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Abstract: Traditional process monitoring methods based on kernel canonical variate analysis do not 
extract variances. They cannot judge whether a process fault that is detected affects product quality. A 
nonlinear quality-relevant process monitoring method based on kernel input-output canonical variate 
analysis (KIOCVA) is proposed. Firstly, Process variables and quality variables are mapped into 
higher-dimensional linear feature spaces via unknown nonlinear mappings respectively. The 
higher-dimensional linear feature spaces are projected to three subspaces, an input-output correlated 
subspace that captures correlations between process data and quality data, an uncorrelated input subspace 
and an uncorrelated output subspace. To monitoring the variances of the uncorrelated input subspace and 
the uncorrelated output subspace, principal component analysis is performed. Correlations and variances 
in the higher-dimensional linear feature spaces are extracted by means of nonlinear kernel functions. The 
proposed KIOCVA method can judge the process fault that is detected affects product quality or not. The 
effectiveness of the proposed method is demonstrated by case studies of Tennessee Eastman process. 
Keywords: Kernel input-output canonical variate analysis, process monitoring, quality monitoring, 
principal component analysis. 

 
1. INTRODUTION 

For complex modern industrial processes, process monitoring 
is of great importance (Zhou et al., 2013). Traditional data 
driven process monitoring methods (Ding, 2014; Ge et al., 
2013; Li and Xiao, 2011; Qin, 2012; Yin et al., 2014) include 
principal component analysis (PCA) (Garcia-Alvarez et al., 
2012), independent component analysis (ICA), canonical 
variate analysis (CVA) (Juricek et al., 2004; Russell et al., 
2000; Stubbs et al., 2012) etc. On the basis of above 
traditional methods, many modified methods have been 
proposed to solve problems like nonlinearity (Deng and Tian, 
2006a, 2006b; Lee et al., 2004; Tian et al., 2009), serial 
correlation (Ku et al., 1995; Stefatos and Hamza, 2010), 
outliers (Cai et al., 2014; Deng and Tian, 2008; Wang and 
Romagnoli, 2005), etc. Process variables are usually sampled 
on-line, and a large amount of data can be stored and used. 
While quality variables are usually sampled off-line with a 
low frequency and a time delay. Most data driven process 
monitoring methods analyze the data from a single layer 
process data set, and can only judge whether a process is 
abnormal or not. They cannot judge whether product quality 
is abnormal or not (Qin and Zheng, 2013). If the product 
quality is not abnormal, monitoring alarm is usually viewed 
as a false alarm, which reduces the reliability of a fault 
detection system to a certain extent. 

Industrial faults can be divided into three types: 1) process 
measurements are abnormal, and quality measurements are 
abnormal casually; 2) only process measurements are 
abnormal, quality measurements are not affected due to the 
compensation of controllers; 3) quality measurements are 
abnormal, process measurements are normal. Hence, a 

process data space can be decomposed into two subspaces, 
one is relevant to quality data, and the other is not. a quality 
data space can also be decomposed similarly. How to monitor 
above subspaces needs to be studied. Projection to latent 
structures (PLS) based monitoring methods are capable of 
using quality data to guide decomposition of a process data 
space (Gunther et al., 2009). Zhou et al. (2010) decomposed 
the residual subspace of process data and proposed total 
projection to latent structures (T-PLS). Qin et al. (2013) 
proposed a bi-layer method concurrent projection to latent 
structures (CPLS) to provide complete monitoring of quality 
data and concise decomposition of a process data space. 

Traditional CVA as well as kernel CVA (KCVA) based 
process monitoring methods extract state vectors by 
maximizing a correlation statistic between past data and 
future data. They are unable to judge whether a process fault 
that is detected affects product quality. (Deng et al., 2006b, 
2008; Juricek et al., 2004; Russell et al., 2000; Stubbs et al., 
2012). CVA as well as KCVA process monitoring measures 
include the 2

sT statistic which measures the variations inside 
a state space, the squared prediction error ( SPE ) statistic 
which measures the variations inside a residual space, and the 

2
rT  statistic which measures the variations outside the state 

space. The residual space can still include large variations, 
which may influence the effect of the SPE  statistic. The 

2
rT  statistic is over sensitive to the inversion of a covariance 

matrix when small values are included (Russell et al., 2000). 

Motivated by realizing quality oriented process monitoring 
and avoiding statistic problems in CVA and KCVA, a 
nonlinear quality and process monitoring method based on 
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kernel input-output canonical variate analysis (KIOCVA) is 
proposed. The proposed method uses kernel trick and CVA to 
perform nonlinear correlation analysis, and maps quality data 
and process data to three subspaces, an input-output 
correlated subspace (IOCS), an uncorrelated input subspace 
(UIS), and an uncorrelated output subspace (UOS). Each 
subspace will be monitored with proper measures. 

The remainder of this paper is organized as follows. 
Traditional process monitoring based on KCVA is first 
reviewed in section 2. KIOCVA method and process 
monitoring measures are presented in section 3. In section 4, 
comparison of dynamic kernel PCA and the proposed method 
is implemented in Tennessee Eastman process. The 
concluding remarks are summarized in section 5. 

2. KCVA FOR PROCESS MONITORING 

Consider a normalized process input vector m∈u   and an 
output vector n∈v  , at a time instant i , the past 
vector T T T T T T T

1 2 1 2[ , , , , , , ]i i i i h i i i h− − − − − −=p v v v u u u     
   and the future 

vector T T T T
1 1[ , , ]i i i i l+ + −=f v v v  
 can be formed, where h  and 

l are the number of lags. Collect normal data, and form the 
past matrix ( )N h m n× +∈P   and the future matrix 

( 1)N n l× +∈F   consisting of N  samples. Under nonlinear 
cases, nonlinear transformations ( )pφ p  and ( )fφ f  can be 
used to mapping p and f to two higher-dimensional linear 
feature spaces. KCVA computes two linear projections α and 
β  to maximize the following correlation: 

T
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where c and d are canonical variables, ( ) ( )p fφ φp fC  is the 

covariance matrix of ( )pφ p  and ( )fφ f , ( ) ( )p pφ φp pC is the 

covariance matrix of ( )pφ p , and ( ) ( )f fφ φf fC  is the 

covariance matrix of ( )fφ f . There exist mapping vectors α , 

β  such that T( )α P αφ= p , T( )β F βφ= f . 

By using kernel functions technique, equation (1) can be 
rewritten as  

T

T 2 T 2,

T 2 T 2

max

. . 1, 1

p f
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

=
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   (2) 

where Gram matrices
,

k ( , ) ( ) ( )p p i j p i p ji j
φ φ  = = ⋅ Κ p p p p  

and
,

k ( , ) ( ) ( )f f i j f i f ji j
φ φ  = = ⋅ Κ f f f f , k ( , )p ⋅ ⋅ and 

k ( , )f ⋅ ⋅  are kernel functions, ⋅  denotes dot product. The 
optimization problem (2) can be solved via singular value 
decomposition (SVD) or eigenvalue decomposition (Deng et 

al., 2006b; Lai and Fyfe, 2000). The canonical vector for p  
can be computed as  

T T( ) ( , )p pφ= =c A p A K P p      (3) 

where [ ]1 2, , , N=A α α α

  
 , [ ]1 2, , , N=A α α α , 

and
T

1 1( , ) k ( , ), k ( , ), , k ( , )p p p p N =  K P p p p p p p p . 

The 2
sT , 2

rT  and SPE  statistics are monitored with the 
following calculations 

2 T

2 T

2T

T T T

=

k ( , ) 2 ( , )

( , ) ( , )
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  (4) 

where sc  contains the first s canonical variables, rc  
contains the last r N s= −  canonical variables, and sA  
contains the first s  columns of A . The 2

rT  statistic is over 
sensitive to the inversion of ( ) ( )p pφ φp pC  when small values 

exist in ( ) ( )p pφ φp pC . Because CVA and KCVA extract 
correlations but variances, large variations may still exist in 
the space monitored by SPE . Consequently, it is 
inappropriate to use 2

rT  and SPE  statistics to monitor 
corresponding spaces. 

3. KIOCVA FOR QUALITY AND PROCESS 
MONITORING 

To monitoring nonlinear quality data and process data 
simultaneously, a kernel input-output canonical variate 
analysis is proposed. At a time instant i , the input 
vector T T T T

1[ , , ]i i i i h− −=x u u u  and the output vector i i=y v  
can be constructed by using a process vector m∈u   with 
h  lags and a quality vector n∈v  . Then, with N samples of 
normal data, an input data matrix ( +1)N h m×∈X   and an 
output data matrix N n×∈Y   could be obtained. For the 
proposed KIOCVA method, vectors x and y  are first 
mapped into high-dimensional linear spaces ( )xφ x  and 

( )yφ y  via unknown nonlinear mappings ( )xφ ⋅  and ( )yφ ⋅  
respectively. Then, CVA is performed to extract canonical 
variables by maximizing correlations between ( )xφ x  and 

( )yφ y . The canonical variables of ( )xφ x , which are relevant 
to output data, can be used as features of the input-output 
correlated subspace (IOCS). The predictive residual of 

( )xφ x  forms the uncorrelated input subspace (UIS), and the 
predictive residual of ( )yφ y  forms the uncorrelated output 
subspace (UOS). To monitoring abnormal variations in UIS 
and UOS, PCA is performed.  

3.1 Quality-Relevant Process Monitoring in IOCS 
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The nonlinear mappings ( )xφ ⋅  and ( )yφ ⋅ are unknown, so 
the canonical variables of ( )xφ x and ( )yφ y can be extracted 
by KCVA algorithm. The objective function is: 

T
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( ) ( ) ( ) ( )
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max
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
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where c  and d  are canonical variables, ( ) ( )x yφ φx yC  is the 

covariance matrix of ( )xφ x  and ( )yφ y , ( ) ( )x xφ φx xC is the 

covariance matrix of ( )xφ x , and ( ) ( )y yφ φy yC  is the covariance 

matrix of ( )yφ y . There exist mapping vectors α  and β  

such that T( )xφ=α X α  and T( )yφ=β Y β . 

By using kernel function technique, optimization problem (5) 
can be rewritten as  

T
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where Gram matrices [ ] ,
k ( , ) ( ) ( )x x i j x i x ji j

φ φ= = ⋅Κ x x x x  

and
,

k ( , ) ( ) ( )y y i j y i y ji j
φ φ  = = ⋅ Κ y y y y , k ( , )x ⋅ ⋅ and 

k ( , )y ⋅ ⋅  are kernel functions. The optimization problem (6) 
can be transferred to the generalized eigenvalue problem: 

0 0
0 0
x y x x

y x y y
λ

      
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The problem (7) is often ill-posed. Therefore, 1+x x ηK K I  
and 2+y y ηK K I  are used to replace x xK K and y yK K  
respectively, where η  is a regularization constant, 1I and 2I  
are identity matrices with suitable dimension. Then for a new 
sample of x  and a new sample of y , canonical vectors can 
be computed as  

T T

T T

( ) ( , )

( ) ( , )
x x

y y

φ

φ

 = =


= =

c A x A K X x

d B y B K Y y





    (8) 

where [ ]1 2, , , N=A α α α

  
 , [ ]1 2, , , N=A α α α , 

[ ]T1 2( , ) k ( , ), k ( , ), , k ( , )x x x x N=K X x x x x x x x , 

1 2, , , N =  B β β β  

 , [ ]1 2, , , N=B β β β , and 
T

1 2( , ) k ( , ), k ( , ), , k ( , )y y y y N =  K Y y y y y y y y .  

The canonical variables of ( )xφ x and ( )yφ y can be monitored 

with the following 2
sT  statistic 

2 T
s s sT = c c      (9) 

where sc  contains the first s canonical variables. If 2
sT  

statistic violates control limit, it is shown that a fault may 

occur in process, and product quality may be affected.  

3.2 Quality-Uncorrelated Process Monitoring in UIS 

The higher-dimensional linear space ( )xφ x can be 
reconstructed by using sc . Predictive residual 

ˆ( ) ( ) ( )x x xex x xφ φ φ= −  is uncorrelated to quality variables, 

where ˆ ( )xxφ is the reconstruction of ( )xxφ . Considering that 
large variations may exist in the uncorrelated 
higher-dimensional linear space UIS, PCA algorithm can be 
used to analyze variances. However, it is difficult to know 
nonlinear projection function ( )xφ ⋅ . Hence predictive residual 

( )xexφ  is unknown. PCA algorithm could not be directly 
performed in UIS. Predictive residuals ( )xexφ  can be seen 
as a nonlinear transformation of x . PCA processing on 

( )exφ x  is equivalent to resolving the eigenvalue 
problem v C vλ =ex ex F ex , where FC stands for the covariance 
matrix of ( )exφ x , λ ex  is an eigenvalue and T( )v X αφ=ex ex

ex  
is an eigenvector. It can be obtained that  

A K Aλ =ex ex ex ex
xN     (10) 

where 1 2, , ,A α α α =  

ex ex ex ex
N , kernel 

matrix
,

k ( , ) ( ) ( )K x x x xex ex
x x i j ex i ex ji j

φ φ  = = ⋅  . Combing 

the kernel matrix Κ x  in (6), it can be yield that 
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where matrix As  is the first s columns of matrix A .  

To ensure
2

1ex =v , exα  should be scaled as
2 ex

ex

N
λ

=α . 

For a new sample of x , the first exs  principal component 

scores can be calculated as ( )T
( , )ex ex ex

i i xt = α K X x , 

1, 2, , exi s=  .  

Variations in UIS can be monitoring by using the statistics 
2 1 T

1 2 1 2[ , , , ] [ , , , ]ex ex
ex ex ex ex ex ex

ex exs s
T t t t t t t−= Λ    (12) 

T

T
1 2 1 2

( , ) ( , )

[ , , , ][ , , , ]ex ex

ex ex
ex x x

ex ex ex ex ex ex
s s

SPE

t t t t t t

=

−

K X x K X x

 

  (13) 

where 1 2diag( , , , )Λ λ λ λ=  ex
ex ex ex

ex s
. If the 2

exT  statistic or the 

exSPE  statistic violates control limit, it is shown that a fault 
occurs in process, but product quality is normal. The fault 
may be compensated by controllers. 

3.3 Process-Uncorrelated Quality Monitoring in UOS 
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Similarly, variations in UOS can also be monitored by using 
PCA algorithm. Predictive residual ˆ( ) ( ) ( )y y yφ φ φ= −ey y y  is 

uncorrelated to process variables, where ˆ ( )yφy is the 
reconstruction of ( )yφy . PCA processing on ( )eyφ y  is 
equivalent to resolving the eigenvalue 
problem A K Aλ =ey ey ey ey

yN , where 1 2, , ,A α α α =  

ey ey ey ey
N , 

kernel matrix
,

k ( , ) ( ) ( )K y y y yey ey
y y i j ey i ey ji j

φ φ  = = ⋅  . 

Combing the kernel matrix Κ y  in(6), it can be yield that 

T T

T T T

k ( , ) ( , ) 2 ( , ) ( , )

( , ) ( , )

y y K y y K Y y B B K Y y

K Y y B B K B B K Y y

ey
y i j y i j y i s s y j

y i s s y s s y j

= −

+
 (14) 

where the matrix Bs  is the first s columns of the matrix B . 
For a new sample of y , the first eys  principal component 

scores can be calculated as ( )T
( , )ey ey ey

j j yt = α K Y y , 

1, 2, , eyj s=  . Variations in UOS can be monitoring by using 
the statistics 

2 1 T
1 2 1 2[ , , , ] [ , , , ]ey ey
ey ey ey ey ey ey

ey eys s
T t t t t t t−= Λ    (15) 

T

T
1 2 1 2

( , ) ( , )

[ , , , ][ , , , ]ey ey

ey ey
ey y y

ey ey ey ey ey ey
s s

SPE

t t t t t t

=

−

K Y y K Y y

 

  (16) 

where 1 2diag( , , , )Λ λ λ λ=  ey
ey ey ey

ey s
. If the 2

eyT  statistic or the 

eySPE  statistic violates control limit, it shows that quality 
samples is abnormal, but process measurements are normal. 
Some key process variables may not be measured. 

4. CASE STUDIES 

The Tennessee Eastman process (TEP) (Lyman and 
Georgakis, 1995) is used to evaluate the effectiveness of the 
proposed KIOCVA method. The process consists of five 
major units: a reactor, condenser, compressor, separator and 
stripper. And it contains eight components: A~H. A 
simulation system was downloaded from 
http://web.mit.edu/braatzgroup/links.html. A total of 52 
measurements are collected for each data set of 
length 960N = . The TEP simulation contains 21 
preprogrammed faults (Fault 1-21) and one runs under normal 
operation (Fault 0). Simulations started with no faults. All 
faults are introduced after 160 samples. 

Both KIOCVA based monitoring and dynamic kernel PCA 
(DKPCA) based monitoring are performed. For KIOCVA, 
process variables XMEAS(1-36) and manipulated variables 
XMV(1-11) are treated as input variables, output variables are 
quality measurements XMEAS(37-41). Variables in DKPCA 
are XMEAS(1-36) and XMV(1-11). 

The number of lags h  in input can be determined by 
referring to methods in DPCA (Ku et al., 1995). The number 
of canonical variables (CV) s  in IOCS is determined by λ  
in (7), because λ  equals to correlation coefficient ρ  in (5). 
And the principal component (PC) number exs and eys can be 
determined by the cumulative variance contribution rate 

(CVCR) strategy. In addition, the data in higher-dimensional 
linear space should be centered and scaled (Lee et al., 2004). 
Considering that data may not obey Gaussian distribution, 
kernel density estimation (Odiowei and Cao, 2010) is used to 
calculate all control limits of the five monitoring statistics. In 
the case studies, the kernel function 

2
1 2 1 2( , ) exp( )K c= − −x x x x  is used. CVs with ρ >0.5 

are kept in IOCS. Control limits with 99.73% confidence 
interval, CVCR>0.99 and 2h =  are adopted by both 
KIOCVA and DKPCA. From KIOCVA modeling, 4s = , 

94exs = and 12eys =  are obtained. The PC number of 
DKPCA is 94. Three faults are discussed as follows. 
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Fig. 1. KIOCVA monitoring results of Fault 4 
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Fig. 2. DKPCA monitoring results of Fault 4 

Fault 4 involves a step change in the reactor cooling water 
inlet temperature. When the fault occurs, there is a sudden 
increase in the reactor temperature. The fault is compensated 
by control loops, so other measurements and manipulated 
variables keep steady. Monitoring results of KIOCVA and 
DKCVA are showed in Fig. 1 and Fig. 2. For KIOCVA, the 
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fault is alarmed only in UIS, which means that the process 
fault does not affect output product. However, both of 
monitored spaces of DKPCA alarm the fault. In fact, product 
quality is unaffected. So, DKPCA monitoring results may 
make users doubt the reliability of monitoring systems. 

Fault 7 is the result of a step header pressure loss of 
component C in stream 4. Monitoring results of KIOCVA and 
DKPCA are shown in Fig. 3 and Fig. 4. KIOCVA detects the 
fault in all five subspaces. But, statistics 2

sT , 2
eyT  and eySPE  

go back to normal due to control actions. It is shown that 
DKPCA alarms all the time after the fault occurs. 
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Fig. 3. KIOCVA monitoring results of Fault 7 
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Fig. 4. DKPCA monitoring results of Fault 7 
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Fig. 5. KIOCVA monitoring results of Fault 13 
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Fig. 6. DKPCA monitoring results of Fault 13 

 

A slow drift in reaction kinetics leads to Fault 13. Fig. 5 and 
Fig. 6 show that the fault influences all subspaces obviously. 
Both KIOCVA and DKPCA can detect it effectively and 
timely. 

5. CONCLUSIONS 

A new process monitoring approach KIOCVA is proposed to 
analyze whether a process fault impacts product quality. 
KIOCVA provides a complete monitoring for nonlinear input 
data and output data, and captures nonlinear correlation 
characteristics and nonlinear variance characteristics 
simultaneously. Simulation results on TEP show that 
KIOCVA can determine whether a process fault impacts 
product quality effectively, which is valuable in practical 
industrial applications. 
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