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Abstract: Control loop performance assessment procedures are established as key cornerstone
of process optimization and monitoring. Unfortunately, many methods do not consider the
maximum possible performance which can be achieved by the fixed structure controller installed
in the loop (typically PID). In authors’ recent work such method was described. It was shown
that – with respect to classical minimum variance method – the maximum performance is
strongly influenced by the process normalized dead time. Consequently, the process model
should be re-estimated during the plant operation. This paper describes technique which
integrates continuous estimation of process model including normalized dead-time and control
loop performance assessment. The process model is considered as fractional in order to fit well to
distributed parameter systems appearing in chemical process control industries. All procedures
are packed into advanced function blocks which are ready for real-time applications.

Keywords: Control loop performance assessment, process control, fractional-order systems,
loop bandwidth, Bode theorem, sensitivity function, Fourier transform

1. INTRODUCTION

In last decades, industry is facing a strong pressure for
plant and machine optimization in order to achieve energy
and material savings and increase product quality. Control
loop performance assessment (CLPA) can be viewed as
one of relevant technologies to handle this issue. Since
1970, it became an inseparable part of widely distributed
control systems – especially in refineries, oil and chemical
sectors. The control engineers proved that correct CLPA
application leads to huge energy and material savings and
increased overall product quality (Desborough and Miller
(2002)). Therefore, CLPA faces growing interest in both
research and engineering community. Several surveys of
existing CLPA approaches has been done e.g. in Harris
et al. (1999); Åström and Hägglund (2006); Shardt et al.
(2012); Jelali (2013).

Unfortunately, the utilization of CLPA is still undervalued
despite its evident positive impact. Analysis of current
state clearly shows, that there is a need for hard work
at both research and engineering side. The controllers
are frequently tuned only once, the others work with
default parameters or just in manual mode. Even when
the controllers are initially well tuned they should be
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continuously monitored because process dynamics varies
and the actuators – namely valves – degrade over the
time. Several renowned studies declare that about 70% of
control loops are not properly tuned also due to the lack
of monitoring tools based on exact problem formulation.

It is worth to mention that large-scale process industries
often work with stand-alone monitoring system which
analysis off-line data gained from a signal database. Com-
monly, the current control quality is compared to the best
linear controller (minimum variance – see e.g. Lynch and
Dumont (1996); Harris et al. (1999)).

Today, those traditional concepts need substantial revi-
sion. More specifically, the tighter collaboration with pro-
cess controllers should be formed to make CLPA methods
most effective and reliable. Firstly, one needs an insight
what is the best performance achievable by the controller
currently integrated in the loop which has typically fixed
structure – PI or PID. This challenge was addressed earlier
e.g. in Qin (1998); Ko and Edgar (1998); Grimble (2003);
Thyagarajan et al. (2003). However, only the low order
plant models are used there and the maximum achievable
performance is computed numerically. The more prag-
matic approach can be examined in Huang (2003) where a
trade-off curve between input and output variance is taken
into account. Secondly, at least a rough knowledge of the
process model is necessary for more accurate estimation
of maximum achievable performance. It was shown e.g. in
Harris et al. (1999) that the performance index depends
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significantly on the process dead time. Taking into account
that the process dynamics varies over the time, the process
model should be evidently re-estimated during the plant
operation. It will help to make more precise performance
evaluation and minimize the number of fake alarms. Con-
sequently, the plant operators will concentrate on the most
problematic loops. Moreover, the methods estimating both
the process model and actual performance index need
to be minimally invasive and should work in the closed
loop. A majority of recent research concentrates only on
closed loop identification from a setpoint step test, see e.g.
Okamoto et al. (1996); Liu and Furong (2009); Cai et al.
(2004). For practical applications, techniques dealing with
more general input-output data are necessary.

One perspective approach is documented in this paper.
It is a priori assumed that the process can be described
by multiple fractional-pole model. In contrast to other
methods, only a few characteristic numbers are estimated.
Clearly, the model estimation can be done when the plant
dynamics is sufficiently excited. In practice, it happens
when the process changes its operating point or if some
disturbance affects the loop. If the system is not excited
for a long time a low-amplitude harmonic signal is injected
to the loop. In this case, also the control loop performance
index can be estimated simultaneously.

The rest of the paper is organized as follows: In Sec-
tion 2, the problem of performance index estimation is
formulated. Section 3 describes possible model estimation
technique and discuss its advantages and drawbacks. Il-
lustrative examples are shown in Section 4. Concluding
remarks and ideas for further work are given in Section 5.

2. PROBLEM FORMULATION

2.1 Multiple fractional pole model

As proposed in Charef et al. (1992), to cover the huge
number of essentially monotone real processes (Åström
and Hägglund (2004)), one has a priori to consider the
multiple fractional pole model in the form

P (s) =
K

p∏
i=1

(τis+ 1)ni

, (1)

where p is arbitrary integer number and K, τi, ni i = 1,
2, . . . , p are positive real numbers.

Remark 1. If all ni, i = 1, 2, . . . , p are integer numbers,
one obtains a classical integer-order transfer function in
a Bode’s form.

Remark 2. If p→∞ then the set of all transfer functions
(1) contains also processes with dead time and approxi-
mates several processes with transcendent transfer func-
tions (e.g. heat transfer).

2.2 Characteristic numbers – experimental data

Three-parameter time domain process description is well
accepted in the control community. The authors’ previous
works vindicate the usage of first three moments mi of the
impulse response h(t) instead of numbers obtained from
the step response using its tangent line in the inflexion
point. The application of time moments in control field

Fig. 1. Ideal (reference) and real shapes of sensitivity
functions

firstly appeared in Maamri and Trigeassou (1993). They
are defined as

mi =

∞∫
0

tih(t)dt, i = 0, 1, 2 (2)

and may be converted to another more suitable group of
numbers

{
κ, µ, σ2

}
(Schlegel and Večerek (2005)) defined

as

κ =

∞∫
0

h(t)dt = m0, µ =

∞∫
0

th(t)dt

∞∫
0

h(t)dt

=
m1

m0
,

σ2 =

∞∫
0

(t− µ)2h(t)dt

∞∫
0

h(t)dt

=
m2

m0
− m2

1

m2
0

. (3)

It can be proved (Čech (2008)) that for transfer function
(1), it holds

κ = K, µ =

p∑
i=1

τini, σ2 =

p∑
i=1

τ2
i ni. (4)

From a control point of view, κ is equal to process static
gain and µ represents the residual time constant. Without
loss of generality, the process can be normalized in gain
and time, thus κ̄ = 1 and µ̄ = 1. The remaining parameter
σ̄2 = σ2/µ2 then has a meaning similar to normalized dead
time.

2.3 Performance index

In authors’ previous work Schlegel et al. (2014), the novel
performance index was defined. It is based on Bode the-
orem and an assumption of process monotonity and con-
troller exhibiting integrating behavior at low frequencies
(like PI/PID). Consequently, an ideal shape of sensitivity
function was defined (see Fig. 1). It is parameterized by
only two numbers: maximum sensitivity function value Ms

and available loop bandwidth Ωa.

Then the performance index enumerates the ratio of the
ideal to actual sensitivity function at some frequency from
interval ωd ∈ (0,Ω0) (see Fig. 1). It can be defined as

Ip =
Msωd

Ω1|S(jωd)|
.
=

Msωd ln(Ms)

Ωa(ln(Ms)Ms −Ms + 1)
· 1

|S(jωd)|
,

(5)

where Ω1
.
= Ωa(ln(MS)MS−MS+1)

ln(MS) and Ω0 = Ω1/MS .
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Fig. 3. General structure of RFI block with process fre-
quency response estimator based on RDFT

Remark 1. The substantial advantage of index (5) is that
it provides information whether the controller is too slug-
gish (Ip � 1) or too aggressive (Ip � 1), i.e. can handle
to robustness/performance trade-off.

Recently, maximum achievable index IpO(σ̄2) was nume-
rically evaluated depending on σ̄2 for PI/PID controller
and process (1), see (Schlegel et al. (2014)). The conse-
quent effort was devoted to development and testing of
methods for real-time simultaneous estimation of both the
process model (RFI) and loop performance index (LPI).
The results are documented in upcoming sections.

In another authors’ previous work Schlegel et al. (2013),
the new algorithm for closed loop frequency domain es-
timation was introduced. The novel contribution of this
work is the algorithm for computing time-domain model
from estimated frequency response points. Moreover, the
synergic fusion of loop performance index and closed-loop
identification will be shown, see Fig. 2.

3. MODEL ESTIMATION

Closed-loop frequency domain estimation introduced in
Schlegel et al. (2013) is called recursive frequency iden-
tification (RFI) and needs only minimum amount of a
priori information about the process and it is capable
to estimate several points of frequency response without
need of external perturbations (due to advanced error
estimation algorithm), see Fig. 3. Firstly, input signals
have to be filtered by band-pass filters. Band-pass filter
(BPF) eliminates both low-frequency bias terms and high-
frequency noise and emphasizes the dynamics at frequency
ω Åström and Hägglund (2006). Then running discrete
Fourier transform (RDFT) algorithm is used to estimate
frequency response function:

P (jω) =
Y (jω)

U(jω)
.

Fig. 4. A priori process knowledge for evaluation of error
in computing process frequency response samples:
residual time constant τ , maximum delay Td, static
gain limits KL, KH

Real and imaginary part of frequency response P (jω) can
be computed as

Re(P (jω)) = (Re(Y )Re(U) + Im(Y ) ∗ Im(U))− E2(U),

Im(P (jω)) = (Im(Y )Re(U)− Re(Y ) ∗ Im(U))− E2(U),
(6)

where Re(U), Re(Y ), Im(U) and Im(Y ) and E2(U)
are computed by RDFT algorithm. In this algorithm the
estimation error is used to decide whether the results are
valid and could be sent to output of the block. Estimation
error algorithm uses the a priori known bounds of the
controlled system step response shown in Fig. 4. Prediction
error is described by equations

Y (z) =

M−1∑
k=0

ykz
−k =

=

(
N−1∑
i=0

hiz
−i

)(
M−1∑
k=0

ukz
−k

)
+R0(z)− L0(z)

Y (z) = P (z) · U(z) +R0(z)− L0(z)

R0(z) =

N−1∑
k=1

(
N−1∑
i=1

hiuk−i−1

)
z−k+1

L0(z) =

N−1∑
k=1

(
N−1∑
i=1

hiuM−i

)
z−(M+k−1)

|E(z)| = |R0(z)− L0(z)| ≤ |R0(z)|+ |L0(z)|,
(7)

where hi are impulse series coefficients, N is its length,
M is RDFT buffer size. Remind, that suitable input
signal is essential in any identification procedure. Here,
the system has to be sufficiently excited on frequencies at
which frequency response will be estimated. Easier way is
to use special input signal in open loop but this type of
experiment is not acceptable in most of practical cases. It
is assumed that the process dynamic is estimated during
step changes of working points or when performance index
is estimated (both in closed loop).

From estimated frequency response points system model
can be computed:

P (s) = K
e−Ds

(τs+ 1)n
, K,D, τ, n ∈ R+, (8)

where K is process gain, D time delay, τ time constant and
n model order (can be fractional). Process characteristic
number for (8) can be computed:

κ = K, µ = τn+D, σ2 = τ2n, σ̄2 =
σ2

µ2
.
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Fig. 5. System transfer function computation from two
points of frequency response

For model (8) estimation, two points of system frequency
response have to be known, see Fig. 5. From (8) we get

|P (jω)| = K
1

|(τ jω + 1)n|
= K(τ2ω2 + 1)−

n
2 = R. (9)

With two measured frequency response points P (jω1) =
A1 + jB1, P (jω2) = A2 + jB2 ve get from (8) and (9)

lnK − n

2
ln(τ2ω2

1 + 1) = lnR1, (10)

lnK − n

2
ln(τ2ω2

2 + 1) = lnR2 (11)

and (assuming frequency response points are in 3rd and
4th quadrant)

−π
2
− arctan

A1

B1
= −ω1D − n arctan(τω1), (12)

−π
2
− arctan

A2

B2
= −ω2D − n arctan(τω2). (13)

After multiplying (12) and (13) by ω2 and ω1, respectively
and substraction (13) from (12) we get

(ω1 − ω2)
π

2
+ ω1 arctan

A2

B2
− ω2 arctan

A1

B1
=

= n [ω1 arctan(τω2)− ω2 arctan(τω1)] .
(14)

From equation (14) we get

L(τ) = Q, (15)

where

L(τ) ,
ω2 arctan(τω1)− ω1 arctan(τω2)

2 ln
τ2ω2

2+1

τ2ω2
1+1

(16)

and

Q ,
(ω2 − ω1)π2 + ω2 arctan A1

B1
− ω1 arctan A2

B2

2 ln R1

R2

. (17)

Clearly, it holds:

lim
τ→0

L(τ) = 0, lim
τ→∞

L(τ) =
π(ω2 − ω1)

4 ln ω1

ω2

. (18)

Claim 1. Equation (15) has solution for τ > 0 if and only

if Q ∈
〈

0, π(ω2−ω1)

4 ln
ω1
ω2

)
. This solution is unique.

Equations for n, D and K can be derived:

After substraction (11) from (10) we get

n

2

[
ln (τ2ω2

2 + 1)− ln (τ2ω2
1 + 1)

]
= ln

R1

R2
. (19)

Fig. 6. Scheme of simultaneous loop performance index
and frequency response points estimation algorithm

Theorem 1. P (jω1) = A1 + jB1 ∧ P (jω2) = A2 + jB2

m

τ is solution of equation L(τ) = P, (20)

n =
2 ln R1

R2

ln
τ2ω2

2+1

τ2ω2
1+1

, (21)

D =
1

ω1

[
π

2
arctan

A1

B1
− n arctan τω1

]
, (22)

K = R1

[
τ2ω2

1 + 1
]n

2 . (23)

All parameters of model (8) will be positive if

Q ∈ 〈0, π(ω2 − ω1)

4 ln ω1

ω2

) ∧ π
2

arctan
A1

B1
− n arctan τω1 > 0

The proof follows immediately from (18) and from the fact
the L(τ) is monotonously increasing function. 2

Remark 2. Equations for n, D and K ((21), (22) and
(23)) can be derived from (19), (12) and (10). Equation
L(τ) = Q have to be solved numerically. In case the model
order n is set by user, explicit relation for τ can be found.

4. ILLUSTRATIVE EXAMPLES

In both examples, the following procedure was used:

(1) Closed loop identification of two freq. response points
by RFI block

(2) Freq. response points validation by error estimation
algorithm

(3) Computation of process model (8)

Computations and simulations were made in Matlab/
Simulink, see Fig. 6, the process was considered as black
box.

Example 1. The heat transfer in the metal rod is described
by fractional order system P1(s) = 1

(0.17s+1)4.86(0.385s+1)1.07

and is being approximated by fractional-order transfer
function (8). Model order n ∈ R is unknown, so τ has to

be computed numerically, leading to P̂1(s) = 0.982e−0.0695s

(0.343s+1)1.194

with characteristic numbers shown in Tab. 1. Results of
this example – comparison of Nyquist and step response
plots of nominal and identified system model are depicted
in Fig. 7 and 8.

Example 2. Consider that simultaneous closed-loop iden-
tification and loop performance assessment is required.
Harmonic perturbations used by control loop assessment
algorithm are used for system identification. It can be
useful in cases where setpoint changes in the system are
rare. In this experiment (see scheme in Fig. 2), both loop
performance index (5) and process model are obtained.
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Fig. 7. Example 1 – Nyquist plots of nominal and identified
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Fig. 9. Example 2 – Experiment progress

Further, it is shown that the process model can be used
to performance index validity improvement and in the
case of bad control quality for controller tuning. Model

of second order system P2(s) = 2e−0.2s

(1.5s+1)2 in closed-loop

experiment with PID controller was identified, see scheme
in Fig. 6. Because external disturbances are supposed, the
closed-loop system is perturbed on two frequencies with
small amplitude. The first one is generated by LPI block
(for performance index estimation) and the second one is
added to setpoint, see Fig 9. In these specific conditions,
the process model was identified by RFI block resulting to

P̂2(s) = 1.99e−0.241s

(1.502s+1)2 , see Fig. 12, 10, 11 and Tab. 1. Simulta-

neously, the actual loop performance index was estimated
as IpA = 0.224 (see Fig. 13). For known σ̄2 it is possible
to determine optimal performance index IpO(σ̄2) = 0.392,
see Fig. 14. Loop performance index can be computed as

Īp =
IpA
IpO

= 0.571. This value shows that performance of

actual PID is not good and it should be retuned (σ̄2 could
be used for obtaining new parameters), see Fig. 15.
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Fig. 10. Example 2 – Nyquist plots of nominal and identi-
fied process with estimated frequency response points
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Fig. 11. Example 2 – Comparison of nominal and identified
process step responses
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Fig. 12. Example 2 – Real and imaginary parts of fre-
quency response points estimation
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estimation
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Fig. 15. Example 2 – Closed loop system step response

Example κ µ σ2 σ̄2 κ̂ µ̂ σ̂2 ˆ̄σ2

1 1 0.49 0.16 0.64 0.98 0.48 0.14 0.61
2 2 3.2 4.5 0.44 2.01 3.23 4.51 0.43

Table 1. Examples results – characteristic
numbers of nominal and identified processes

5. CONCLUSION

In this paper a new approach to simultaneous control
loop performance evaluation and process identification was
described. It was assumed that the process is essentially
monotone and can be described by multiple fractional pole
model. It was shown that the process normalized dead-
time can be estimated during working point transients
or when the low-amplitude harmonic signal is injected
into the loop. Simultaneously, the actual performance in-
dex can be estimated and compared to the maximum
achievable one depending on actual normalized dead-time.
For both tasks, running discrete Fourier transform was
employed. All algorithms were implemented into Mat-
lab/Simulink function blocks which are ready for real-time
embedded devices.
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