate
of the amount ni, ṅi, of substance i depends on the reacting
amounts ṅR,i as well as the feeding ṅf,i:
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ṅi = ṅR,i + ṅf,i

= νi rV +
1

Mi

ρi qf,i . (3)

Each reactant i has the molar mass Mi, density ρi and is being
fed according to qf,i. Based on the stochiometry in (1) the
following stochiometric coefficients νi can be derived:

νhp =−1 νw =+1 νPI = 0 νo =+
1

2
. (4)

Out of the four considered substances only H2O2 (hp), H2O (w)
und PI are balanced as system states as they contribute to the
reaction mass. Oxygen on the other hand leaves the system
right away and is therefore not considered as system state. Its
evolution rate ṅo = 1/2rV , however, is contributing to the heat
balance later on. The reaction volume is calculated at every
time point from the amounts of hydrogen peroxide nhp and
water nw. When neglecting the temperature-dependence of the
densities ρhp and ρw as well as the potential excess volume of
the dissolved PI salt (25 g/L) the reaction volume V can be
written as:

V = Vhp + Vw =
Mhp

ρhp

nhp +
Mw

ρw
nw. (5)

The feed consists of an approximately 30% watery H2O2-
solution. By introducing the parameter χ for the uncertain
H2O2 ratio the average density ρ̄f of the feed reads:

ρ̄f = χ ρhp + (1− χ)ρw (6)

Thus, the fed amount of water and hydrogen peroxide, ṅf,i

(i = hp, w) depending on the total feed qf is

ṅf,hp =
χ

Mhp

ρ̄f qf ṅf,w =
(1− χ)

Mw
ρ̄f qf. (7)

The total mole-balance of the system states H2O2, H2O, and PI
then gives

ṅhp =− rV +
χ

Mhp

ρ̄f qf (8)

ṅw =+ rV +
(1− χ)

Mw
ρ̄f qf (9)

ṅPI =0, (10)

with reaction rate r, reaction volume V and average feed density
ρ̄f from (2), (5), and (6). Theoretically, the constant amount
of catalyst could also be modeled as a parameter. In the given
model description, however, all substances that contribute to the
reactor mass are considered as system states. Material constants
can be found in Tab. 4.

Energy balance
Neglecting the stored heat of the reactor body and equipment
parts the heat in the reactor consists of the heat of the individual
substances i: QR = Σimi cp,i T . Assuming constant specific heat
capacities cp,i its time derivative reads:

Q̇R =
d

dt

(

∑
i

mi cp,i T
)

=∑
i

ṁi cp,i T+∑
i

mi cp,i Ṫ = ∑
k

Q̇k.

(11)

It is equal to the sum of heat flows ΣkQ̇k into and out of the
system. The heat flows considered in the model are first given
mathematically and will be further explained afterwards.

∑
k

Q̇k =
(
ṅf,hp Mhp cp,hp+ṅf,w Mw cp,w

)
Tf

︸ ︷︷ ︸

Feed

+ rV (−∆HR)
︸ ︷︷ ︸

Reaction Heat

−α A (T −TM)
︸ ︷︷ ︸

Jacket Cooling

− ṅo Mo cp,o T
︸ ︷︷ ︸

Exhaust Gas

− ∆Hv ṅ
(g)
w

︸ ︷︷ ︸

Vaporization

− ṅ
(g)
w Mw cp,w T
︸ ︷︷ ︸

Exhaust Vapor

−ε σ Arad (T −TM)4

︸ ︷︷ ︸

Radiation

. (12)

First of all, heat is generated by the exothermic reaction that is
characterized by reaction rate r and enthalpy (−∆HR). Due to
the feed streams ṅf,hp and ṅf,w heat is also added depending
on the feed temperature Tf. The cooling jacket on the other
hand removes heat and the resulting heat stream is described by
the common phenomenological approach. The surface for this
heat transfer A, however, increases linearly with the reaction
volume V . Because of foam generation during high reaction
rates the heat transfer α A has been modeled with an additional
dependence on the reaction rate r. This results in the following
characterization of the heat transfer α A in (12) using the
parameters a, b and c:

α A = aV +b + cr

[
J

sK

]

. (13)

The strong oxygen evolution during the reaction also results in
a significant heat loss. Its temperature is assumed to be equal
to the reaction temperature T . Moreover, water evaporates. The
resulting heat loss depends on the evaporation enthalpy ∆Hv

and the exhaust mass flow. The evaporation enthalpy is assumed
to be constant using ∆Hv = 43 kJ/mol, which corresponds to
a reference temperature of 50C. For the calculation of the

exhaust mole flow ṅ
(g)
w full vapor saturation of the exiting

oxygen is assumed. The exhaust stream driven by the vapor
pressure pw has been neglected, such that the exhaust stream

of water ṅ
(g)
w is proportional to the oxygen evolution rate:

ṅ
(g)
w = x

(g)
w ṅo. The vapor fraction x

(g)
w = psat

w (T )/p0 can be
derived from the saturated steam pressure psat

w (T ) at the current
reaction temperature T = 273.15K+ϑ using Magnus formula
[Sonntag (1990)]:

psat
w (ϑ) = psat

w (0)e
17.62ϑ

243.12◦C+ϑ , psat
w (0) = 611Pa. (14)

Hence, the exhaust mole flow of vapor in (12) is written as

ṅ
(g)
w = x

(g)
w ṅo =

psat
w (T )

p0
ṅo , (15)

while the corresponding mass loss has been neglected in the
calculation of the reaction volume V .

Finally, heat loss due to radiation shall also be consid-
ered. The emissivity of water ε = 0.965, the radiation sur-
face of the reactor Arad = 0.05m2 2 , the Boltzmann constant
σ = 5.67 ·10−8 Wm−2 K−4 and the forth power of the temper-
ature difference between reactor and cooling jacket determine
the radiated heat loss. It never exceeds 20mW, which corre-
sponds to only 0.01K/s. Regarding the roughly 300s long hot
phase of the semibatch, however, it accumulates to temperature
difference of about 3K.

2 Due to the foam evolution an exact value cannot be calculated. The value is

based on an average level of 11cm.
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Based on the formulation of the heat change in the reactor (11)
and the above modeled heat streams (12) the change of the
reaction temperature can be calculated:

Ṫ =

Heat flows
︷ ︸︸ ︷

∑
k

Q̇k −

Conversion
︷ ︸︸ ︷

∑
i

ṁi cp,i T

∑
i

mi cp,i

︸ ︷︷ ︸

Heat Capacity

, (16)

with conversion term Σi ṁi cp,i T and absolute heat capacity
Σi mi cp,i according to:

∑
i

ṁi cp,i T =
(
ṅhp Mhp cp,hp+ṅw Mw cp,w

)
T (17)

∑
i

mi cp,i = nhp Mhp cp,hp +nw Mw cp,w (18)

+nPI MPI cp,PI.

The conversion term describes the change of reaction temper-
atur T based on the mass conversion due to the reaction, and,
thus, the change of heat capacity.

Model equations

Defining the system states x =
(
nhp, nw, nPI, T

)T
and the feed

rate as manipulating value u = qf, the following nonlinear time-
invariant differential equations can be formulated:

ẋ =






ṅhp

ṅw

ṅPI

Ṫ




 = f (x,u,θ) . (19)

The right hand side f (x,u,θ) represents the terms in (8)-(10)
and (16). The only measurement y of the semibatch process is
the temperature T . Thus, the measurement equation reduces to

y = T = h(x) . (20)

The free model parameters θ = (k0, a, b, c, χ)T
have been

determined based on 15 identification experiments using the
maximum likelihood estimation (MLE). The result is given
in Tab.1. Here, the covariance of the temperature has been
set to Cη = 0.352 K2. Beyond the parameter identification its
covariance matrix Cθ has been analyzed using 1000 bootstrap
simulations [Efron (1986)]. The result is given in Tab.2.

Parameter Values

k0 a b c χ

0.250 ·109 12.95 1.470 7.071 ·103 0.270
L

mols
J

sKm3
J

sK
JL

molK
1

Table 1. Identified parameter vector θ from the
non-linear MLE fit based on 15 distinctively dis-

turbed experiments.

4. ROBUST PROCESS DESIGN

Using the dynamic model introduced above defined uncertain-
ties for the initial reaction volume V0, the jacket cooling temper-
ature TM, and the model parameters are introduced. Considering
these uncertainties, two robust process designs, i.e., two open-
loop trajectories, with different degrees of uncertainty descrip-
tion are derived from a robust optimization scheme. In both
cases, the uncertainties are represented by sigma-points and
simulated using the Unscented Transformation [Nørgaard et al.

(2000)]. Both process designs are then applied to the testing
plant multiple times in an alternating manner. The input un-
certainties, the initial reaction volume V0 and the jacket cooling
temperature TM, are realized experimentally using deterministic
Halton-Samples [Tørvi and Hertzberg (1998)] representing a
constant disturbance for each run. This experimental campaign
has two goals: The uncertainty prediction of the different de-
grees of uncertainty description shall be verified, and it shall be
demonstrated that a higher degree of uncertainty consideration
can be beneficial for the productivity in processes with safety
constraints without an increase of risk.

The process inputs TM and V0 are being disturbed in an uncor-
related manner using a normal distribution. The corresponding
standard deviations are chosen to be σT = 5K for the cooling
temperature and σV = 15mL (5%) for the initial volume of
catalyst. The two robust designs that are being compared are
calculated based on a stochastic simulation with a single normal
distribution (1GMD) and a more detailed description based on a
Gaussian mixture density consisting of 32 normal distributions
(32GMD).

While the impact of the uncertain initial volume V0 is simulated
in both cases using a single normal density, the cooling tem-
perature TM is described differently as illustrated in Fig.2. The
1GMD design applies its normal distribution (upper plot, black
line) directly to the simulation. The 32GMD design, however, is
using 16 weighted normal densities (gray) to describe the orig-
inal distribution of the cooling temperature. The corresponding
sigma-points of each distribution have the optimal step size

h =
√

3σ [Nørgaard et al. (2000)] and are shown as dots on
the proprietary density to allow for a better overview. For the
32GMD design the 1000 parameter samples from the bootstrap
analysis have been transferred into two multivariate normal
densities using the Expectation Maximization (EM) algorithm
[Dempster et al. (1977)]. Thus, 2·16 = 32 multivariate normal
densities are considered for the 32GMD design.

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

TM [◦C]

p
(T

M
)

h = 1.73

5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3
x 10

−3

TM [◦C]

∆
p
(T

M
)

Fig. 2. Description of the uncertain cooling temperature using
1 and 16 normal densities, respectively. Top: Probability
densities of the cooling temperature used by the 1GMD
design (black) and the 32GMD design (gray). The loca-
tions of the sigma-points are shown on the densities them-
selves. Bottom: Approximation error for the description
with 16 normal densities. Within the most relevant ±2σ
area (10-30◦C) the relative error never exceeds 2%.
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Covariances

Parameter k0 a b c χ

k0 0.693 ·109 −0.103 ·103 44.897 ·103 −84.265 ·103 −0.316

a 92.449 ·10−6 −41.314 ·10−6 8.322 ·10−3 31.127 ·10−9

b 19.460 ·10−6 −6.741 ·10−3 −6.221 ·10−9

c 0.116 ·103 0.121 ·10−3

χ 0.407 ·10−9

Table 2. Covariance matrix of the parameters Cθ resulting from a bootstrap analysis based on 1000
samples. Only numerical values without their corresponding units.

The process design aims to maximize the amount of product
H2O within the given batch time tend = 600s without violating
the safety constraint on the temperature which was set to Tmax =
345K. Beyond that, the remaining amount of educt shall be as
small as possible. The temperature constraint is implemented
in the optimization problem as an inequality condition while
the amount of educt at the end of the batch is considered using
a penalty term. This results in the following objective Φ with
expectations E[·] for a non-robust formulation:

Φ =−(nw(tend)−E [nw(t0)])
2 +104 ·

(
nhp(tend)

)2
(21)

s = T −345K ≤ 0 , qf,max = umax = 50
ml

min
. (22)

In the robust case, possible variations in Φ and s are taken into
account. Besides the mean production expressed by Φ =E[Φ]

its distance to the upper 2σ boundary ∆Φ(2+) is included.
Hence, the feeding profile U∗ is the result of the following
optimization problem:

U∗ = argmin
U

[

Φ(x0,U,θ)+ γ
(

∆Φ(2+)
)]

(23)

w.r.t. ẋ = f (x(t),u(t),θ), x(t0) = x0 ,

0 ≤ t ≤ 600s 0 ≤ u(t)≤ umax ,

s(x(t)) + λ ∆s(2+) ≤ 0

The inequality constraint is replaced here by a robust formula-
tion as well. Both robust process designs, 1GMD and 32GMD,
must keep a 2σ safety distance to the mean value s of that

constraint (∆s(2+), λ = 1) based on their individual stochastic
simulation. The variation of the objective ∆Φ(2+) can then be
neglected using γ = 0 since it is mainly influenced by the
temperature limitation. The solution of the non-linear stochastic
optimization problem (23) is calculated using the SNOPT7
algorithm (SQP) from the Tomlab R© optimization toolbox for
MATLAB with input constraints for u(t) and nonlinear inequal-
ity constraints s

(
x(t)

)
.

Fig3 shows the stochastic simulation of the reaction tempera-
ture based on the optimization results. The probabilistic nature
is indicated by the course of the mean value (solid line) and
the ±2σ confidence boundary (dashed line). Additionally, the
experimental realizations of both robust designs are shown (left:
1GMD, right: 32GMD) using two different illustrations: In the
upper plots the measured temperatures T of each process run
are printed as gray lines. Due to the density of the trajectories
a core estimator is used to form a probability density. The ex-
perimental densities are depicted in the center row of plot with
dark areas referring to dense courses of experimental results. In
the lower plots the optimal open-loop feeding profiles based on
each uncertainty description are shown. When comparing the
experimentally obtained temperature curves with their individ-
ual predictions a slight overestimation at high temperatures T

can be observed in both cases. This results from the simplified
exhaust gas description which neglects off gas due to vapor
pressure. At 60C the vapor pressure is about 200mbar leading
to a significant vapor flow at the real plant. This model defect,
however, affects both robust designs in the same way, and, thus,
does not interfere with the comparison.

Fig. 3. Robust process designs and 72 experimental realizations,
each. Left column: 1GMD design, right column: 32GMD
design. The bottom row shows the optimal feeding pro-
files qf of H2O2 with the maximal feed rate qf,max = 50
mL/min indicated as dash-dotted line. In the upper plots
the measured reaction temperatures of all 72 realizations
are given: At the very top as plain individual gray lines.
Using a core estimator these results are transferred to prob-
ability densities to illustrate densities with darker shades
in the middle row. The obtained experimental results are
compared with the stochastic simulation of the optimal
solutions, represented by its mean value (solid lines) and
±2σ boundaries (dashed lines).

Based on the results of the 1GMD design (left) the deficit of
this uncertainty prediction becomes evident: The real temper-
ature distribution with respect to the input uncertainties TM

and V0 shows more and more skewness with the tail pointing
towards lower temperatures. As it is approximated with a single
normal density it overestimates the variation towards higher
temperatures leading to an unnecessarily defensive process de-
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sign, especially around t = 200− 400s. This limitation in the
approximation of the process uncertainties can be overcome
using several normal distributions. The stochastic simulation
based on the 32GMD captures the asymmetrical character of
the temperature uncertainty and therefore allows for a better
exploitation of the temperature constraint without introducing
additional risk. This results in a more offensive process design
(see feed rate around t = 100−200s), and, thus, in a 9% higher
feed and therefore in a 9% higher productivity.

5. ROBUST PROCESS CONTROL

Closed-loop process control has been applied using stochastic
online optimization (OT), i.e., the optimization always runs
until the end of the batch. Based on the current state estimation
a complete new robust optimal process design is calculated with
respect to the objective (21). Using online optimization ensures
that the control result is only determined by the different un-
certainty consideration and not by a specific choice of a control
and prediction horizon in a NMPC framework. Although the
temperature can almost be measured continuously the measure-
ment interval has been stretched artificially to tm = 50s to allow
for a pronounced uncertainty evolution between measurement
updates. This interval also corresponds to the calculation time
for the state estimation test = 2s and the online optimization
tcalc = 48s. For the state estimation the SPKF algorithm was
used [Julier et al. (2000); van der Merwe (2004)]. In order
to allow for convergence of the optimization algorithm within
this very time span the number of normal densities had to be
reduced. Compared to the 32 densities used for the robust open-
loop design the cooling temperature is now only described by
4 normal densities similar to Fig.2. All other uncertainties, i.e.,
V0 and θ , are represented by a single normal multivariate distri-
bution. Therefore, this section compares two robust closed-loop
control schemes with uncertainty description based on a 1GMD
and a 4GMD, respectively.

When applying the two robust control concepts to the plant it
became quickly evident that the educt concentration H2O2 in
the storage tank had declined significantly. In order to avoid a
new parameter identification the model parameter χ responsible
for the uncertain educt concentration is increased. It now covers
the range of 27-35% H2O2 with respect to 6 standard devi-
ations. Retaining the above identified correlation coefficients
of the parameters, its covariance matrix Cθ is recalculated ac-
cording to the new standard deviation σχ = 4/3%. Due to this
general increase of uncertainty the robust controlled processes
turn out to be more defensive compared to the robust designs
from the previous section in Fig.3. Therefore, the spread of
the measured temperatures in theses experiments is rather big
despite of closing the loop for the measurements.
In Fig.4 the experimental results of the robust online opti-
mization based on the adapted model are shown. The product
distribution at the end of both robust control schemes (middle
row) indicates, that the more detailed uncertainty description of
the 4GMD (left column) results in a higher amount of prod-
uct. Processes that are affected by the lower cooling tempera-
tures are difficult to control at the beginning due to the input
constraint umax ≤ 50mL/min. In later stages, the demand for
low educt concentrations at the end of the process inhibits the
feeding rate leading to overall quite passive process runs. This
can be confirmed by looking at the estimated educt concentra-
tion (H2O2, first row) of both control schemes. Increasing the
feeding rate would inevitably lead to a significant accumulation

Fig. 4. 42 experimental realizations of the two robust online op-
timizations with adapted educt parameter χ . Left: 4GMD
control scheme, right: 1GMD control scheme. For the un-
measured states nhp and nw the state estimations have been
connected by model simulations. Reactor temperature T
shows the online measurements (gray lines). In all plots
the mean values (black lines) and the upper and lower 1σ
confidence boundaries (dashed lines) are illustrated.

of educt. Due to the generous 6σ assumption for the uncer-
tainty of χ the process fluctuations are being overestimated in
most process phases. This results in a strong response of the
current feeding rate after the first measurement is obtained.
Future feeding rates, however, remain rather unaffected due
to the large uncertainties that are quickly built up during the
stochastic simulation. This is the reason why the curves of
the mean values of all process variables are slightly oscillat-
ing. However, both robust control schemes are experiencing
the same conditions, i.e., a simplified model and a generous
assumption for the uncertainty of χ , such that the comparison
is not biased in any way. Therefore, the control schemes can
be evaluated quantitatively regarding their productivity and the
result is shown in Fig.5. The left part shows the quantity of
product estimations n̂w(tend) at the end of the process. The cor-
responding histogram of the 4GMD control scheme is slightly
shifted towards higher product yields compared to that of the
1GMD. However, since these are only estimated values also
the total volume of fed educt Vf has been illustrated in the plot
on the right. Assuming that the demanded condition for low
educt concentrations at the end of the process is met the total
volume of feeding correlates directly with the product yield.
In this graph the histogram of the 4GMD control scheme is
also shifted towards higher feedings compared to the one of the
1GMD control scheme confirming the previous result. In order
to allow for a quantitative evaluation of the histograms, their
mean values are given in Tab.3. Based on the total feed volume
Vf the benefit of the more detailed uncertainty description can
be estimated with 2.8%. In contrast to the robust offline opti-
mization where the more detailed stochastic simulation resulted
in 9% higher yield the benefit is comparatively small. This is
not so much due to the less detailed uncertainty description
(32GMD vs. 4GMD) but rather due to the frequently correcting
process control which avoids the generation of larger uncertain-
ties, and, thus, marginalizes the benefits of a detailed stochastic
simulation.
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OT
Expection Values

n̂w Vf

1GMD 32.41 326.35

4GMD 33.46 335.63

Table 3. Expectations of the estimated amount of
product at the end of the process n̂w(tende) and the
total volume of fed educt Vf for all 42 experimental

realizations of both control schemes.

6. CONCLUSION

The 144 robust open-loop process designs and the 84 robust
closed-loop control schemes have clearly shown that a more
detailed uncertainty consideration leads to better process pre-
diction in stochastic simulations. Moreover, they are able to
illustrate that also the productivity can be increased when safety
constraints limit the production capabilities. Generally spoken,
a better knowledge about future evolutions of process uncer-
tainties reduces over- or underestimation of such. If overesti-
mation is being reduced, process constraints can be exploited
more efficiently without increasing the already involved risk.
If underestimations are being corrected, critical process phases
can be avoided, and, thus, the process safety will improve.
When considering a detailed uncertainty description in a ro-
bust closed-loop control scheme the advantages are partially
marginalized because the measurement feedback reduces the
systems uncertainties. Depending on the measurement situation
the system state can be estimated more or less frequently. In
general, it can be concluded that the longer a process remains
unobserved the more beneficial is a detailed uncertainty de-
scription based on Gaussian mixture densities. When using
chance constraint programming (CCP) [Li et al. (2008)] exact
uncertainty predictions with respect to the model can be ob-
tained and similar robust processes can be expected. In contrast
to GMD based methods, however, the use of CCP does not
allow for the prediction of complete probability densities whose
knowledge can be further beneficial, e.g., for a more detailed
state estimation.
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Fig. 5. Amount of product obtained from both robust online op-
timizations. Left: Frequency of estimated amount of prod-
uct at the end of the process n̂w(tend). Right: Frequency of
the total volume of fed educt Vf.

Material constants

Substance i ρi

[
g
L

]

cp,i

[
J

gK

]

Mi

[
g

mol

]

H2O2 (hp) 1450 2.62 34

H2O (w) 1000 4.18 18

O2 (o) – 0.92 32

PI – 0.32 166

Table 4. Material constants: Density ρ , specific
heat capacity cp and mole mass M.
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