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Abstract: Model predictive control (MPC) is an optimization-based tool that is widely used
in the chemical industry, and nonlinear MPC (NMPC) expands the technology to handle more
detailed models that are accurate across a wider range of state values. Many works in the
literature have studied NMPC using Input-to-State Stability (ISS). The purpose of this work is
to provide a method for calculating state trajectory bounds for NMPC using ISS theory. These
predictive bounds are derived in terms of parameters that may be found from a series of open
loop calculations in the general nonlinear case. Results are shown for a scalar linear system and
a nonlinear CSTR, and the challenges involved with higher dimensional problems are discussed.
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1. INTRODUCTION

Model predictive control (MPC) has seen a variety of
applications in chemical processes, and its advantages
include a natural way of handling inequality constraints
and multiple-input-multiple-output systems due to the
optimization formulation of the problem. A survey of
industrial uses of MPC is given in Qin and Bagdwell
(2003), and a thorough treatment of MPC is given in
Rawlings and Mayne (2009). Nonlinear model predictive
control (NMPC) has the added advantage of being able to
use a detailed first-principles dynamic model in order to
provide accuracy across a wide range of states; a good
introduction to NMPC is given in Grüne and Pannek
(2011). Furthermore, if a sensible initialization strategy
is used, an exact solution to the nonlinear programming
(NLP) problem is not required, as shown in Pannocchia
et al. (2011). Even so, NMPC is still not as common,
partially due to the difficulty of solving large nonlinear
models online. However, recent work in advanced-step
NMPC allows for control regardless of model solution time,
as developed in Yang and Biegler (2013) and Zavala and
Biegler (2009).

The idea of input-to-state stability (ISS) is used to extend
stability analysis to systems with uncertainty. The prop-
erty was originally described for continuous time (CT) sys-
tems in Sontag (1989) and was extended to discrete time
(DT) systems in Jiang and Wang (2001). Furthermore,
ISS has been proposed as a framework for NMPC (Limon
et al., 2009), and it provides a very convenient and natural
way of thinking about robust stability. The goal of this
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work is to explicitly calculate the values of ISS bounds for
NMPC.

The chief difficulty for this problem lies in finding rigorous
bounds that are small enough to be useful. To aid in this,
the ISS theorem is extended to allow for an uncertain
term that depends on the state of the system as well
as the realization of uncertainty. Also, general forms of
the comparison functions are proposed to be used for
the case of NMPC. Then, these comparison functions are
used to formulate predictive ISS bounds through the ISS
Lyapunov theorem for DT systems. A method of finding
the parameters of the comparison functions is described,
and computational examples include a scalar linear system
and a nonlinear CSTR.

2. NMPC FORMULATION

Here we describe terminal constrained NMPC applied to
the discrete time system xk+1 = f(xk, uk, wk), where the
variable subscript k denotes values at discrete time tk. The
vector xk contains the state values at time tk, the vector
uk contains the control values at time tk, and the vector
wk contains the disturbance values at time tk. Assume
that the desired setpoint is xss = 0, uss = 0, with xss =
f(xss, uss, 0). The stage cost will be l(xk, uk) = xT

kQxk +
uT
kRuk, where Q and R are positive definite matrices. This

gives the following optimal control problem at time tk:

min VN =

N−1∑
i=0

l(zi, vi) + φ(zN ) (1a)

s.t. zi+1 = f(zi, vi, 0), z0 = xk, ∀ i = 0 . . . N − 1 (1b)

∀ zN ∈ Xf , zi ∈ X, ∀ i = 0 . . . N − 1 (1c)

where N is the control horizon, zi is the predicted state
vector at time tk+i, vk is the predicted control vector at
time tk+i, X is the feasible region of zi which we represent
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with lower and upper bounds, Xf is the terminal region
and φ(zN ) is the terminal cost. This problem is solved
at time tk, and then v0 is injected to the plant, so that
uk = v0. This process is repeated at each time tk, so that
the horizon shifts forward one time step for each problem
solved.

Note that the above formulation contains both terminal
and state constraints, and there are examples (Grimm
et al., 2004) where these constraints can lead to zero
robustness in the NMPC controller. This issue may be
rectified by replacing the state constraints by penalty
terms folded into the stage costs and replacing the terminal
region with a penalty term folded into the terminal cost.
Moreover, if the nominal formulation shown above is
feasible, as in the examples considered later in this paper,
then it is equivalent to a formulation without Xf and X,
but with penalty terms that have sufficiently large weights
(see Pannocchia et al. (2011); Jäschke et al. (2014)).

We refer to this problem as a ”nominal” NMPC formula-
tion, as opposed to a ”robust” formulation, since distur-
bances do not appear explicitly here. Robust formulations
include min-max NMPC or tube-based NMPC, which tend
to suffer from conservative solutions and computational
complexity, respectively, and are not considered here. In-
stead, we study the behavior of the nominal formulation
(with sufficiently large penalties and without Xf and X)
upon closing the loop.

3. THE INPUT-TO-STATE STABILITY PROPERTY

Here, the ISS property is described. First, we state neces-
sary the set and function definitions. We use Rn as the set
of real vectors in n-dimensional space and I as the set of
integers. A superscript + is used to add the modification
that the set only contains numbers greater than or equal
to zero. A function α : R+ → R+ is of class K if it is
continuous, strictly increasing, and α(0) = 0. The function
α is of class K∞ if it is of class K and limx→∞ α(x) = ∞.
The function β : R+×I+ → R+ is of class KL if β(·, k) ∈ K
for all fixed k ∈ I+, β(|x0|, ·) is decreasing for all fixed |x0|,
and limk→∞ β(|x0|, k) = 0.

Since, for NMPC, the controls uk are determined as some
function uk = κ(xk) by the optimizer, we may drop
uk as an argument of f . So, consider the discrete time
nonlinear system, xk+1 = f(xk, wk), xk ∈ X, wk ∈ W,
with initial state x0 and infinite series of inputs w =
{w0, w1, . . . }, where X is a closed subset of Rn and W is
a compact set containing the origin. Define the following
sets: X ⊂ X, a closed robust positive invariant set for
xk+1 = f(xk, wk), wk ∈ W , and W, the set of infinite
sequences w satisfying wk ∈ W ∀k ∈ I+. Next define the
norms: | · |, the Euclidean norm, and || · ||, the `∞ norm for
sequences, ||w|| := supk∈I+ |wk|. If the system is ISS, then:

|xk| ≤ β(|x0|, k) + γ(||wk||) ∀k ∈ I+ (2)

∀ x0 ∈ X, wk ∈ W
where wk = {w0, w1, . . . , wk−1, 0, 0, . . . }, β(·, ·) is of class
KL, and γ(·) is of class K.

Furthermore, this property can be decomposed into two
time periods: |xk| ≤ β(|x0|, k) ∀ k ∈ {0, . . . , k0 − 1} ,
and |xk| ≤ γ(||wk||) ∀ k ∈ {k0, k0 + 1, . . . }, where k0 is
the first time that |xk| ≤ γ(||wk||). That is, the system

trajectory has an asymptotic bound β(|x0|, k), until the
first time that the trajectory crosses the boundary of the
ball of radius γ(||wk||). This ball is then positive invariant,
meaning the system trajectory never leaves it, although
the state value of the trajectory may take any value inside
the ball.

4. THE ISS LYAPUNOV THEOREM WITH A
MODIFIED UNCERTAIN TERM

Here we state a version of the Lyapunov-based ISS theorem
from Jiang and Wang (2001) that is extended to allow for
a uncertain term that is a function of the state as well
as the realization of uncertainty, which leads to a tighter
bound since one value need not hold for all states. The
proof is also summarized, so that the functional forms of
the bounds are apparent. Note that we only show where
the proof deviates from the work of Jiang and Wang. We
also rely on the extension to systems with state constraints
shown in Appendix B of Rawlings and Mayne (2009).
Use the system definition from the previous section, and
assume that there exists a Lyapunov function V (x) that
admits the following comparison functions:

α1(|x|) ≤ V (x) ≤ α2(|x|) ∀ x ∈ X, (3a)

V (f(x,w))− V (x) ≤ −α3(|x|) + σ(|x|, |w|) (3b)

∀ x ∈ X, w ∈ W

where α1(·), α2(·), and α3(·) ∈ K∞, σ(|x|, 0) = 0 and
σ(|x|, |w|) is continuous and strictly increasing with re-
spect to either argument for nonzero |w|. Now define
the functions α4(·), ρ(·), and α̂4(·) to have the following
properties: α4(·) = α3 ◦ α−1

2 (·), α̂4(s) ≤ α4(s) ∀ s,
id− α̂4(·) ∈ K∞, ρ(·) ∈ K∞, and id− ρ(·) ∈ K∞, where id
denotes the identity function. See lemma B.1 of Jiang and
Wang (2001) for proof that α̂4(·) exists. Now, assume that
we have a solution to the following auxiliary optimization
problem:

min b (4a)

s.t. ρ ◦ α̂4 ◦ b ≥ σ(|x|, ||w||) ∀ x : V (x) ≤ b (4b)

ρ ◦ α̂4 ◦ V (x) ≥ σ(|x|, ||w||) ∀ x : V (x) > b (4c)

b ≥ 0 (4d)

where ||w|| is an upper bound on |wk|. Assuming a solution
to (4) is the key point that allows σ to be a function of
|x|. In words, this problem is to determine the smallest
Lyapunov function value, b, that defines a sublevel set
in the state space that is positive invariant for f and a
superlevel set that has an asymptotic descent property.
Note that the two constraints above can be simplified to
solvable forms for specific cases (see Section 8).

We can now say that the system is ISS, and we can
construct β and γ by following the proof of Lemma 3.5
in Jiang and Wang (2001) . Consider the set D = {x :
V (x) ≤ b}. If x ∈ D, then we have:
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V (f(x,w)) ≤ V (x)− α3(|x|) + σ(|x|, ||w||) (5a)

≤ V (x)− α4 ◦ V (x) + σ(|x|, ||w||) (5b)

≤ V (x)− α̂4 ◦ V (x) + σ(|x|, ||w||) (5c)

= (id− α̂4) ◦ V (x) + σ(|x|, ||w||) (5d)

≤ (id− α̂4) ◦ b+ σ(|x|, ||w||) (5e)

= (id− α̂4) ◦ b+ σ(|x|, ||w||)
+ρ ◦ α̂4 ◦ b− ρ ◦ α̂4 ◦ b (5f)

≤ (id− α̂4)(b) + ρ ◦ α̂4(b) (5g)

= −(id− ρ) ◦ α̂4(b) + b ≤ b (5h)

∀ x ∈ D, x ∈ X, w ∈ W
Note that step (5f) to (5g) holds due to satisfaction of
(4b). Thus, the constant b is the Lyapunov function value
that corresponds to the invariant ball, so set γ(||wk||) =
α−1
1 (b). Now consider x /∈ D:

V (f(x,w))− V (x) ≤ −α3(|x|) + σ(|x|, ||w||) (6a)

≤ −α4 ◦ V (x) + σ(|x|, ||w||) (6b)

≤ −α̂4 ◦ V (x) + σ(|x|, ||w||) (6c)

= −α̂4 ◦ V (x) + ρ ◦ α̂4 ◦ V (x) + σ(|x|, ||w||)
−ρ ◦ α̂4 ◦ V (x) (6d)

≤ −α̂4 ◦ V (x) + ρ ◦ α̂4 ◦ V (x) (6e)

= −(id− ρ) ◦ α̂4 ◦ V (x) (6f)

∀ x /∈ D, x ∈ X, w ∈ W
Note that step (6d) to (6e) holds due to satisfaction of
(4c). Furthermore, following from (6f), we have that:

V (xk+1) ≤ (id− (id− ρ) ◦ α̂4) ◦ V (xk) (7a)

V (xk+1) ≤ (id− (id− ρ) ◦ α̂4) ◦ α2(|xk|) (7b)

xk+1 ≤ α−1
1 ((id− (id− ρ) ◦ α̂4) ◦ α2(|xk|)) (7c)

|xk| ≤ (α−1
1 ((id− (id− ρ) ◦ α̂4) ◦ α2(|x0|)))k

=: β(|x0|, k) (7d)

∀ x /∈ D, x ∈ X, w ∈ W
where the superscript k denotes the function of a function,
k times (the result of the expression is plugged back in,
in place of |x0|, k times). Note that the right-hand side
of (7b) is of class K∞. The final expression holds true
∀ k ∈ {0, . . . , k0 − 1}, where k0 is the first time such that
|xk| ≤ γ(||wk||).

5. A DEGREE OF FREEDOM IN THE BOUNDS

Notice that ρ(·) can be any function that fulfills ρ(·) ∈ K∞,
and id − ρ(·) ∈ K∞. To see the effect of ρ(·), inspect (4)
and (7d). The choice of ρ(·) affects the magnitude of b and
therefore affects γ(||wk||) as it appears in (2). If we choose
ρ(s) to be close to s, then we are effectively choosing a
smaller value b and a smaller γ(||wk||). This means that
j0 becomes a point further forward in time, and γ(||wk||)
only has to bound xk after some larger fraction of the
initial state has decayed. This gives tighter bounding of
|xk| as k → ∞. On the other hand, β(|x0|, k) becomes
larger. The opposite holds if we make ρ(s) close to 0. Thus,
varying ρ(·) will lead to different functions β(·, ·) and γ(·),
and they will correspond to different b, γ(||wk||), β(|x0|, k),
and j0.

For ease of use, we will define ρ(s) = ε1s, ε1 ∈ (0, 1), so
that ε1 close to 1 gives the tightest γ(||wk||), and ε1 close
to 0 gives the tightest β(|x0|, k).

6. APPLICATION TO NMPC

The goal of this section is to describe simple but useful
forms for the functions α1, α2, α3, and σ that can be
put to use in the context of NMPC to calculate γ(||wk||)
and β(|x0|, k). Previous work, for example Huang et al.
(2011a,b), has shown that functions exist, but derived
them in terms of Lipschitz constants and a controllability
function that would be difficult to find and would provide
loose bounds. So instead, we propose a general form for
these functions with parameters that can be calculated.

Suppose that we let the Lyapunov function bounds have
a power law form, αi(|x|) = Ni|x|µi , where Ni and µi

are positive parameters that can be found from open
loop calculations. The function σ will be addressed in
detail in the next section. Note that α1(|x|) and α2(|x|)
must provide strict lower and upper bounds on VN (x),
respectively, and N3|x|µ3 must provide a strict lower
bound to l(x0, u0). Also, we require that µ1 ≥ µ2, so that
α2(|x|) ≥ α1(|x|) holds true near the origin.

Now we need to define α̂4(·) so that α̂4(s) ≤ α4(s) ∀ s
and id − α̂4(·) ∈ K∞ are satisfied. The function α̂4(·)
can be constructed piecewise from combinations of α4(·)
and the identity function. First, for convenience, define

θ = N3N2
−µ3/µ2 and B = µ3/µ2, so that α4(·) = θ(·)B .

Now, we must consider three possible cases: B < 1, B > 1,
or B = 1.

If B < 1, then:

α̂4(s) :=


ε2s , s ∈

[
0,
(ε2
θ

) 1
B�1

)
θsB , s ∈

[(ε2
θ

) 1
B�1

,∞
) (8)

If B > 1, then:

α̂4(s) :=



θsB , s ∈

[
0,

(
1

Bθ

) 1
B�1

)

ε2s+ θ

(
1

Bθ

) B
B�1

−ε2

(
1

Bθ

) 1
B�1

, s ∈

[(
1

Bθ

) 1
B�1

,∞

) (9)

If B = 1, then:

α̂4(s) := ε2θs , ε2 < 1/θ (10)

In all cases, ε2 is user determined, ε2 ∈ (0, 1), and a larger
ε2 gives a tighter bound. It is easily verifiable that these
particular forms of α̂4(·) have the necessary properties, but
proof is omitted here for space reasons.

7. EXPRESSIONS FOR THE UNCERTAIN TERM

First consider the expression for the uncertain term in
Huang et al. (2011a), σ(·) = lV lw(·), where lV is the
Lipschitz constant of the Lyapunov function, and lw is
the Lipschitz constant of f with respect to w. Instead of
treating lV as a constant, let lV (|x|) = c|x|+ t, and define
it to be an upper bound on |dVn(x)/d|x||. As we will see
in the examples section, this form for lV works well for
bounding real data. Note that this will be referred to as
the “guaranteed” form of σ.
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Now, consider a form for σ(·) that includes a further
assumption. Suppose that the system xk+1 = f(xk, 0)
exhibits nominal stability, so that there exists a Lyapunov
function with the following properties:

α1(|x|) ≤ V (x) ≤ α2(|x|) (11a)

V (f(x, 0))− V (x) ≤ −α3(|x|) (11b)

∀ x ∈ X

If we assume that f(·, ·) is Lipschitz continuous with re-
spect to its second argument so that |f(x,w)| ≤ |f(x, 0)|+
lw|w|, and that |f(x, 0)| << lw||w||, then:

V (f(x,w))− V (f(x, 0))

≤ α2(|f(x,w)|)− α1(|f(x, 0)|) (12a)

⇒ V (f(x,w))− V (x)

≤ −α3(|x|) + α2(|f(x,w)|)− α1(|f(x, 0)|) (12b)

≤ −α3(|x|) + α2(|f(x, 0)|+ lw||w||)
−α1(|f(x, 0)|) (12c)

≤ −α3(|x|) + α2(|f(x, 0)|+ lw||w||) (12d)

≈ −α3(|x|) + α2(lw||w||) (12e)

∀ x ∈ X, w ∈ W
This implies that σ(|w|) = α2(lw||wk||), which removes
dependence on |x|. Notice that this form may no longer be
a strict bound due to the assumption mentioned above. A
way of stating this assumption in practical terms is that,
after control is applied, any deviation from the setpoint is
much more due to the uncertainty than the control action.
This assumption seems to work well when the uncertainty
is only due to memoryless noise. This will be referred to
as the “approximate” form of σ.

8. CONSTRAINT REFORMULATION

We now find a way to solve (4). The constraints as
written are not usable, since we do not have an analytical
expression for V (x). However, they may be reformulated
into usable constraints. For the first constraint we have:

ρ ◦ α̂4 ◦ b ≥ σ(|x|, ||wk||) ∀ x : V (x) ≤ b (13a)

⇐ ρ ◦ α̂4 ◦ b ≥ σ(|x|, ||wk||) ∀ x : α1(|x|) ≤ b (13b)

⇔ ρ ◦ α̂4 ◦ b ≥ σ(|x|, ||wk||) ∀ x : |x| ≤ α−1
1 (b) (13c)

⇐ ρ ◦ α̂4 ◦ b ≥ σ(α−1
1 (b), ||wk||) (13d)

Then for the second constraint we have:

ρ ◦ α̂4 ◦ V (x) ≥ σ(|x|, ||wk||) ∀ x : V (x) > b (14a)

⇐ ρ ◦ α̂4 ◦ α1(|x|) ≥ σ(|x|, ||wk||) ∀ x : V (x) > b (14b)

⇐ ρ ◦ α̂4 ◦ α1(|x|) ≥ σ(|x|, ||wk||) ∀ x : α2(|x|) > b
(14c)

⇐ ρ ◦ α̂4 ◦ α1(|x|) ≥ σ(|x|, ||wk||) ∀ x : |x| ≥ α−1
2 (b)

(14d)

Substitute |x| = α−1
1 (b) to see that (14d) satisfies (13d).

Thus, once specific functional forms are chosen, solving
this problem simplifies to solving a nonlinear equation
((14d) as an equality) and checking derivatives (that is,
verifying that the derivative w.r.t. |x| of the LHS of (14d)
is greater than or equal to that of the RHS in the necessary
range). Note that, although this reformulation leads to (4)
being solvable, the resulting value of b will be larger than
the optimal value of the original problem.
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Fig. 1. Scalar system, uniform noise

9. SCALAR LQR EXAMPLE

Consider the scalar example: f(x, u, w) = Ax + Bu +
w = .75x + .25u + w, l(x, u) = x2 + u2. Also, let Xf

be the steady state. To solve this problem, we will use
infinite horizon discrete-time linear quadratic regulator
(LQR), and the Lyapunov function bounds may be found
analytically. In this case, the Lyapunov function has the

form V∞(x) =
∞∑
k=0

(xT
kQx + uT

kRuk) = xTJx where x is

the initial condition and J solves a discrete time Riccati
equation. This gives J = 2, so set N1 = N2 = 2. We also
have uk = Kxk, whereK = −(BTJB+R)−1BTJA. So, to
find N3, we calculate Q+KTRK, which gives N3 = 1.11.
Also, since we have V∞(x) = 2x2 = 2|x|2, we can use
lV = 4|x|.
We will consider the case where the guaranteed form
of the uncertain term is used. Consider uniform noise
with w ∈ [−1, 1] and x0 = 10. Now, we must make a
choice for ε1, since many are possible and will provide
different information. Consider ε1 = 0.6 and ε1 = 0.8,
with results in Figure 1. Recall that the trajectory of the
system is bounded, as shown in (2), by β(|x0, k) until the
trajectory crosses γ(||wk||), after which time the trajectory
will always be bounded by γ(||wk||).
Notice that this gives a rather loose bound, but it is an
absolute guarantee. We can also compute γ(||wk||) for
ε1 ≈ 1, which gives γ(||wk||) = 3.6, still a rather loose
bound. However, it is a guarantee no matter the realization
of the noise. Now, consider the case where wk = 1 ∀ k.
See Figure 2, with ε1 ≈ 1. Now, with a much ”worse”
case realization of the uncertainty,γ(||wk||) gives a much
tighter bound. Notice that since we chose ε1 ≈ 1, β(|x0|, k)
is nearly constant, so we have no guarantee of when |x| will
be bounded by γ(||wk||).

10. APPLICATION TO A CSTR

Consider a CSTR with the consecutive competitive reac-

tions A + B
k1−→ C and B + C

k2−→ D. The CSTR has
three feeds with volumetric flow rates FA and FB and
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Fig. 2. Scalar system, wk = 1, ε1 = 1

Table 1. Nonlinear CSTR Parameters

k1 = 10 k2 = 4 CFA = 5
CFB = 5 V = 10 PFA

= 1
PFB

= 1 PFW
= 0.5 PC = 1

Table 2. Nonlinear CSTR steady state values

CAss = 1.665 CBss = 0.200 CCss = 1.044 CDss = 0.349
FAss = 14.650 FBss = 9.305 FWss = 0 lss = �1.044

concentrations CFA
and CFB

. Each reactant feed only
contains one component, and the volumetric flow rates
are the control variables. Flow of pure water, FW , is also
available as a control variable. All three have an upper
limit of 20. The CSTR has exiting concentrations CA,
CB , CC , & CD. These are the state variables. The exiting
volumetric flow rate is FT = FA +FB +FW . The problem
will be considered with parameters shown in Table 1. The
steady state objective is min FAPFA

+FBPFB
+FWPFW

−
FTCCPC where PFi is the purchase price of feed i, and PC

is the sales price per mole of the product. The solution to
the steady state problem is shown in Table 2.

We use a quadratic stage cost with Q = I4 and R = I3,
as well as additive state noise. As in the last example, let
Xf be the steady state. Now we need to find estimates
for N1, N2, and N3 from open loop tests, since this is
not an LQR problem. To do this, we choose a sample
space of the states. The bounds on the sample space are
0.5Ci,ss ≤ Ci ≤ 1.5Ci,ss ∀ i, where i denotes the reaction
component. A uniform distribution of initial points is
taken across the sample space, and 100,000 points are
chosen. An open loop control problem is solved with the
initial state at each one of these points. We use a step size
of 0.1 and a controller horizon time of 50. Three point
Radau collocation is used to discretize the differential
equations, and IPOPT (Wächter and Biegler, 2006) is
used to solve the optimization problems. We found that,
for αi(|x|) = Ni|x|µi , N1 = 1.4, N2 = 2.9, µ1 = 2.2,
and µ2 = 1.85 provide valid bounds within this range.
The bounds are shown in Figure 3. Note that the bound
parameters are chosen to give the tightest possible bounds
that are true.
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Also, since the stage cost is quadratic, N3 = 1 and
µ3 = 2 provide a valid lower bound for the first stage
cost. Finally, to approximate lV , we compute, for a given
initial point xg, |V (xg)− V (xa,i)|/|xg − xa,i| for the eight
points xa,i, i = 1 . . . 8 closest to xg. We then take the
maximum value of these eight numbers, and use that as
the local | dVN/d|x| | associated to xg. These values are
then plotted against the norm, and a linear over-estimator
lV (|x|) = c|x|+ t with c = 5.4 and t = 0.24 is chosen. This
is shown in Figure 4.

So now everything needed is available to provide predictive
trajectory bounds. Note that for a dynamic simulation, the
initialization for the first NLP will be linear with time, and
the subsequent NLPs will be initialized with the solution
from the previous NLP moved one time step backward.
This aligns with the theory in Pannocchia et al. (2011)
to allow for stability even without an exact solution to a
given NLP.

Consider the case with Ci,0 = 1.5Ci,ss and wki ∈
[−0.1Ci,ss, 0.1Ci,ss] ∀ k, i. First use the approximate form
of σ from (12e). The trajectory of the system and ISS
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Fig. 5. CSTR with approximate γ and uniform noise

bounds for the cases that ε1 = 0.7 and ε1 = 0.9 are shown
in Figure 5. Again, although the bound appears to work
well here, it is not a guarantee for all realizations of the
noise.

The guaranteed sensitivity expression is very conservative
for this system. If we set ε1 = 1 and calculate the
size of the invariant ball, then we see γ(||wk||) = 0.937
for the approximate expression and γ(||wk||) = 6.326
for the guaranteed expression. Although the guaranteed
bound is true, it is not particularly useful. This shows the
limitations with an increasing number of states.

11. CONCLUSIONS AND FUTURE WORK

This work extends the ISS results for NMPC to calculate
predictive state trajectory bounds. The ISS theorem for
discrete time systems is extended to allow for an uncertain
term that depends on the state as well as the realization of
uncertainty. Functional forms for the Lyapunov function
bounds are proposed, and a method for calculating their
parameters is shown. Example calculations are shown for
a linear scalar system and a nonlinear CSTR.

Though guaranteed bounds can be calculated, they may be
very conservative for systems with many states. Further-
more, there are two main issues that arise upon applying
this method to systems with many states. First, sampling
the state space to find bounds on the Lyapunov function
becomes computationally intensive, and it is unclear if a
particular sampling method is more advantageous than
others. Second, this method functions by condensing all
of the information held in the states into one number, the
Lyapunov funciton value, and this leads to a larger loss
of information in the case of many states. Future work to
improve the quality of these could involve a new form for
σ(·) or new assumptions that provide good performance in
practice. Also, a method of solving (4) that does not lead to
an overly-conservative solution would provide significant
benefits.

This method directly extends to the economic case, though
the variance in the objective function will lead to ad-
ditional difficulties. Furthermore, this can be applied to

systems in which the uncertainty takes a specific form,
such as in a feed composition, but more effort will be
required to find an expression for lw. Finally, an on-line
procedure for updating the bounds would be useful. This
would involve a strategy for updating ρ(·) over time, or
some way of combining information from the bounds for
multiple choices of ρ(·).
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