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Abstract: Alarm floods have always been serious hazards in industrial process monitoring since
they overwhelm operators with large amount of alarm messages raised within a short period of
time. In this paper, we propose an algorithm to find an optimal alignment of multiple alarm
flood sequences so that based on this alignment an alarm sequence pattern can be easily found.
The pattern could reveal the correlation between alarm messages in the alarm floods, which
cannot be obtained by applying other alarm management techniques such as delay timers and
dead-bands. The pattern could also help find the root cause, locate badly designed part in alarm
systems, and predict incoming alarm floods. A dataset from an actual chemical plant has been
used to test the effectiveness of the proposed algorithm.

Keywords: Alarm flood analysis; Time-stamped sequences; Multiple sequence alignment;
Smith-Waterman algorithm; Industrial alarm monitoring

1. INTRODUCTION

Alarm systems play a key role in industrial process moni-
toring. The advent of Distributed Control Systems (DCS)
makes it much easier for engineers to configure alarms.
However, without rational configurations, large amounts
of alarm messages can be generated within short periods
of time, resulting in alarm floods. During an alarm flood,
the operator may be overwhelmed by numerous alarm
messages, leading likely to improper handling of important
alarms. In order to track alarm floods, EEMUA and ISA
standards EEMUA (2007); ISA (2009) have suggested the
threshold alarm rate to be 10 alarms per 10 minutes.

Chattering and consequence alarms are the two main com-
ponents of alarm floods. Effective methods such as high
density alarm plots, calculation of a chattering index, delay
timers, and dead-bands have been proposed in Kondaveeti
et al. (2010, 2013); Izadi et al. (2009) to handle chattering
alarms. However, alarm floods usually cannot be totally
suppressed by these methods because of the existence of
consequence alarms. In this case, alarm flood analysis is
useful for revealing correlations between alarm messages in
alarm floods. Pattern mining is one of the key procedures
in alarm flood analysis.

1.1 Current status of alarm flood pattern analysis

Manual pattern mining based on expert consultation and
process knowledge usually brings the most accurate result.
But as the size of dataset grows, manual pattern mining
becomes almost impossible because of its low efficiency.
Moreover, process lags may influence the orders of the
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alarms, which further increases the difficulty of manual
pattern mining in alarm floods.

Applying data mining techniques to analyze patterns in
alarm floods has become a hot topic recently. In Kordic
et al. (2008), the authors tried to find patterns in alarm
floods by applying a context based segmentation, of which
the start and termination points were determined by
a target tag and a filter respectively. The authors in
Ahmed et al. (2013) applied Dynamic Time Warping
(DTW) to find the global alignment of a pair of alarm
flood sequences in order to reveal the pattern. In Folmer
and Vogel-Heuser (2012), a pattern mining method based
on the pattern growth technique was applied to find
pattern alarm flood sequences. An approach based on the
Generalized Sequential Patterns (GSP) was proposed in
Cisar et al. (2009) to mine the patterns in alarm floods;
the algorithm was robust to disturbances and process lags.
The authors in Cheng et al. (2013) modified the Smith-
Waterman algorithm to align a pair of alarm floods; it
tolerates to disturbances and process lags; but is limited
to pairwise usage.

1.2 Background of sequence pattern analysis

Frequent pattern mining and sequence alignment are two
main approaches of sequence pattern analysis. Frequent
pattern mining algorithms, which have been extensively
used to analyze transactions in business area, search
for the patterns that appear frequently in the database
and the association rules between them. Foundamental
methodologies of frequent pattern mining include Apriori-
like algorithms such as Agrawal and Srikant (1995), FP-
growth methods such as Han et al. (2000), and vertical
pattern growth algorithms such as Zaki (1998). Techniques
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involving hash tables and projections have also been devel-
oped to improve the efficiency of frequent pattern mining
algorithms.

On the other hand, alignment algorithms have been widely
used for pattern mining in gene and protein sequences.
Foundamental approaches are pairwise alignment algo-
rithms in Needleman and Wunsch (1970), Smith and Wa-
terman (1981), Altschul et al. (1990), and Pearson and
Lipman (1988). In order to align multiple sequences, the
authors in Johnson and Doolittle (1986) modified a pair-
wise algorithm to align multiple sequences simultaneously.
In addition, in Feng and Doolittle (1987) and Thompson
et al. (1994), the authors first built up a phylogenetic
tree based on pairwise similarity scores, then found the
multiple sequence alignemnt by aligning the sequences
progressively according to the tree. Hidden Markov Models
(HMM) had also been applied to find homologies in gene
and protein sequences Eddy (1995); but the states of HMM
must be designed manually, as pointed out in Eddy (1998).

1.3 Contribution of our work

The algorithm proposed in this paper is an extension of
the one in Cheng et al. (2013) to the case of aligning
multiple alarm flood sequences. The technique involves
the following new elements: a similarity scoring function,
a dynamic programming equation, a back tracking proce-
dure, and an alignment generation method. The common
pattern of alarm flood sequences can be easily obtained
thereafter based on the generated alignment. A dataset
from an actual chemical plant has been used to test the
effectiveness of the proposed algorithm.

1.4 Organization of the paper

The rest of the paper is organized as follows. Key proce-
dures of alarm flood analysis are introduced in Section 2.
Then in Section 3, we show the principle of the algorithm
for aligning three alarm flood sequences. Datasets from an
actual chemical plant will be used to test the effectiveness
of the proposed algorithm for aligning three alarm flood
sequences in Section 4. At last, conclusions are given in
Section 5.

2. BACKGROUND OF ALARM FLOOD ANALYSIS

In this section, we briefly introduce the data format
and several key procedures: chattering removing, alarm
flood extraction, pattern matching, clustering, and pattern
mining of alarm flood analysis.

2.1 Alarm message log

In a DCS (Distributed Control System) engaged plant,
historical alarms with information such as tag name, tag
identifier, time stamp, and priority are recorded in the
database. To facilitate data analysis, we combine the tag
name and the tag identifier of an alarm by adding a dot
in between, e.g., Tag1.PVLO. Table 1 shows an example
of alarm message log consists of only the tag name, tag
identifier, and time stamp information; other attributes
such as priority have been eliminated since they are not
used in this study.

Table 1. An alarm message log example

Time stamp Tag name & identifier

2013-07-31 18:33 Tag1.PVLO
2013-07-31 18:33 Tag2.OFFNORM
2013-07-31 18:34 Tag8.BADPV
2013-07-31 18:38 Tag4.PVLO

2.2 Alarm flood analysis procedures

Firstly, chattering alarms are removed from the alarm mes-
sage log by applying delay timers to each tag. Then, alarm
floods are extracted based on the threshold alarm rate
suggested by the ISA standard, 10 alarms per 10 minutes.
Figure 1 shows an example of removing chattering alarms
and extracting alarm floods; respectively, the blue and
red lines show the alarm rate before and after chattering
alarms are removed; and the horizontal black line shows
the alarm rate threshold for extracting alarm floods.

Fig. 1. Example of removing chattering alarms and ex-
tracting alarm floods

Next, the pattern matching algorithm proposed in Cheng
et al. (2013) is used to align the extracted alarm floods
pairwisely and obtain the similarity scores. Then, clus-
tering is carried out based on these scores to group the
similar alarm floods together. Figure 2 shows the result of
applying the pattern matching and clustering algorithms
on the extracted alarm floods from Figure 1.

Finally, the proposed algorithm is applied to align the
multiple alarm flood sequences contained in each cluster
and find the common patterns.

3. PRINCIPLE OF THE NEW ALGORITHM

The purpose of the proposed algorithm is to find an
optimal alignment of multiple alarm flood sequences so
that the common pattern can be obtained from this
alignment. In the following part, we will introduce the
algorithm that aligns three alarm flood sequences, the idea
of which can be applied to the cases of aligning more
sequences.

3.1 Problem description

Consider three sequences:
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Fig. 2. Result of applying pattern matching and clustering
algorithms on the extracted alarm floods

A = < (e11, t11), (e12, t12), ..., (e1m, t1m), ..., (e1M , t1M ) >,

B = < (e21, t21), (e22, t22), ..., (e2n, t2n), ..., (e2N , t2N ) >,

C = < (e31, t31), (e32, t32), ..., (e3o, t3o), ..., (e3O, t3O) >,

where e1m, e2n, e3o ∈ Σ, and Σ = {1, 2, ...,K} is the set of
different alarm types; t1m, t2n and t3o are time stamps. The
goal of the algorithm to find the optimal local alignment,
e.g.,

< (e16, t16), (e17, t17), (e18, t18), [ ] ,(e19, t19) >,

< (e22, t22), [ ] , (e23, t23), (e24, t24) ,(e25, t25) >,

< [ ] , (e31, t31), (e32, t32), [ ] ,(e33, t33) >,

where“[ ]” are the inserted gaps.

3.2 Time distance and weight vectors

A “time distance vector” and a “time weight vector” are
defined, same as in Cheng et al. (2013), to consider time
information during the alignment. A time distance vector
for an alarm message (em, tm) is defined as:

dm = [d1m, d
2
m, ..., d

k
m, ..., d

K
m],

dkm =

{
min

1≤i≤M
{|tm − ti| : ei = k}, if the set is not empty

∞, otherwise,

(1)
which calculates the shortest time distance between
(em, tm) and other types of alarm messages in the se-
quence. A time weight vector for (em, em) is defined as:

wm = [w1
m, w

2
m, ..., w

k
m, ..., w

K
m ]

= [f(d1m), f(d2m), ..., f(dkm), ..., f(dKm)],
(2)

where f(·) : R → R is a time weighting function. Two
weighting functions are chosen as follows:

f1(x) = e−x
2/2σ2

, (3)

f2(x) =

{
1, if x = 0
0, if x 6= 0,

(4)

where the first function normalizes the time distance to
[0, 1], and the second function converts the time distance
to the binary values 0 and 1. Detailed reasons for choosing
these two functions have been described in Cheng et al.
(2013).

3.3 Calculation of similarity scores

Two kinds of scoring functions are defined to make the
algorithm capable of aligning three sequences.

The 2-way similarity scoring function is

S((ea, ta), (eb, tb))
= max{S0((ea, ta), (eb, tb)),

S0((eb, tb), (ea, ta))} × (1− µ) + µ,
(5)

where

S0((ea, ta), (eb, tb)) = max
1≤k≤K

[wka × wkb ]. (6)

(ea, ta) and (eb, tb) are alarm messages from sequences
A and B. The time weight vectors of (ea, ta) and
(eb, tb) are obtained by applying f1(·) and f2(·) respec-
tively. The larger value between S0((ea, ta), (eb, tb)) and
S0((eb, tb), (ea, ta)) is used to compute S((ea, ta), (eb, tb)).
The negative parameter µ is the mismatch penalty.

The 3-way similarity scoring function is

S((ea, ta), (eb, tb), (ec, tc))
= S0((ea, ta), (eb, tb), (ec, tc))× (1− 2µ) + 2µ,

(7)

where
S0((ea, ta), (eb, tb), (ec, tc))

= max

{
S0((eb, tb), (ea, ta)) + S0((ec, tc), (ea, ta))

2
,

S0((ea, ta), (eb, tb)) + S0((ec, tc), (eb, tb))

2
,

S0((ea, ta), (ec, tc)) + S0((eb, tb), (ec, tc))

2

}
.

(8)
(ea, ta), (eb, tb) and (ec, tc) are alarm messages from se-
quences A, B, and C. The value of the 3-way similarity
score is obtained by averaging 2-way similarity scores.

3.4 Dynamic programming

As shown in Figure 3, the score (red dot) is obtained
from seven candidates (blue dots) in each step of dynamic
programming. The following is the governing equation for
calculating similarity index:

Hm+1,n+1,o+1

= max
1≤i≤M,1≤j≤N,1≤g≤O

(I(Ai:m, Bj:n, Cg:o), 0)

=
max{Hm+1,n+1,o + 2δ,Hm+1,n,o+1 + 2δ,Hm,n+1,o+1 + 2δ,

Hm,n,o+1 + δ + S((em+1, tm+1), (en+1, tn+1)),

Hm,n+1,o + δ + S((em+1, tm+1), (eo+1, to+1)),

Hm+1,n,o + δ + S((en+1, tn+1), (eo+1, to+1)),

Hm,n,o + S((em+1, tm+1), (en+1, tn+1), (eo+1, to+1)),

0},
(9)

where I(Ai:m, Bj:n, Cg:o) is the similarity index for the
segments (Ai:m, Bj:n, Cg:o), and δ is a negative parameter
for gap penalty. Initial values of H0,n,o, Hm,0,0 and H0,0,0

are all set to be 0.

Apply Equation (9) iteratively until all the similarity
indices are obtained. Then, start back tracking as shown
in Figure 4. Starting from the position (red dot) of the
maximum similarity index, following the arrows pointing
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Fig. 3. Illustration of similarity score calculation for three
sequences case

to the positions from which the current similarity index
is obtained, the optimal alignment of the three sequences
can be written out based on the changes of the position
index along the path; insert a gap in the alignment if the
position index remains the same on that dimension; write
out the corresponding alarm message if the position index
changes on that dimension.

Fig. 4. An example of back tracking of a case with three
alarm flood sequences

4. INDUSTRIAL CASE STUDY

The effectiveness of the proposed algorithm for aligning
three alarm flood sequences has been tested on a dataset
from an actual chemical plant. In order to eliminate the
patterns formed by repeating alarms, off-delay timers of
300 seconds had been applied. Alarm floods were then
extracted based on the ISA standard. General descriptions
of the dataset can be found in Table 2.

Next, pairwise similarity scores between the extracted
alarm floods were calculated using the algorithm in Cheng
et al. (2013); and clustering was carried out based on these
scores. Figure 5 shows the part of clustering result that
had been used in this study; each square in the figure
represents the similarity score between a corresponding

Table 2. General descriptions of the dataset

Description Number

Total time period 336 days
Total number of tags 1502
Total number of alarms 109393
Average alarm rate 14/h
Highest peak alarm rate 334/10 min
Number of alarm floods 359
Average length of alarm
floods

39

Fig. 5. Part of the clustering result of extracted alarm
floods

pair of alarm flood sequences; the darker a square is, the
higher the similarity score is.

As shown by the red box in Figure 5, a cluster of three
alarm floods, with indices 142, 143, and 320, were selected
to be the testing sequences; the lengths of the three se-
quences were 13, 16, and 12 respectively. The proposed
algorithm for pattern mining in three sequences was ap-
plied with parameters set as: σ = 0.2, µ = −1, and δ = −1.
On a 64 bit Windows PC with Intel(R) Core(TM) i7-4770
3.40GHz CPU and 24.0 GB memory, the algorithm took
only 0.9 seconds to finish and the result is shown in Table
3.

One can notice that the orders of the alarm messages
in the alignment are not the same; that is because the
algorithm allowed some extent of swaps between alarms
messages in the alignment when they were raised closely
with each other. This type of complicated alignment
is hard to be achieved manually even by an expert;
however, the proposed algorithm was able to provide the
result accurately and almost immediately. In addition,
as revealed by the time stamps, the three alarm floods
occured during Oct, Dec, and Feb respectively; and the
priorities (not listed here in order to save space) of most
of the alarms in the three sequences had been configured
as “High”. Thus, the pattern obtained from the alignments
could be valuable for predictive alarming and operator
training.
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Table 3. Alignment result of the three sequences in the cluster

Flood 142 Flood 143 Flood 320

Tag593.PVHH Tag662.PVHH Tag593.PVHH
27-Oct-2013 16:58:28 26-Feb-2014 00:18:12 16-Dec-2013 21:30:16

Tag662.PVHH Tag593.PVHH Tag662.PVHH
27-Oct-2013 16:58:29 26-Feb-2014 00:18:14 16-Dec-2013 21:30:18

Tag598.PVHH Tag598.PVHH Tag598.PVHH
27-Oct-2013 16:58:31 26-Feb-2014 00:18:18 16-Dec-2013 21:30:21

[] [] Tag163.OFFLINE
[] [] 16-Dec-2013 21:30:27

Tag71.PVLO Tag71.PVLO Tag71.PVLO
27-Oct-2013 16:58:45 26-Feb-2014 00:18:30 16-Dec-2013 21:30:33

Tag403.NORM [] Tag403.NORM
27-Oct-2013 16:58:56 [] 16-Dec-2013 21:30:36

Tag407.NORM Tag407.NORM Tag407.NORM
27-Oct-2013 16:59:00 26-Feb-2014 00:19:08 16-Dec-2013 21:30:42

Tag408.NORM [] Tag408.NORM
27-Oct-2013 16:59:02 [] 16-Dec-2013 21:30:49

Tag427.OFFLINE Tag427.OFFLINE Tag427.OFFLINE
27-Oct-2013 16:59:09 26-Feb-2014 00:19:17 16-Dec-2013 21:30:51

Tag1457.OFFNORM Tag1457.OFFNORM []
27-Oct-2013 17:01:09 26-Feb-2014 00:21:48 []

5. CONCLUSIONS

In this paper we proposed an algorithm to find the optimal
alignment of multiple alarm flood sequences so that based
on this alignment a common pattern can be obtained
thereafter. The algorithm is an extension of the one in
Cheng et al. (2013) to the case of aligning multiple
sequences. It is one of the key techniques in alarm flood
analysis, together with delay timers, pattern matching
algorithms, and clustering methods. In the future, pruning
techniques to reduce the algorithm complexity and the
impact of parameter tuning on the alignment result may
be studied.
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