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Abstract: In the last decades, there is a boom of fractional calculus (FC) applications in many
technical areas including process control. The multiple fractional-order pole models (MFPM)
were proven as suitable for modeling processes that are essentially monotone from their physical
nature (holds true for a big percentage of chemical processes). Due to implementation aspects,
the time-domain real-time simulation of MFPM is a challenging problem. For this purpose,
often a high order zero/pole transfer function is employed. This paper describes a novel multiple
fractional pole simulator based on exact step response discretization. The proposed technique
decreases computational burden and the resulting simulator can be deployed even to real-time
embedded devices. The advantages of SW tools developed are demonstrated on various examples
including predictive control feedback loop simulation.

Keywords: Fractional calculus, multiple fractional-order pole model, step response,
discretization, Simulink function block

1. INTRODUCTION

Fractional Calculus is an interdisciplinary and emerging
research area (Ortigueira (2008); Elwakil (2010)). In the
last years, a boom of fractional calculus (FC) applications
started in many technical areas including process control.
It was studied from both controller synthesis (Podlubny
(1999); Monje et al. (2008); Čech and Schlegel (2013))
and system identification side (Schlegel and Čech (2005);
Charef et al. (1992)). The scientific effort resulted into
number of practical outputs documented e.g. in Pommiere
et al. (2002); Sabatier et al. (2007). The generalization
of integrals and derivatives to arbitrary real order (FO
– Fractional Order) leads to more flexible transfer func-
tions P (s) with non-integer power of complex variable s.
The multiple-fractional pole model (MFPM) proposed in
Charef et al. (1992); Schlegel and Čech (2005); Schlegel
et al. (2014) was proven suitable for modeling essentially
monotone industrial processes with distributed parame-
ters. Such model provides frequency response flexibility su-
perior to traditional integer-order models. However, time
domain simulation or even real-time implementation is a
challenging problem. Commonly, FO element is approxi-
mated by a continuous high-order filter as in Charef et al.
(1992); Čech and Schlegel (2011). It can be shown, that
the ’ideal’ realization always leads to infinite order filter,
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see Oldham and J.Spanier (2002); Monje et al. (2010).
Hence, several limitations must be taken into account and
we will speak further only about approximation. Tradi-
tionally, the quality of approximation is measured by the
integral quadratic distance between frequency response of
ideal FO element and its corresponding integer-order (IO)
equivalent. Charef’s and Oustaloup’s methods together
with their modifications are typical representatives of such
approach (Charef et al. (1992); Oustaloup et al. (1996);
Monje et al. (2010)). They approximate the fractional
elements by classical transfer function with zeros and
poles equidistantly spread in the logarithmic space. Un-
fortunately, the quality obtained is not sufficient namely
for approximating filters with low order. Often also the
methods based on continued fraction expansion (CFE)
are used (Vinagre et al. (2000)). All approximations ex-
hibit good performance only on certain frequency band.
Other imperfections appear when the filter is discretized.
For general fractional differential equation the methods
can be divided into two groups called direct and indirect
discretization (see e.g. Djouambi et al. (2013) for more
references).

An alternative approach to MFPM implementation is
presented in this paper. It is based on an exact step
response discretization. The main idea is the numerical
integration of an exact analytic expression of the multiple
FO pole impulse response. The resulting step response
is then sampled with a given period T and a corre-
sponding discrete impulse response is obtained. Finally,
the impulse response is used to perform convolution to
get the system output. Point out that fractional systems
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Fig. 1. Amplitude frequency response of a real temperature
process which exhibits fractional slope on certain
frequency band.

Fig. 2. Simple laboratory temperature process with an
electric heater and cooler.

are linear, so all fundamental concepts of linear control
theory hold true. The final simulator is implemented into
an individual MATLAB/Simulink compatible s-function
block. The simulator can be automatically deployed to
various real-time platforms. The results are analyzed and
compared to other techniques of MFPM implementation
in both time and frequency domain. It is believed that
the presented approach will allow to create advanced real-
time simulators of fractional processes or eventually apply
advanced predictive control strategies. Up to the authors’
knowledge, such technique for MFPM real-time simulation
was not described before.

The rest of the paper is organized as follows: The basic
definitions and preliminaries are stated in Section 2. The
development of multiple fractional pole simulator is de-
scribed in Section 3. Practical examples of real temper-
ature process and predictive control simulation are docu-
mented in Section 4. Conclusions and ideas for future work
can be found in Section 5.

2. MULTIPLE FRACTIONAL POLE MODEL – MFPM

It was shown in Charef et al. (1992) that to cover the
majority of physically monotone processes, one has a priori
to consider the transfer function in the form

P (s) =
K

p∏
i=1

(τis+ 1)ni

, (1)

where p is arbitrary integer number and K, τi, ni i = 1,
2, . . . , p are positive real numbers.

Remark 1. If all ni, i = 1, 2, . . . , p are integer numbers,
one obtains a classical integer-order transfer function in
a Bode’s form.

Remark 2. If p → ∞ then the set of all transfer func-
tions (1) contains also processes with dead time and
approximates several processes with transcendent trans-
fer functions (like heat transfer), see e.g. Åström and
Hägglund (2006).

Note, that by fractional poles one can reach arbitrary slope
of asymptotic amplitude frequency response. For instance,
the frequency response measured on a real temperature
process depicted in Fig. 2 can be approximated by a
fractional pole with order equal to 26dB/dec magnitude
loss, see Fig. 1.

Also a set of ultimate process models gained from simple
relay or pulse experiment is covered by MFPM in the
form (1) (see Schlegel and Čech (2005); Schlegel and Čech
(2014) for details). Hence the motivation for the work
described below is obvious.

3. MULTIPLE FRACTIONAL POLE SIMULATOR

Remind that the output y(t) of any causal linear system
can be defined as a convolution of the input signal u(t)
and the impulse function h(t)

y(t) =

∞∫
0

h(τ)u(t− τ)dτ. (2)

The system is uniquely determined by the impulse function
h(t) and the output y(t) can be computed for arbitrary
input signal u(t).

Therefore, the aim in the rest of work is to compute
discrete impulse response of MFPM discretized with given
sampling period T .

3.1 Single fractional pole impulse response

Firstly, let us consider a single fractional pole

P (s) =
1

(τs+ 1)m
. (3)

For m being integer number, it is very easy to evaluate
an impulse response (using well-known Laplace transform
relations) as

h(t) =
t(m−1)

τm(m− 1)!
e−t/τ . (4)

For non-integer m, the relation (4) can be generalized to

hFP(t) =
tm−1

τmΓ(m)
e−t/τ , (5)

where Γ(m) is a gamma function serving as a general-
ization of factorial function for any real m, see Fig. 3.
The impulse response examples are shown in Fig. 4. Cor-
responding step responses are shown in Fig. 5.
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Fig. 3. Gamma function – generalization of factorial.
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Fig. 4. Computed impulse responses of a single fractional
pole depending on its order m.

Remark 3. The numerical evaluation of gamma function
is available in many advanced computing packages like
MatlabTM, MapleTM, MathematicaTM, etc.

3.2 Multiple fractional pole impulse response

In case of general MFPM in the form (1), let use denote
hi(t) the impulse response belonging to the i-th fractional
pole. Then the impulse response of the system (1) can
be computed, according to well known Laplace transform
relations, as

hMFP(t) = K ((h1(t) ∗ h2(t)) ∗ · · · ∗ hp(t)) , (6)

where (∗) denotes convolution.

Remark 4. For evaluating expression (6), the numerical
integration with Simpsons rule was used to improve the
precision of gained impulse response.

3.3 Computing MFPM step response

The step response g(t) of a multiple fractional order pole
model can be computed by integrating impulse response
as

gMFP(t) =

t∫
0

hMFP(τ)dτ. (7)

An example of computed step responses of single fractional
pole is shown in Fig 5.

Fig. 5. Computed step responses of a single fractional pole
depending on its order m.

Remark 5. The the impulse response (6) and step response
(7) can be evaluated off-line with arbitrary precision
available in professional RTD SW mentioned earlier. For
numerical integration, the Simpsons rule was used.

Remark 6. The final time tF for enumeration of impulse
and step functions is chosen in such a way that the
impulse response is sufficiently close to zero at the time
tF or equivalently the relative change of step response is
sufficiently small (i.e. steady state is reached).

3.4 MFPM step response discretization

Consider, that for real time simulation or predictive con-
trol one needs the simulator running with sampling time
T . The final discrete impulse response hd(t) and discrete
step response gd(t) is obtained by discretization of pre-
computed step response gMFP(t) as

hdMFP(kT ) = gMFP(kT ), k = 0

= gMFP(kT )− gMFP ((k − 1)T ) , k > 0 (8)

gdMFP(kT ) = gMFP(kT ). (9)

Remark 7. The presented approach ensures the correct
process static gain in the discrete simulator. This is the
key advantage compared to the situation when the discrete
impulse response is obtained by the direct discretization
of the continuous one.

To summarize the Section, the main research result is a
set of SW tools that allow to proceed with the above
mentioned steps and to compute the final functions (8),
(9). The SW structure is briefly outlined also in Fig. 13.

4. ILLUSTRATIVE EXAMPLES

In this Section, the utilization of developed tools will be
shown on four examples starting from the single fractional
pole and finishing by the advanced predictive control
simulation.

4.1 Example 1: Single fractional pole

Consider the process which can be described by the single
fractional pole

P (s) =
1

(5s+ 1)2.7
. (10)
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Fig. 6. Example 1: Step response of single fractional pole;
comparison with integer orders m = 2 and m = 3.

The discrete impulse response was obtained by applying
the whole procedure described in Section 3. Results of
step response simulation are depicted in Fig. 6. One can
check that the resulted step response lies between two step
responses obtained for integer orders m = 2 and m = 3
which is intuitively correct results.

4.2 Example 2: Heat transfer in the metal rod

Consider a transcendent transfer function

P (s) =
1

cosh(
√
s)

(11)

describing the heat transfer in the metal rod (Åström
and Hägglund (2006)). For time domain simulation or
linear controller design, the transfer function (11) may
be approximated on a certain frequency band by MFPM
model

P (s) =
1

(0.017s+ 1)4.86(0.386s+ 1)1.07
. (12)

Assume that model (12) is further used for controller
design. The controller will run on real plant with sampling
rate T = 0.1[s]. Obviously, one needs a correct simulator
of model (12) to evaluate the controller tuning settings
before its installation into real plant.

Remark 8. Note, that the controller design for MFPM
model can be carried out in frequency domain using stan-
dard linear theory (e.q. Nyquist plot shaping, sensitivity
function shaping).

Using the tools developed, the discrete simulator with
required sampling rate was obtained. It was tested in
both time and frequency domain. In Figures 7, 8 and 9
one can check its impulse, step and frequency responses,
respectively. All responses are compared to

• responses obtained by continuous filter which ap-
proximates optimally MFPM model on 4-decade fre-
quency band. The optimality criterion is a quadratic
difference between true and approximated frequency
response on a respective frequency band (see Čech
and Schlegel (2011) for details). The filter is finally
discretized for required sampling period and is further
called as ’optimal filter’,
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Fig. 7. Example 2: Impulse response of a discrete simula-
tor, comparison with optimal continuous approxima-
tion filter and true impulse response
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Fig. 8. Example 2: Step response of a discrete simulator,
comparison with optimal continuous approximation
filter and true step response

• true impulse and step responses computed by (6)
and (7); true frequency response obtained by direct
substitution s = jω into the MFPM (12).

4.3 Example 3: Real temperature process

On real temperature process shown in Fig. 2, an identifica-
tion experiment was made which resulted into the MFPM

P (s) =
102

(14.2s+ 1)(399.5s+ 1)1.1
. (13)

Similarly to previous example, the aim is to obtain a
discrete simulator with a long sampling rate T=50[s]. In
Figures 10, 11 and 12 one can check the impulse, step and
frequency responses, respectively.

In both examples, the proposed simulator reaches the
same precision as the high order filter which approximates
MFPM model. Simultaneously, one can benefit from easy
and numerically more robust implementation on embed-
ded devices.
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Fig. 9. Example 2: Frequency response of a discrete sim-
ulator, comparison with optimal continuous approxi-
mation filter and true frequency response
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Fig. 10. Example 3: Impulse response of a discrete simula-
tor, comparison with optimal continuous approxima-
tion filter and true impulse response
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Fig. 11. Example 3: Step response of a discrete simulator,
comparison with optimal continuous approximation
filter and true step response
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Fig. 12. Example 3: Frequency response of a discrete sim-
ulator, comparison with optimal continuous approxi-
mation filter and true frequency response

4.4 Example 4: Predictive control of fractional system

Finally, let us show how the tools may be useful for predic-
tive control strategies. Assume that one wants to design
predictive control strategy for a temperature process (13).
Due to actuator constraints (saturation limits), classical
PID control works not satisfactorily as it runs not in linear
mode. This drawback cannot be solved by more advanced
linear controller (e.g. fractional PID). Recently, a real-time
function block was developed for such purposes (Schlegel
and Sobota (2008)). It takes saturation limits into account.
The key block parameter is a discrete step response which
is used internally for computing process prediction. The
vector of step response values can be gained from precise
step response (7) which is obtained by integration of com-
puted impulse response (6).

Thus the tools developed may be used for complete (even
real-time) simulation of predictive control closed loop on
both process model and controller side. The results of
predictive control time domain simulation are shown in
Fig. 14. Compared to open loop, the settling time has been
significantly shortened as the controller limits are properly
utilized in predictive control strategy.

5. CONCLUSION

The new method for creating reliable real-time simulators
of multiple fractional-order pole models was presented in
this paper. It is based on exact step response discretiza-
tion. Comparing to other approaches, the proposed tech-
nique decreases computational burden and the resulting
simulator can be deployed even to real-time embedded
devices. It was shown, that the results can be used for
simulation purposes or predictive control of distributed
parameter processes. In the future, the results will be
included into free virtual labs available at www.contlab.eu
and www.pidlab.com.
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control loop performance index evaluated for a class of
fractional- order processes. In Proceedings of 19th IFAC
World Congress. Cape Town, Republic of South Africa.
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