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Abstract: This paper is concerned with the stabilization of tubular reactors in which
convection, dispersion, conduction phenomena as well as chemical reaction take place. The
stabilization is performed by using a Lyapunov function derived from the second law of
thermodynamics called availability function. This function is used to design a stabilizing
distributed control law around a stationary profile of a tubular reactor driven far from the
thermodynamic equilibrium. A numerical example illustrates the proposed control strategy.
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1. INTRODUCTION

The stabilization of tubular chemical reactor systems
described by non linear Partial Differential Equations
(PDEs) remains an open problem. In this paper we show
that it is possible to use the intrinsic properties of the
physical system to derive suitable control laws. For that
purpose the model of the tubular reactor is derived by
using local mass and energy balance equations in the
context of irreversible thermodynamics. The stabilization
problem can be formulated for a possibly open loop unsta-
ble stationary profile (Hlavek and Hofmann (1970)). Even
if the reactor is fully actuated its control is challenging
due to its distributed parameter and non linear aspects.
Many studies have been dedicated to the control of tubular
reactors described by partial differential equations mod-
els (Georgakis (1977); Christofides (2001); Orlov and
Dochain (2001); Boskovic and Krstic (2002); Aksikas et
al. (2009)).

In Ruszkowski et al. (2005), the stability analysis of the
open loop tubular reactor system is derived using a Lya-
punov function issued from irreversible thermodynamic
considerations: thermodynamic availability (de Groot and
Mazur (1962)). Its positivity and convexity are by def-
inition directly related to the properties of the entropy
function issued from the second law of thermodynamics
(Callen (1985)).

In this paper we propose a generalization of the work
presented in Hoang et al. (2012) for the stabilization
of a continuous stirred tank reactor using the availability
function. We consider the one dimensional model of a non
isothermal tubular chemical reactor in which occur con-
vection, diffusion, conduction and chemical reaction phe-
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nomena. These phenomena are represented by non linear
constitutive equations. The distributed jacket temperature
is used as the control variable. The model is established
in the framework of irreversible thermodynamics by using
the so called local equilibrium assumption (de Groot and
Mazur (1962)).

The control presented in this paper is different from the
one previously presented in Zhou et al. (2013). In Zhou et
al. (2013), we have considered a multivariable approach
for the control. The inlet temperature as well as the
distributed jacket temperature were used as the control
variables.

It is important to notice that in this work we do not study
the existence of solutions associated to the control problem
(such a study can be found in Laabissi et al. (2001) in the
open loop case) but we focus on their properties.

The paper is organized as follows: in section 2 we present
the model of the tubular reactor issued from mass and
enthalpy balances. In section 3 we recall the main prop-
erties of irreversible thermodynamic systems. In section 4
the availability function is defined for infinite dimensional
systems. In section 5, the distributed control using the
jacket temperature as the manipulated variable is derived.
We give some simulation results in section 6 and we end
with some conclusions and perspectives.

2. THE MODEL OF THE REACTOR

The model of the tubular reactor is given by considering
the following assumptions :

• Symmetries are assumed in the reactor so only longi-
tudinal axis is under consideration. The spatial coor-
dinate is x ∈ [0, L].

• We consider the chemical reaction νAA −→ νBB
with νA = 1, νB the stoichiometric coefficients.
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The reaction rate r is modeled with the Arrhenius
law. r = kcAe

− αT is first order with respect to
the concentration cA of species A and with positive
constant k and α.
• The convective flow has a constant velocity v.
• The total mass concentration ρ is constant.
• The axial dispersion density flux of species i is given

by F iax = −Dρ∂θi∂x where θi = ρi
ρ is the mass fraction

of species i for i = A,B and ρi the mass concentration
of species i., and D the dispersion constant.
• The conduction flux is chosen as Fcond = −λ∂T∂x

where λ is the conduction constant and T (x) is the
temperature inside the reactor at x .

• The distributed heat exchange q(x) with the jacket is
given by q(x) = C(T (x) − Tj(x)) where Tj(x) is the
jacket temperature.

• The pressure P is constant.
• The reacting mixture is ideal and incompressible.
• The specific heat capacities cpA and cpB are constant.

Let us note the state vector as zT = ( h ρA ρB ) where
ρA, ρB are the mass concentration of species A and species
B respectively ad h is the concentration of enthalpy.

We obtain the following parabolic model of the fixed bed
reactor (Bird et al. (2006)):

∂

∂t

(
h
ρA
ρB

)
= − ∂

∂x

[
vI3 −D W

∂

∂x

](
h
ρA
ρB

)
(1)

− ∂

∂x

−λ∂T∂x0
0

+

(
0
−νAr
+νBr

)

+g C(Tj − T )

where I3 is the 3×3 identity matrix,W (z) =

(
0 hA hB
0 1 0
0 0 1

)
,

gT = ( 1 0 0 ). The enthalpy concentration is given by
h = ρAhA + ρBhB with hA, hB the partial mass enthalpy
of species A and B respectively. We have hi = cpi(T −
Tref ) + hiref for i = A,B.

The temperature T (z) is a nonlinear function of the state
z:

T =
h− ρAhAref − ρBhBref

cp
+ Tref

with cp = ρAcpA + ρBcpB is the total heat capacity.

Let us define
FTcon = ( vh vρA vρB )

the convective flux,

FTdis =
(
Fhax + Fcond F

A
ax F

B
ax

)
the dispersive flux with Fhax = hAF

A
ax + hBF

B
ax and

RT = ( 0 −νAr νBr )

the reaction rate vector.

With these notations, the system (1) can be written in the
compact form:

∂z

∂t
=

∂

∂x
(

F︷ ︸︸ ︷
Fcon(t, x) + Fdis(t, x)) +R(t, x) + gq(t, x) (2)

Based on the assumption that there is no dispersion out-
side the reactor, the boundary conditions are the following
at the inlet of the reactor:

Fhcon|in = Fh|0 = (Fhcon + Fhax + Fcond)|0 (3)

FAcon|in = FA|0 = (FAcon + FAax)|0 (4)

0 = FBcon|in = FB |0 = (FBcon + FBax)|0 (5)

and at the outlet of the reactor:

FAax|L = 0 =⇒ ∂ρA
∂x
|L = 0 (6)

FBax|L = 0 =⇒ ∂ρB
∂x
|L = 0 (7)

Fcond|L = 0 =⇒ ∂T

∂x
|L = 0 (8)

Finally we consider the initial conditions:

ρA(0, x) = ρA0
(x) (9)

ρB(0, x) = ρ− ρA0
(x) (10)

h(0, x) = h0(x) (11)

3. GIBBS EQUATION FOR INFINITE
DIMENSIONAL THERMODYNAMIC SYSTEMS

In this section we briefly recall the fundamentals of ir-
reversible thermodynamics. We leave the reader refer to
Callen (1985) and de Groot and Mazur (1962) for more
details.

In the case of infinite dimensional thermodynamic systems
the fundamental Gibbs equation can be stated by using
concentrations as:

ds = wT dz (12)

with wT =

(
1

T

P

T
. . .− µi

T
. . .

)
and z =

(
u 1 . . . ρi . . .

)
where T , P , µi represent the temperature, the pressure
and the chemical potential of species i respectively and
u, ρi represent the energy and mass concentrations. An
alternative representation at constant pressure is given by:

ds = wT dz (13)

with wT =

(
1

T
. . .− µi

T
. . .

)
and z =

(
h . . . ρi . . .

)
where h represents the enthalpy concentration (h = u +
P ) used as a state variable for the reactor model given
in section 2. As in finite dimensional case, we can write
s = wT z, w = ∂s

∂z and w(γz) = w(z) with γ a positive
constant.

The generalization of equilibrium thermodynamics to
nonequilibrium thermodynamics systems is done by as-
suming the so called local equilibrium assumption. The
main points of this hypothesis are

• the local state z and the specific properties are
equivalent (see de Groot and Mazur (1962)).

• we have the following relation between the different
local balances:

Ds(t, x)

Dt
= wT (t, x)

Dz(t, x)

Dt
(14)

where D
Dt stands for the material derivative: D

Dt =
∂
∂t + v ∂

∂x where v is the mean velocity of the matter.
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We recall also the Gibbs-Duhem relation:

∂wT

∂x
z = 0. (15)

From the Gibbs equation we obtain the local entropy time
derivative equation. Rewriting this latter equation as a
balance, we obtain :

∂s

∂t
= − ∂

∂x
(F scond + F sax + F scon) +

q

ρTj
+
σs
ρ

(16)

where Tj is the distributed temperature of the jacket,
F sax =

∑
i=A,B F

i
axsi is the entropy diffusion flux due to

species diffusion where si is the partial mass entropy of
species i. F scond = 1

T Fcond is the entropy flux due to heat
conduction. The irreversible entropy production σs is given
by:

σs =

σext︷ ︸︸ ︷
q(

1

Tj
− 1

T
)

σr︷ ︸︸ ︷
+
r

T
(µAMAνA − µBMBνB)

σmatd︷ ︸︸ ︷
− 1

T

∑
F iax

∂µi
∂x

σthermd︷ ︸︸ ︷
−(F sax + F scond)

∂T
∂x

T
(17)

where the Mi are the molar mass of species. Each term of
(17) is assumed to be positive in the context of irreversible
thermodynamics Callen (1985) with local equilibrium as-
sumption. The first term σext corresponds to the exchange
with the jacket of the reactor. The second term σr is due to
the chemical reaction. The third and the fourth terms σmatd

and σthermd are due to diffusion in the material domain and
heat conduction in the thermal domain.

4. DISTRIBUTED THERMODYNAMIC
AVAILABILITY FUNCTION

In this section we show the availability function can be
used as a Lyapunov function for control purpose. Let us
first recall the definition of a Lyapunov function for finite
dimensional systems:

Definition 1. (Khalil (2002)). Let Z = 0 be a stable
equilibrium state and D ⊂ Rn be a domain containing
Z = 0. Let V : D → R be a continuously differentiable
function such that :

V (0) = 0 and V (Z) > 0 in D − {0} (18)

V̇ (Z) ≤ 0 in D (19)

The function V (Z) satisfying (18) and (19) is called a
Lyapunov function .

Let us denote T the temperature of the system, P the
pressure, µi the chemical potential of the species i, S the
entropy, V the volume of the matter, Mi the mass of the
species i and U the internal energy of the system.

The availability function for finite dimensional systems
A(Z) is defined in Ruszkowski et al. (2005) as:

A(Z) = −S(Z) + (Wd)
TZ = −

(
W −Wd

)T
Z (20)

with WT =

(
1

T

P

T
−µi
T

)
and ZT =

(
U V Mi

)
.

This function is defined with respect to some reference
state (Wd, Zd). This reference state may be a desired
stationary state Zd or a time varying reference state.

Using the concavity of S(Z) (provided by the second law
of thermodynamics, see Callen (1985)) we deduce that
A(Z) is a non negative convex function such that:

A(Z) ≥ 0 ∀Z 6= γZd , A(γZd) = 0 (21)

It can be shown (see Ruszkowski et al. (2005); Hoang et
al. (2012)) that as soon the strict concavity of S is ensured
we ensure the strict convexity of A:

A(Z) > 0 ∀Z 6= Zd , A(Zd) = 0 (22)

Indeed strict concavity of S can be achieved by fixing an
additional linear constraint on the extensive variables Z
in the sense of an inventory (Jillson and Ydstie (2007)).
This linear constraint reduces the singular line where
w(γZ) = w(Zd) on the desired state Zd. Figure 1 illus-
trates the availability function in the isothermal case for a
reacting ideal mixture of two species with mole numbers
Z = [N1N2]T with Zd such that N1d = N2d . So in the
illustrated case the availability function vanishes on the
line N1 = N2.
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Fig. 1. The availability function in the isothermal case

Since the availability function satisfies the condition (18),
it represents a Lyapunov function candidates for the stabi-
lization problem of the chemical reactor at a desired equi-
librium state Zd (see Ruszkowski et al. (2005) or Hoang et
al. (2012)). Hence the stabilizing control design consists to
compute the feedback law for the considered inputs such
that the availability function satisfies condition (19):

Ȧ(Z) ≤ 0 (23)

As in the finite dimensional case, we define the availability
function for the distributed parameter system as:

a(z(x, t)) = −(w(x, t)− wd(x))T z(x, t) (24)

where zd and wd refer to the desired steady profile and
its associated effort respectively. The function a(z(x, t))
can be qualified as a local availability function since it
involves a distributed variable z(x, t). In our case, the fixed
extensive (inventory) function corresponds to the total
mass inside the reactor induced by a constant total mass
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density ρ on a fixed total volume. With this assumption
we have:

a(z) > 0 ∀z 6= zd , a(zd) = 0 (25)
Thanks to equation (14) and (15), we have

∂a

∂t
= −w̃T ∂z

∂t
(26)

where w̃ = w − wd. Let us consider the global availability
function A defined by:

A(z) =

∫ L

0

adx =

∫ L

0

(
−w̃(x, t)T z(x, t)

)
dx (27)

From (26) the variation of A along the system trajectories
has the following expression by considering (2):

dA(z)

dt
=

∫ L

0

−
(
w̃T ∂F

∂x

)
dx−

∫ L

0

w̃T (R+ gq)dx (28)

In the next section we use the global availability function
A to design the stabilizing control for the chemical reactor.

5. THE CONTROL PROBLEM

The objective of the control is to stabilize the system
around an admissible stationary profile considering the
distributed jacket temperature as the control variable. For
the control design we use the availability A defined by (27)
as a Lyapunov function.

Proposition 2. The dynamic system (2) closed with the
nonlinear state feedback:

Tj(x) =

[
w̃T ∂F∂x − w̃

TR+K(z, x, t)a(z)

]
Cw̃h

+ T (x) (29)

with K(z, x, t) a positive function and w̃h = ( 1
T −

1
Td

) is
globally asymptotically stable at zd.

Proof Using the expression of the state feedback (29) for
the jacket temperature in (28) we obtain:

dA(z)

dt
= −

∫ L

0

K(z, x, t)a(z)dx⇒

⇒


dA(z)

dt
< 0 ,∀z 6= zd

dA(z)

dt
= 0 , z = zd

(30)

Thus A(z) is a Lyapunov function for the system in closed
loop. Using the positivity of a(z) we can write:

lim
t→∞

A(z) = 0 ⇒ lim
t→∞

a(z) = 0 ∀x ∈ [0, L]

⇒ lim
t→∞

z = zd. (31)

From this Lyapunov type arguments, the closed loop sys-
tem with state feedback control (29) is globally asymptot-
ically stable.

Remark 3. It can be shown as in Hoang et al. (2012)
for finite dimensional control that Tj remains well posed
when T → Td, meaning that the numerator of the control
converges to zero faster than w̃h.

6. SIMULATIONS

6.1 Open-loop simulation

This section illustrates an open-loop simulation scenario.
The model is spatially discretized with the use of a cen-

tered finite difference scheme with 120 spatial discretiza-
tion elements. For this simulation, the initial conditions
correspond to the steady state profile when Tj(x) = 350K
along the reactor and with the temperature at the inlet
of the reactor Tin = 330K and the inlet mass fraction
θAin = 1 and θBin = 0. The numerical values of the
parameters are given in Table 1. In Figures 2 and 3 is given

Symb. Numerical value Symb. Numerical value

cpA 150.48J/(K · g) cpB 120J/(K · g)
C 1.25 · 105W/(m ·K) E 72.335KJ/mol
hAref 0J/g hBref −9150J/g
k0 0.12 10101/s L 1m
MA 0.5g/mol MB 0.5g/mol
R 8.314J/(K ·mol) sAref 210.4J/(K · g)
sBref 180.2J/(K · g) Tref 300 K
v 0.0005m3/mol V 0.001m3

λ 1.25 · 108J/(K ·m · s)
νA 1 νB 1

Table 1. Numerical values of parameters.

the time response of the difference between the reactor
temperature T and the initial profile Tinitial with mass
fraction θB and its initial profile θBinitial to a uniform
step change of the jacket temperature from Tj = 350K to
Tj = 370K while keeping the same boundary conditions.
In Figure 4 we present the final steady state profile for the
temperature and mass fraction θB which will be taken as
the desired profile target for the stabilizing control.

Fig. 2. Open loop time response of T (x, t)

Fig. 3. Open loop time response of θB(x, t)
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Fig. 4. Open loop steady state profile

6.2 Stabilisation results

First of all we propose to tune the feedback gain K(x, t)
in order to avoid excessive control values. Indeed, choosing
spatially uniform and constant gain K in the simulations,
leads to control inputs Tj with very important (non
admissible) transient magnitudes. At the same time, this
uniform constant gain does not give an interesting time
response for the closed loop system. The feedback gain
K(x, t) is chosen as follows:

K(x, t) = min
(
δexp−

x
2 + δvt(1− exp− x2 ), δ

)
(32)

Remark 4. This particular choice is interesting because it
allows to obtain the available amplitudes and variations
of control input Tj . It is based on the spatial evolution of
K(x, t) from an initial exponentiel profile with a saturation
value δ in the input side which decrease in the space.
The gain profile increases linearly but it has a saturation
value equal to δ with δ a positive constant. It follows the
direction of flow with the same speed as the convection
flow.

The time evolution of the gainK(x, t) is presented in figure
5 with δ = 0.08.

Fig. 5. Dynamical distributed gain K(x, t)

The time evolutions of the error between the closed loop
temperature T and its desired equilibrium profile Td as well
as the closed loop mass fraction θB and its equilibrium
profile θBd of the closed loop system are presented in
figures 6 and 7 respectively. These closed loop simulations

are given with Tj satisfying (29) and with K defined as in
(32).

Fig. 6. Temperature of the closed loop system

Fig. 7. θB of the closed loop system

The objective of the stabilisation is well achieved at
settling time: approximatively 110s with respect to the
open loop case approximatively 220s. Figure 8 shows the
time evolution of the control variable Tj(x). It can be
noticed that this control is admissible.

Fig. 8. Time evolution of the jacket temperature

Figure 9 shows the time evolution of the local availability
function a. As expected the local availability tends to zero.
At this moment the performances of the control could be
improved by setting the gain function K(x) more precisely.

6.3 Stabilisation results in presence of perturbation

In presence of perturbation the closed loop control plays its
role although the performances of the control could be im-
proved. Figure 10 shows the final error of temperature with
respect to the desired steady profile with a perturbation
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Fig. 9. Time evolution of the local availability function

of 3 degrees of the external temperature at the boundaries
in the open loop and closed loop case.
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Fig. 10. Error with respect to the desired steady state
profile at t=1200s open loop and closed loop case

7. CONCLUSION

In this paper we propose an introductory study of the dis-
tributed stabilization of tubular reactors using the thermo-
dynamic global availability function as a Lyapunov func-
tion. The control is achieved considering the distributed
actuation of the jacket temperature. The presented simula-
tions show the effectiveness of the design control especially
in presence of perturbations.

Two perspectives can be formulated for this control prob-
lem.

The first one is to generalize the modification of the
availability function as proposed in Hoang et al. (2012).
In this work, the author presented a reduced availability
function which is mainly based on the classical availability
in which the chemical potentials are modified in order to
remove the mixing term. This new function is again strictly
convex and positive. It has been shown in Hoang et al.
(2012) that it reduces considerably the amplitude variation
of the temperature of the jacket.

The second perspective is to combine the distributed and
boundary control inputs to stabilize the reactor. As we can
see from the closed loop simulation results, this alternative
control strategy should upgrade the settling time of the
stabilization at the boundary of the reactor.
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