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Abstract: A supply network consisting of multiple air separation units and compressors supplies oxygen 

gas at two pressures to a major steelmaker in South Wales. Each machine has a different efficiency curve, 

power requirement, and capacity. The aim was to minimise the cost of power and liquid usage of the 

supply network whilst meeting customer gas flow demands and preventing product spill. 

Mass balances of the site were produced and integrated into a Microsoft Excel spreadsheet representation 

of the supply network. A mixed integer nonlinear programming approach was adopted to allow machines 

to operate within flow limits and turn on or off based on demand. The GRG nonlinear solver method was 

used to minimise the cost of running the network arrangement, determined by the sum of all estimated 

machine powers and the cost of liquid back up usage. Constraints were programmed to maintain steady 

state, meet demand, and keep machine flows within bounds.  

This work demonstrates that extra power requirement, liquid vapourisation and product spill caused by 

inefficient compression arrangements result in annual site losses of £0.6M. It is shown that through real 

time optimisation of the gas network a significant reduction in these financial losses can be achieved. 
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1. INTRODUCTION 

BOC Gases is part of the Linde Group, a world leading 

supplier of industrial, process, and speciality gases. The 

tonnage arm of the group directly supplies customers with 

nitrogen, oxygen, argon, and industrial gases by pipeline. 

Customers whom require large volumes of gas are served by 

a supply network with multiple feed units to meet demand. 

Changeable flow rates of medium pressure (MP) and high 

pressure (HP) oxygen gas are required for oxy-fuel 

combustion and basic oxygen steel (BOS) production 

respectively. The oxygen supply network compression must 

be manipulated on demand change to improve efficiency. 

The Margam site supply network and compressor 

arrangement (Fig. 1) is shown opposite. Three air separation 

units (ASUs) supply oxygen gas to the network. ASU 1 and 2 

supply Low Pressure (LP) gas and ASU 3 supplies MP and 

HP gas directly. Three centrifugal compressors raise LP to 

MP and three reciprocating compressors raise LP or MP to 

HP. Cross over from the HP to MP stream is managed and 

oxygen tank pump vapourisers (O2 TPV) are required when 

HP pipeline pressure falls due to under-production.  

Any tool developed must optimise the site as a whole and be 

flexible enough to solve for any customer requirement, 

adhering to all plant constraints. It must be intuitive, solve 

quickly, adapt to machine availability, and allow for any 

future changes in machine characteristics. 

 

Fig. 1. Margam supply network and compressor arrangement. 

Manenti and Rovaglio (2013) comprehensively describe the 

peculiarities of industrial gas manufacturing and carry out 

profit optimisation with scheduling to avoid high power 

prices and manage liquid levels. However, our customer 

demand rarely exceeds the total gas production capacity of 

the site therefore forward scheduling of liquid oxygen usage 

would yield little benefit. The focus must be to optimise the 

oxygen gas compression network prior to scheduling.  

This paper describes the methods undertaken to improve 

compression arrangement management by developing a 

system model and using it to optimise the site as a whole. 
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2. MODEL DEVELOPMENT 

2.1  Mass Balances 

Fig. 1 showing all machines was used to develop mass 

balances of the network at steady state. Equations 

representing the MP and HP streams were expanded. 

Mass balance of LP gas produced by ASU 1 and ASU 2 and 

compressors with LP inlet pressures. 

ACBAASUASULP 5150505021   

Mass balance of MP produced by network minus machines 

that consume it, plus let down flow from the HP stream (LD). 

DCLDMPASUCBAMP 51513505050   

Mass balance of HP produced by network minus let down 

flow. 51A flow has been substituted with a rearranged form 

of the LP equation to simplify. 
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At all times, the customer demand of MP and HP must be 

met by the supply network. Pipeline losses, were assumed to 

be a percentage of demand and thus added to the customer 

demand order. Average percentage losses were calculated 

from the difference between the total oxygen production 

flows from ASUs and the metered MP and HP gas flows to 

the customer over three months. All flows were pressure and 

temperature adjusted to standardise. Modelling other 

complexities decreases operator understanding of the network 

model and may increase optimisation calculation time.  

2.2 Machine Flow Limits 

With years of historical data available in the data historian, it 

was possible to produce efficiency curves and discover the 

flow limits for each machine numerically.  

30 minute averaged data of oxygen gas flow, power usage 

and other key normal operation indicators, such as recycle 

valve opening position, were compiled over 6 months for 

each machine in the compression arrangement. Data was pre-

screened to remove missing data and data not recorded during 

normal operation, e.g. at machine start up. 

The minimum and maximum observed machine gas flow 

limits during normal operation were recorded. Where flow 

meters were not present, mass balances were used to estimate 

gas flow rates. The flow limits were stored in an array. 

2.3 Efficiency Curves 

Using the pre-screened data discussed in section 2.2, simple 

numerical regression models were used to determine the 

machine efficiency for a given gas flow rate. Machine 

efficiency is metered motor power, in kW, divided by the gas 

flow rate, in hundred cubic meters per hour (HCMs). 

Polynomial regression produced equations of fit between the 

machine efficiency, in kW/HCM, and the gas flow rate. 

Where the compressor recycles due to anti-surge control at 

low through flows, increased power usage was captured by 

the efficiency curves. As a result, machines often run more 

efficiently per unit of gas when fully loaded and the 

polynomial curves are convex. Overload of some oxygen 

compressors occurs above high flows, causing inefficiency. 

Linear regression would not capture these complexities. 

The 2
nd

 or 3
rd

 order polynomial equations were added to a 

spreadsheet to estimate machine power from machine flows.  

2.4 Mixed Integer Nonlinear Programming 

Numerous papers have been published describing 

optimisation using mixed integer nonlinear programming 

(MINLP) including applications to natural gas networks, 

Ehrhardt and Steinbach (2003), steam generation for gas 

treatment plants, Manesh et al. (2009), and diet strategies for 

salmon pigmentation, Forsberg and Guttormsen (2006). By 

definition, all include a combination of continuous and 

discrete decision variables to optimise systems exhibiting 

nonlinear integer, continuous or product relationships. ‘Yes 

no’ decision variables were presented as binary coefficients. 

An array of binary coefficients and flows for all machines 

was produced in Microsoft Excel. The variable cells for flow 

were linked to the efficiency equations of fit of each machine. 

There were 11 binary coefficients, one for each ASU, 

compressor, Let Down, and TPV, and 13 flow coefficients – 

in total 24 decision variables. There were 2 more flow than 

binary coefficients as ASU 3 has an MP and HP stream. 

For each machine an equation was formed to allow 

optimisation of the network. Only the flow and binary 

component of the equation can be altered by the optimiser as 

independent variables. Machine power (Wm), shown in (1), is 

the product of the binary coefficient (bm), efficiency as 

calculated from the polynomial efficiency curve (εm), and 

machine gas flow (Fm). Where m is the machine name, εm is a 

function of gas flow rate and the gas flow rate is constrained. 

 
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        (1) 

Constraints were programmed based on real network 

boundaries. In the Solver add in window, constraints were 

added individually for each machine and mass balance 

required, see Fylstra et al. (1998), starting with the 26 upper 

and lower bound flow coefficient constraints, as determined 

in section 2.2. Each flow coefficient’s flow bounds have been 

presented in a separate array to allow for easy editing.  
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Equality constraints ensuring the LP, MP, and HP equations 

balance to prevent spill and guaranteeing the customer is 

supplied with the required gas flow rates were added. The 

loss adjusted MP and HP demands were constrained to equal 

the MP and HP machine mass balance equations. 

The sum of estimated machine powers was multiplied by the 

fixed cost of power (COSTkW) to form part of the economic 

objective function, J. The remainder is the cost of consuming 

liquid oxygen stocks, the TPV flow (FTPV) multiplied by the 

cost per HCM of liquid (COSTTPV).  

  TPVTPVmkW FCOSTWCOSTJ   (2) 

The general algebraic formulation for MINLP problems was 

adapted for binary integer decision values and continuous 

bounded decision variables, see Floudas and Pardalos (2009).  
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Vector F contains all continuous variables of flow, bounded 

by Fmmin and Fmmax, vector b contains binary variables, and 

f(F,b) is subject to all equality and inequality constraints.  

2.5  Sensitivity Analysis 

Coefficients of determination, or R
2
 errors, of the machine 

polynomial regression fits were used to develop a Monte 

Carlo simulation of the compression arrangement power, see 

Doubilet et al. (1985). Normal distribution, variable 

independence, and constant variance were assumed.  

R
2
 values produced from polynomial fits of efficiency versus 

oxygen gas flow for flow metered oxygen compressors were 

around 80%, not directly flow metered oxygen compressors 

around 60%, and ASUs around 70%. The remaining variance 

not caused by oxygen gas flow through the machine (1-R
2
) 

was multiplied by the estimated machine power and square 

rooted to find the standard deviation. The excel function 

NORMINV(rand(),µ,σ) was used to return a randomly 

selected and normally distributed value within one standard 

deviation of the estimated machine power. The process was 

repeated for each machine in the compression arrangement to 

ensure machine errors were independent. The sum of the 

machine powers gave an error adjusted total site power. 

Each simulation has 1000 trials and the mean and standard 

deviation of all trials was calculated. The standard deviation 

was converted into cash using power price. If an optimiser 

suggested an arrangement which produced smaller cash 

savings than two standard deviations (often around £20), a 

95% confidence interval, then the optimiser should suggest 

that the current compression arrangement is maintained. Two 

sigma was assumed sufficient to change the network. 

2.6  Optimisation Method Selection 

Microsoft Excel 2010’s built in Solver was operated to 

optimise the plant by minimising the objective function cell 

subject to programmed constraints. Nonlinearities in the 

machine power calculations require solving by the GRG 

nonlinear solution method, see Lasdon et al. (1974). The 

method uses simple forward difference approximations of the 

first partial derivate gradients of the objective function and 

constraints to solve nonlinear problems quickly, Ratner et al. 

(1978). Solver method settings were not altered from default. 

Tests were carried out on a wide range of customer demand 

combinations to ensure the optimiser solved all possible 

scenarios. Solutions took around 5 seconds on an Intel Core 

i5-3340, 2.70GHz, 4 GB of RAM, OS MS Windows 7 

Professional. As the default method was non-deterministic, 

different independent variable starting positions were trialled. 

All binary coefficients starting in an ‘on’ position and all 

flow coefficients beginning at the lower bound was 

successful at finding the minimum cost for all scenarios. 

The multistart option was used to determine any distance 

from the global optimum. In all cases the multistart option 

with 10 starting points found the same solution as the non-

deterministic method. This suggests the current starting 

position and method favours the best route to the optimum 

compression arrangement for the cases tested. Using the 

multistart option increased solving time above the 2 minute 

threshold and did not deliver any additional cost benefit.  

2.7 Network Mimic 

A supply network mimic was produced in Microsoft Excel as 

an optimiser interface (Fig. 2). The user inputs the current 

customer demand, which is linked to the mass balance 

constraint cells, to optimise the compression arrangement. A 

macro backed ‘Solve’ button was recorded in visual basic to 

reset the variable cells to the favoured starting positions and 

run the solver automatically. Flow cells were formatted to 

turn green when the machine is active. 

The optimised flows through the machine, the upper and 

lower flow limits, and the estimated machine power are 

presented in a machine representation of the network. 

 

 Fig. 2. Excel supply network mimic (all values false). 
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2.8 Machine Availability 

Machines were often unavailable for periods of time during 

maintenance or after a machine trip. Dropdown text boxes of 

‘available’ or ‘unavailable’ were positioned on the operator 

interface and referenced by if statements. The machine’s 

binary coefficient was forced to be 0 if unavailable. Altering 

the decision variable would therefore not affect the objective 

function and the optimiser had to find an alternative solution.  

Adding flexibility allowed the optimiser to cater for any 

network configuration. The option also allowed TPV to be 

programmed off for most situations as favoured by liquid 

schedulers who wish to preserve stocks. 

3. PRELIMINARY FINDINGS 

3.1 Potential Financial Gains 

In order to demonstrate the financial gains of running the 

optimised compression arrangement, current compression 

arrangements were recorded. The machine power curves in 

the optimiser were used to estimate the total site power. 

Compared to the optimiser output, significant power savings 

were found due to inefficient network management. For the 

recorded arrangements, the average power differential was 

£30 per hour, £0.26M per annum. However, some recorded 

arrangements were significantly further from optimum. 

Inefficient network management resulted in product spill 

from the ASU supply lines in over supply situations and 

vaporisation of liquid product when under supplying. Whilst 

in some situations losses were unavoidable, e.g. during plant 

trips, the majority could have been avoided if using the 

optimiser. Historical data suggests that £0.23M was lost 

through unrequired TPV and £0.11M through ASU 1 spill. 

The Monte Carlo simulation output aided operator decision 

making by proving beyond reasonable doubt that the new 

compression arrangement provided a cash saving. Where 

current operation was on the boundary of possible 

arrangements and less than two sigma, the network was not 

altered. The cost of network manipulation in product spill and 

power use during machine start and stops was assumed to be 

around two sigma and thus changing the network would be 

self-defeating in the short term. If the order is known to 

remain for a long time, the payback time can be interpreted. 

In normal operation the optimiser did not produce an 

arrangement featuring a cross over flow to provide cost 

benefit. Its function as a safety feature remains but its use 

demonstrates an inefficient compression arrangement. It does 

not make financial sense to step up gas to HP and back down 

again if there is capacity to make MP elsewhere. 

The optimiser did suggest TPV use where demand was too 

low to turn on an ASU and where demand was over 

maximum production of all ASUs. When the power price of 

the network was increased, TPV use was favoured ahead of 

running the larger, less efficient machines. This may improve 

savings if used tactically during periods of high power price. 

The financial gains were corrected for recorded periods of 

under production; when supply did not meet the demand due 

to incorrect customer order or machine ramping prior to 

compression arrangement changeover. However, in most 

recorded arrangements, the supply network was over 

producing, resulting in higher power costs. 

Pipework limitations and bottlenecks have been discovered. 

By producing an optimiser with manipulated mass balances 

offering the capacity to reopen manual valves, redundant 

areas of the network have been reopened to offer cost benefit. 

The redundant MP pipework between CP-50A and the CP-

51C/D inlet area of the network is one example of this. 

3.2 Demand Tracking 

During installation of the optimiser on site computers, it was 

evident that changes in customer demand were difficult to 

follow. Similarly, TPV usage and product spill were hard to 

observe live and often occurred during changes in customer 

demand. The costs of these losses were not quantified. 

The customer is able to order any flow rate combination of 

MP and HP oxygen gas at any time and BOC must supply it. 

However, as air flow into ASUs can only be ramped up or 

down at a certain rate for safety concerns, Schmidt et al. 

(2001), the rate of change of supply is limited by contract. 

Although the customer understands the rate of change limits, 

they often immediately start using the new demand flow rates 

which, during large order increases, often causes liquid 

consumption. If BOC operators ensure the supply network 

meets the contractual ramping rate throughout the order 

change, consumed liquid cost is billed to the customer. At 

times were the ramping demand was not met by operator 

network manipulation, the liquid cost is charged to BOC. 

To ensure the latter does not occur as often, a visual aid was 

produced in Microsoft Excel, (Fig. 3), and displayed in the 

operating centre. The demand tracker tool forward projects 

the contractual rate of supply change during ramps using if 

statements. It also plots current MP, HP, and total oxygen 

flows with TPV usage and product spill flows to aid network 

management. Totalisers sum the total plant losses for the 

period and convert into costs. 

 

Fig. 3. Excel demand tracker tool (all values false). 
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4.  FURTHER WORK 

4.1  Optimisation 

Section 2.6 concluded that developing a deterministic 

optimisation method had no cost benefit at current. However, 

as the optimiser develops and complexities such as varying 

power prices are added, a deterministic optimisation method 

may be required. Although the static optimiser was developed 

to improve current operation, the requirement of a dynamic, 

forward projecting optimiser which schedules machine stops, 

starts and ASU ramps to minimise losses during demand 

changes is the next technical challenge. 

Current mass balance equality constraints state the supply 

network must always meet the customer demand flows. 

Altering the MP and HP supply equations to inequality 

constraints, to meet or exceed demand plus losses, allowed 

for over production. In some cases, over supply and spill, or 

under supply and TPV, can be used to deliver a larger than 

two sigma cost benefit. This may be useful for oxygen 

requests where a larger, lower loaded, and less efficient 

compressor is required instead of a fully loaded other. 

4.2 Current Limitations 

Although the two sigma rule adds confidence in the 

optimised results, the model remains limited by the accuracy 

of the polynomial regression fits of machine efficiency. 

Improving the data collection and pre-screening techniques 

may only provide a limited improvement in the value of 

coefficients of determination of the efficiency curves. 

Model accuracy improvement will be particularly limited for 

ASUs if variables affecting the power requirement of the air 

compressor continue to be ignored by numerical modelling. 

Modelling of ASUs is challenging as variables including cold 

recovery, column pressures, and ambient conditions are all 

known to affect efficiency, but with a lesser influence than 

oxygen gas flow, Fu and Gundersen (2012). Measurements of 

liquid oxygen and nitrogen flows and turbine recovery can be 

easily recorded and used to generate multivariate models. 

Current values of uncontrolled variables can be fed into 

models from the data historian to create better estimations of 

power during optimisation. Power estimation of oxygen 

machines can also be improved with multivariate analysis of 

oxygen gas flow, suction and exhaust pipeline pressures, and 

cooling water temperatures. Numerical modelling of the site 

is preferred as first principle modelling will be time 

consuming and not necessarily effective due to cryogenic air 

separation process uncertainty and nonlinearity. 

4.3  Scheduling 

Forward scheduling before and throughout demand changes 

is the natural next step in development of the optimiser and is 

currently a work in progress. A dynamic optimiser with the 

ability to schedule changes in the supply network will allow 

for; quantitative analysis of how many and when machine 

stops and starts are required, prediction of the costs of 

network changes in product spill, TPV, and power usage, and 

prevention of losses by preparing the network for change. An 

estimation of the payback time of changing compression 

arrangement will build additional confidence in the optimiser. 

Scheduling further ahead will provide the facility to program 

machine availability and, if the customer can be persuaded to 

provide the information, future customer demands for 

optimal planning of maintenance. If the forward plans prove 

unreliable, forecasting of order changes by investigating 

trends in flows between the oxy-fuel furnace and BOS plant 

along with other external variables could be developed by 

methods such as neural network, see Zhang et al. (1998). 

Development of a dynamic optimiser began with the stacking 

of multiple static optimisers, one for each discrete time point 

during a ramp. The ramp demand equations developed in 

section 3.2 for the demand tracker tool were used to calculate 

the intermediate customer demands. Mass balance constraints 

apply at each intermediate during the ramp but as inequality 

constraints to allow over production and/or spill to be 

modelled. Changes between intermediate compression 

arrangements must also be realistic. Machine binary 

coefficients were limited to change twice during ramps and 

ASU oxygen gas flow changes were limited by the speed at 

which LMPC safely ramps the air compressor. Limits were 

added to the GRG solver method as inequality constraints. 

Before running the dynamic optimiser, the current network 

arrangement was imported to the optimiser as the starting 

position. The new optimiser had limited success when 

running but takes a lot longer due to the increased number of 

decision variables. The result remains non-deterministic but 

any reduction in losses is useful. The increase in complexity 

caused by the dependency on previous decisions reduced the 

smoothness of the model resulting in a multi-modal shape. As 

a result, Biegler and Grossmann (2004) suggest attempting to 

use global MINLP optimisation methods such as DICOPT 

coupled to algebraic modelling system GAMS. 

Discrete time MINLP scheduling problems become large and 

complicated quickly, but the method can be switched to a 

multi period continuous time solving method, see Floudas 

and Lin (2004). Rather than a binary decision variable matrix 

determining whether a machine is running at an intermediate 

point, or optimising the length of time that the machine runs 

for, continuous variables allow the optimiser to select the 

start and end time of machine running periods. For each 

machine throughout the entire ramp there are two Excel cells 

formatted as times to be used as continuous time decision 

variables. If statements are used to reference the start and end 

time to determine if the machine is on for that intermediate 

point in the ramp. This will significantly change the 

mathematical formulation of the optimiser from equation (3). 

Extending the compression network scheduler to include 

liquid make from ASUs and external liquefiers, Manenti and 

Rovaglio (2013) suggest increasing air compression and 

nitrogen injection to make liquid during low power prices and 

increasing TPV use during peak price times will increase the 

profitability of a multisite network.  
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Increasing the scheduling time horizon to next-day or week 

ahead, power price fluctuations can be predicted and 

capitalised upon, see Merkert et al. (2015). Baumrucker and 

Beigler (2010) suggest converting the optimiser to profit 

maximisation on stocks from network cost minimisation to 

allow for further advantage. A developed continuous time 

external liquefier scheduling tool can potentially save £500 

per week versus the current load management plans. This 

scheduling approach will require further analysis and 

development with the product delivery planning team as bulk 

liquid customers must continue to be supplied as a priority.  

4.4  Site Control and Automation 

Linking the dynamic optimiser and site scheduler to the 

demand tracker tool could prompt operators to alter network 

and site configurations. If constrained effectively, Beigler and 

Zavala (2009) suggest bypassing the current LMPC protocols 

with the outputs from a simplified scheduling optimiser. 

ASU product spill relates directly to the valve opening 

positions of the plants impurity removal and cold recovery 

system at the front end of the ASU, the reversing heat 

exchangers. Oxygen oversupply causes back pressurisation of 

the heat exchangers restricting oxygen gas flow into the 

supply network and decreasing cold recovery. Controlled 

decongestive methods such as periodic forced increases of 

valve position between limits will reduce this product spill. 

The TPV system automatically starts when HP line pressure 

falls below a safe level. Pipeline pressure oscillates due to the 

BOS plant blow pattern. A pressure control system which 

reduces the variation will allow for the operating pressure to 

be lowered towards the TPV pressure constraint, lowering 

compressor exhaust pressures and thus power usage. 

4.5  Wider Application 

Steel works often require supply networks for other industrial 

gases such as nitrogen and argon. In South Wales, the 

nitrogen supply network consists of four compressors and a 

campaign run nitrogen liquefying unit. Including these units 

in the oxygen supply network optimiser will further optimise 

the site. The objective function could include the power for 

these compressions along with ASU auxiliary powers. 

The optimiser could be amended and applied to other gas or 

liquid pipeline networks in the UK and worldwide for power 

price scheduling and network optimisation. 
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