
Fast Sequence Alignment for Comparing
Industrial Alarm Floods ⋆

Wenkai Hu ∗ Jiandong Wang ∗∗ Tongwen Chen ∗

∗ Department of Electrical and Computer Engineering, University of
Alberta, Edmonton, AB, Canada, T6G 2V4

e-mail: {wenkai, tchen}@ualberta.ca
∗∗ College of Engineering, Peking University, Beijing, China

e-mail: jiandong@pku.edu.cn

Abstract: An alarm flood is a commonly encountered problem in industrial alarm systems. It
may distract operators from critical alarms and lead to plant failures. Thereby, addressing of
alarm floods becomes an important task to achieve reliable alarm management. Some sequence
alignment algorithms have been used to discover useful patterns of alarm floods from historical
alarm data. In order to improve the computational efficiency of the existing algorithms, a
fast sequence alignment approach is developed based on a basic local alignment search tool.
It accelerates the computation using a seed-and-extend strategy. The priority information is
incorporated so that the algorithm is more sensitive to alarms of higher priorities. Besides, the
set based pre-matching is proposed to avoid unnecessary computation by excluding irrelevant
alarm floods and alarm tags. Industrial case studies demonstrate that the proposed method
significantly outperforms the existing algorithms.

Keywords: Alarm systems, alarm sequences, alarm floods.

1. INTRODUCTION

In modern automated industrial plants, alarm systems
are designed to assist operators to perceive hazardous
situations and maintain industrial processes within safe
operating boundaries (EEMUA-191, 2007). A good alarm
system must detect and warn the operators of abnormal-
ities while not mislead, overload or distract the operators
(Rothenberg, 2009). However, a commonly encountered
poor function of industrial alarm systems is an alarm flood,
which is defined as a situation that the annunciated alarms
arise massively and exceed the operator’s response capa-
bility. As a result, ANSI/ISA-18.2 (2009) and EEMUA-
191 (2007) recommends 10 alarms per 10 min as a rule
of thumb to identify alarm floods. The presence of alarm
floods may distract operators from critical alarms and lead
to serious consequences, thereby making a difficult process
situation much worse.

Alarm floods could be caused by many reasons, e.g.,
process upsets, abnormal situations, improper alarming,
and transition of operating states (Hollifield et al., 2011).
In practice, alarm floods caused by changes of operating
states could be detected and avoided using some advanced
alarming techniques, e.g., the logic based alarming, and
the state based alarming (ANSI/ISA-18.2, 2009). But
those alarm floods caused by faults are difficult to manage.
The objectives in studying alarm floods may include
handling alarm floods effectively or even avoiding the
occurrence of alarm floods. Thus, it may be necessary to

⋆ This work was partially supported by an NSERC CRD project,
and the National Natural Science Foundation of China under grant
No. 61061130559.

find alarm floods with similar patterns in the historical
alarm data so that some useful information could be
discovered. For this purpose, Ahmed et al. (2013) exploited
the dynamic time warping (DTW) algorithm to find the
common subsequences among alarm floods. Cheng et al.
(2013) modified the Smith-Waterman algorithm for the
pattern matching of alarm floods and considered the time
stamps in the computation of alarm flood similarities.
The common drawback of the two algorithms is the high
computational complexity. That is, if there are too many
alarm floods or the alarm floods too lengthy, it is almost
impossible to finish their computations within a tolerable
time period.

This paper contributes in the following aspects. First, a
fast sequence alignment algorithm is proposed for alarm
floods based on a basic alignment search tool; it accelerates
the computation using a seed-and-extend strategy. Sec-
ond, the priority information is incorporated so that the
algorithm is more sensitive to alarms of higher priorities.
Third, the set based pre-matching is proposed to avoid
unnecessary computation by excluding irrelevant alarm
floods and alarm tags.

The rest of the paper is organized as follows. Section 2
discusses the refinement and the representation of alarm
floods. Section 3 presents the mechanism of the proposed
fast sequence alignment algorithm. The set based pre-
matching approach is described in Section 4. Numerical
examples and industrial cases are presented in Section 5
and 6, respectively. The final section concludes the paper.

Preprints of the
9th International Symposium on Advanced Control of Chemical Processes
The International Federation of Automatic Control
June 7-10, 2015, Whistler, British Columbia, Canada

TuM4.2

Copyright © 2015 IFAC 648

2. REFINEMENT OF ALARM FLOODS

To refine alarm floods from alarm data, an exact definition
involving the start and the end of an alarm flood is given by
ANSI/ISA-18.2 (2009). A typical alarm flood begins at the
first regular 10 min interval with the alarm rate exceeding
10 alarms per 10 min and ends when the alarm rate falls
under 5 alarms per 10 min. Hence, to capture alarm floods,
we need a 10 min sliding window to calculate the number
of alarms, which is known as the burst rate in Hollifield
et al. (2011). The burst alarm rate plot gives a good view
to observe the alarm floods. An example is shown in Fig.
1, where 19 alarm floods were extracted from May 5th to
May 12th, 2013 as highlighted by blue rectangles.

05/05 05/07 05/08 05/10 05/12
0

10

20

30

40

50

60

70

80

90

100

Date

al

ar
m

s/
10

 m
in

Fig. 1. Example of the burst alarm rate plot.

Essentially, an alarm flood is a sequence comprised of a
series of chronologically sorted alarms. It can be expressed
as

A =< a1, a2, ..., am > (1)
where < · > indicates a sequence, m is the number of
alarms in the alarm flood A, ai denotes the i-th alarm.
For the simplest case, ai is referred to as the alarm tag

ai = ei (2)

where ei indicates the numerical symbol of the i-th alarm.
This form was exploited by Ahmed et al. (2013) in the
similarity analysis of alarm floods. If incorporating the
time stamp, ai has two dimensions (Cheng et al., 2013).
Incorporating the time and priority information, ai takes
the form of three dimensions as

ai = (ei, ti, pi) (3)

where ti represents the time stamp, pi denotes the priority
level. Table 1 shows an example of an alarm flood sequence
with alarms chronologically sorted. Three priorities are
allocated to all alarm tags, including Low, High and
Emergency (simplified as Emg.). For the convenience of
computation, the alarm flood can be expressed by a
numerical sequence like < 9, 5, 6, 2, 1, 3, 4, 3, 4, 7, 4, 5 >
with each number indicating a unique alarm.

In the analysis of alarm floods, a troublesome issue is
about chattering alarms. The presence of chattering alarm-
s conveys repeating information, leading to the false iden-
tification of alarm floods. Thus a prerequisite for alarm
flood analysis is to remove chattering alarms. Recently,
the detection, quantification and removal of chattering
alarms have been studied by Kondaveeti et al. (2013);
Wang & Chen (2013, 2014). Among various strategies for
addressing chattering alarms, delay timers can be directly
applied to alarm data, which makes them more suitable
for the case in this paper.

Table 1. Example of an alarm flood sequence.

Alarm Tag(ei) Time stamp(ti) Priority(pi)
T09.PVLO 10/5/2013 02:20:01 Low
T05.PVHI 10/5/2013 02:20:55 Low
T06.PVLO 10/5/2013 02:22:02 Low
T02.PVHI 10/5/2013 02:22:42 High
T01.LOLO 10/5/2013 02:23:35 High
T03.PVHI 10/5/2013 02:24:22 Low
T04.PVLO 10/5/2013 02:25:11 Low
T03.PVHI 10/5/2013 02:27:02 Low
T04.PVLO 10/5/2013 02:27:03 Low
T07.PVLO 10/5/2013 02:27:03 Emg.
T04.PVLO 10/5/2013 02:29:05 Low
T05.LOLO 10/5/2013 02:30:05 Low

3. ACCELERATED SEQUENCE ALIGNMENT

In this section, the seed-and-extend strategy is firstly de-
scribed. Then, some improvements are presented, includ-
ing the fully matched seeds, the priority based scoring and
the time ambiguity tolerance mechanism.

3.1 Seed-and-Extend Strategy

The basic local alignment search tool (BLAST) is a fast
heuristic algorithm proposed by Altschul et al. (1990,
1997). The principle of BLAST can be simplified as the
seed-and-extend approach. In the seeding stage, sequences
to be compared are broken into short words of a fixed
size. A lookup table is built for all possible assemblies. By
comparing short words rather than the whole sequences,
ungapped similar segments are quickly located. In the ex-
tending stage, the segments of high similarity are extended
in two directions until the score falls more than a cutoff
threshold below the best score achieved. The alignment
with score above a certain threshold is called high scoring
segment pair (HSP). The HSP of the highest score can
be treated as the longest common subsequence for the
pairwise sequence alignment. Compared with the Smith-
Waterman algorithm, BLAST does not need to align all
elements. Instead, it quickly locates similar regions and
extends them in two directions so that most search space
is pruned.

However, components in alarm floods are more diverse
than the biological cases, making it difficult to build, save
and look up a table for all short words. Hence, the tradi-
tional seeding approach in BLAST is not suitable for alarm
floods. To solve the problem, a new seeding approach is
developed. The principle is to find all successively matched
pairs and keep those of high scores as seeds. A successively
matched pair Z can be indexed by its positions in two
sequences A, B as

Z = (x, y, l) (4)

where x and y indicate the start positions in sequence
A and B respectively, l represents the length of Z. A
successively matched pair Z has two properties. First,
all alarms indexed by Z in two sequences should be
identical, i.e. ax+i = by+i for i = 0, 1, ..., l − 1. Second,
all alarms indexed by Z have successive positions in both
sequences. To select seeds from the successively matched
pairs, similarity scores should be calculated. The score of
Z is formulated as

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 649

z =

l−1∑
i=0

s(ax+i, by+i) (5)

where s(a, b) represents the similarity score between alarm
a and alarm b. The scoring strategy will be discussed later
in Sub-section 3.2. Matched pairs having top scores are
kept as seeds while other pairs are discarded. Seeds and
their corresponding scores are kept as Z̃(k) and Hs(Z̃(k))
respectively, where k = 1, ...,K, and K is the number of
seeds.

Once some seeds are found in the seeding stage, the exten-
sion approach will be triggered to find the maximum align-
ment. Considering there are many deletions or insertions
in alarm floods, the gapped extension which is based on
the gap penalty scheme is utilized (Altschul et al., 1997).

Based on the k-th seed Z̃(k), the gapped extension should
be made in two directions. In each direction, a score matrix
H is calculated based on the subsequences As of length m
and Bs of length n to be compared. For all i = 2, 3, ...,m+1
and j = 2, 3, ..., n+ 1, Hi,j is calculated as

Hi,j = max{Hi−1,j−1 + s(ai, bj), Hi,j−1 + δ,Hi−1,j + δ, 0}
(6)

where δ indicates the gap penalty, s(ai, bj) denotes the
score between alarm ai and alarm bj , ai ∈ As and bj ∈ Bs.
For all i = 2, 3, ...,m+ 1 and j = 1, Hi,1 is calculated as

Hi,1 = max{Hi−1,1 + δ, 0} (7)

For all i = 1 and j = 2, 3, ..., n+ 1, H1,j is calculated as

H1,j = max{H1,j−1 + δ, 0} (8)

In the gapped extension, a critical procedure is the stop of
extension. In the iterative computation, the extension to
Hi,j stops at Hi,j if{

Hi−1,j−1 < Hmax − T for i ≥ 2 and j ≥ 2
Hi,j−1 < Hmax − T for i ≥ 1 and j ≥ 2
Hi−1,j < Hmax − T for i ≥ 2 and j ≥ 1

(9)

where Hmax denotes the best score achieved before the ex-
tension proceeds to Hi,j , T represents the cutoff threshold.

To avoid the case that Hs(Z̃(k)) < T , the initial score of

H should be H1,1 = Hs(Z̃(k)) + T . The gapped extension
is proceeded iteratively with the increasing of i and j. To
present the alignment, the backtracking starts at the cell
of the highest score and proceeds backward until H1,1,
yielding the best local alignment. The description of the
backtracking can be found in Smith & Waterman (1981);
Cheng et al. (2013). After the extension, the score for the

final alignment based on seed Z̃(k) is

S(Z̃(k)) = Hl +Hr −Hs(Z̃(k))− 2T (10)

where Hl and Hr denote the left extension and right
extension respectively. Since several seeds could be found,
the alignments achieved could be different. The one of the
highest score will be treated as the best alignment. The
corresponding score is the best score between sequence A
and B and is represented by S(A,B).

3.2 Priority Based Scoring

Both of the scores in (5) and (6) are based on s(ai, bj). To
achieve better alignment result, a priority based scoring
scheme is proposed to assign s(ai, bj). Priority levels
are settings assigned to indicate the relative importance

of alarms, e.g., the seriousness of consequences and the
allowable response time (ANSI/ISA-18.2, 2009). For most
cases, three or four priorities are available and often
labeled by different names as shown in Table 2. Alarms
are not identical in importance. Higher priorities are
rarely configured and annunciated, but more important
in indicating abnormalities. By contrast, lower priorities
are associated with less severe consequences and assigned
to most alarms.

Table 2. Alarm priorities in alarm systems.

Priority Level List 1 List 2 List 3
Priority 1 (p1) Emergency Emergency Critical
Priority 2 (p2) High High Warning
Priority 3 (p3) Medium Low Advisory
Priority 4 (p4) Low

In the sequence alignment of alarm floods, scaled similarity
scores should be used, so that the algorithm will be more
sensitive to alarms of higher priorities. For a descending
priority list from Priority 1 to Priority L, the match scores
{ϕ(p1), ϕ(p2), · · · , ϕ(pL)} are assigned. The combination
of matched scores, mismatch score and gap penalty should
satisfy the following inequalities{

ϕ(pi) > 0
ϕ(pi) > ϕ(pi+1), i = 1, 2, ..., L− 1
η < 2δ < 0

(11)

where η indicates the mismatch score, L denotes the
number of priority levels. A smaller index i indicates a
higher priority level. The second inequality guarantees
that the algorithm is more sensitive to alarms of higher
priorities. The third inequality makes the extension to
be a gapped strategy. With a given absolute mismatch
score |η|, higher match scores ϕ(pi) will lead to weaker
but longer alignments, while higher match scores will find
shorter alignment of high similarity. An example of scores
for L priorities is recommended in Table 3.

Table 3. Example of scaled similarity scores.

Item Symbol Score
Match for pi ϕ(pi) 3 + 1.5(L− i)
Mismatch η -2.5

Gap penalty δ -1

3.3 Time Ambiguity Tolerance

Inspired by the fact that some strongly connected alarms
arise almost simultaneously, time information was firstly
exploited to alleviate the ambiguity of orders as indicated
in (Cheng et al., 2013). The same principle is adopted so
that the proposed algorithm tolerates the order of alarms
occurring almost simultaneously. Firstly, the time intervals
between the i-th alarm and all other alarms in alarm flood
A can be formulated as

di = [di1 di2 · · · dim]
T

(12)

where dik = |ti − tk|, k = 1, · · · ,m, ti and tk indicates
the time stamps of the i-th and the k-th alarm, dik = 0
if k = i. The weight vector for the i-th position in A is
formulated as

wi = [wi1 wi2 · · · wim]
T

(13)

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 650

where wik = f(dik), f(·) is a weighting function with
respect to dik. To tolerate the order of alarms with short
time intervals, f(·) should satisfy two conditions (Cheng
et al., 2013). First, f(·) is monotonically decreasing on the
positive axis. Second, f(0) = 1 and f(∞) = 0. The scaled
Gaussian function is a good choice, i.e.,

f(x) = e−
x2

2σ2 (14)

where σ is the standard deviation of the Gaussian function.

To weight the similarity score s(ai, bj) for ai = (eai , t
a
i , p

a
i)

and bj = (ebj , t
b
j , p

b
j) in (6), the weighting function should

only be applied to one sequence in case of one matched
pair counted for more than once. If f(·) is applied to A,
then all alarms identical to bj are indicated by a binary
vector as

vi = [vi1 vi2 · · · vim]
T

(15)

where vik = 1 if eak = ebj , vik = 0 if eak ̸= ebj . Then the best
score between ai and bj can be formulated as

s1(ai, bj) = max
1≤k≤m

[wik × vik](ϕ(p
b
j)− η) + η (16)

Since this is an asymmetric calculation, the best score
could be different if f(·) is applied to B. The score between
ai and bj becomes

s2(ai, bj) = max
1≤k≤n

[wjk × vjk](ϕ(p
a
i)− η) + η (17)

where wjk indicates the weight for the k-th position in B,
vjk denotes whether ebk = eai . Based on (16) and (17), the
best score between ai and bj can be formulated with a
symmetric computation as

s(ai, bj) = max(s1(ai, bj), s2(ai, bj)) (18)

It is easy to notice the following facts: if eai = ebj , then

s(ai, bj) = ϕ(pai) = ϕ(pbj); if eai ̸= ebj and eak ̸= ebj for

all k = 1, · · · ,m, and ebk ̸= eai for all k = 1, · · · , n, then
s(ai, bj) = η; if eai ̸= ebj but we can find an alarm ak closely

occurring with ai and eak = ebj , then s(ai, bj) will be close

to ϕ(pbj); otherwise, s(ai, bj) will be close to η.

4. SET BASED PRE-MATCHING

In alarm systems, a large number of alarms are configured
to monitor different processes. Thus many alarm floods are
different because faults may happen in different areas, rais-
ing different groups of alarms. Therefore, a set based pre-
matching approach is necessary. To find common alarms
for alarm floods A and B, a matrix is formulated as

R(A,B) =


r11 r12 · · · r1n
r21 r22 · · · r1n
...

...
. . .

...
rm1 rm2 · · · rmn

 (19)

where

rij =

{
1 eai = ebj
0 eai ̸= ebj

(20)

where eai and ebj are the alarm tags of ai ∈ A and
bj ∈ B. All matched pairs are indicated by 1 in the matrix
R(A,B). If R(A,B) is a null matrix, we say that there is
no common alarms between alarm floods A and B, and
thus we do not need to proceed to sequence alignment.
Meanwhile, a set based similarity score is formulated

by incorporating the priority information and the alarm
occurrence times as

Sset(A,B) =

∑m̃
i=1(ϕ(p

ã
i))

∑ñ
i=1(ϕ(p

b̃
i))∑m

i=1(ϕ(p
a
i))

∑n
i=1(ϕ(p

b
i))

(21)

where m̃ and ñ are numbers of common alarms included
in A and B, respectively; ã and b̃ indicate the common
alarms in A and B. This similarity measure has the
following properties: first, 0 ≤ Sset(A,B) ≤ 1; second,
Sset(A,B) = Sset(B,A); third, Sset(A,A) ≥ Sset(A,B);
fourth, it does not require order or time information. If A
and B have no common alarms, Sset(A,B) = 0. Using the
set based pre-matching approach, we save a lot of time in
measuring those irrelevant alarm floods. Especially for the
case to compare one alarm flood with a database, many
alarm floods having no common alarms can be excluded.

Furthermore, for most cases, two alarm floods to be com-
pared may contain many different alarm tags. It is mean-
ingless and extravagant to align these irrelevant alarms.
Such kind of superfluous alignment can be totally avoided
by directly aligning these irrelevant alarms with gaps.
Hence, a common alarm indexing approach is proposed
here, i.e., two shorter sequences Ã and B̃ can be indexed
from A and B by recording the positions of identical
alarms. The new sequences have the following properties:

(1) e ∈ Ã ∩ e ∈ B̃ for ∀e ∈ A ∩ e ∈ B;

(2) e /∈ Ã ∩ e /∈ B̃ for ∀e /∈ A ∪ e /∈ B;

(3) < ai, aj >⊆ A (or < bi, bj >⊆ B) if < ai, aj >⊆ Ã

(or < bi, bj >⊆ B̃) for ∀i < j;

(4) Sset(Ã, B̃) = 1;

The first and the second property guarantee that all
common alarms in A and B will be inherited by Ã and
B̃. The third property means that any ordered alarms in
Ã or B̃ have the same order in the original sequences A or
B. The final property is obvious since all the unique alarm
tags in Ã and B̃ are the same. Using the common alarm
indexing approach, all the irrelevant alarms are excluded.
Thereby, the search space in the sequence alignment can
be reduced by O(mn− m̃ñ).

5. NUMERICAL EXAMPLE

To illustrate how the proposed method works, two alarm
flood sequences A and B are given in Table 4. Both
of them contain 12 alarms sorted by their time stamps
(the date information is omitted in the table). Three
priority options are allocated to all alarm tags. First, using
the set based pre-matching, identical tags 1, 2, 3, 4, 5,
6, 7 and 9 are found between A and B. By excluding
the irrelevant tag 8, two subsequences Ã and B̃ are
indexed as Ã = A and B̃ =< 9, 5, 2, 1, 3, 4, 7, 3, 4, 9, 6 >.
Furthermore, the comparison proceeds to the sequence
alignment. Successively matched pairs can be indexed from
Ã and B̃. Taking matched pairs of top 2 scores as seeds,
we have Z̃(1) = (4, 3, 4) with Hs(Z̃(1)) = 15, as well as

Z̃(2) = (8, 5, 3) with Hs(Z̃(2)) = 12.

In the extending stage, the extension threshold is set as
T = 2|δ| = 2, i.e. the alignments with two gaps are
permitted. Considering that both A and B contain some
simultaneously raised alarms, the time ambiguity tolerance

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 651

Table 4. Alarm floods A and B with time and
priority information.

Sequence A Sequence B
ei ti pi ei ti pi
9 02:20:01 Low 9 11:00:01 Low
5 02:20:55 Low 5 11:01:11 Low
6 02:22:02 Low 2 11:01:59 High
2 02:22:42 High 1 11:02:18 High
1 02:23:35 High 3 11:03:11 Low
3 02:24:22 Low 4 11:04:01 Low
4 02:25:11 Low 7 11:06:32 Emg.
3 02:27:02 Low 3 11:06:33 Low
4 02:27:03 Low 4 11:06:33 Low
7 02:27:03 Emg. 8 11:07:16 Low
4 02:29:05 Low 9 11:08:45 Low
5 02:30:05 Low 6 11:09:56 Low

scheme is adopted. The standard deviation of the Gaussian
kernel is set as σ = 2. To extend Z̃(1) = (4, 3, 4) to the

right direction, we have subsequences Ãr =< 3, 4, 7, 4, 5 >
and B̃r =< 7, 3, 4, 9, 6 >. The score matrix H for Ãr and
B̃r is generated as in Table 5.

Table 5. Matrix H in the right extension for
seed Z(1) = (4, 3, 4).

7 3 4 9 6
17 16 0 0 0 0

3 16 19.3537 19 0 0 0
4 15 18.3537 22.3537 22 0 0
7 14 21 23.3549 27.3549 26.3549 25.3549
4 0 20 24 26.3549 25.3549 24.3549
5 0 19 23 25.3549 24.3549 23.3549

Backtracking the search path, the best alignment in the
right extension is found and indicated by underscored
values in Table 5. In the left extension, the alignment is
achieved in the same manner. Combining the extension in
two directions, the maximum alignment is achieved as

Ã : 9 5 6 2 1 3 4 3 4 7
| | | | | | | | |

B̃ : 9 5 − 2 1 3 4 7 3 4
(22)

where the tags underscored are not exactly matched in
the corresponding positions but detected as matched pairs
due to their close time stamps. For the extension based
on Z̃(1), the maximum scores in the left extension and
the right extension are Hl = 22 and Hr = 27.3549.
Thus, the final score is S(Z̃(1)) = 22 + 27.3549 − 15 −
2 × 2 = 30.3549. Fig. 2 illustrates the extension based
on the seed Z̃(1). Green squares indicate matched alarm
pairs while grey squares represent the entries where the
extension proceeds. White squares denotes the matrix cells
not being proceeded in the computation. It is obvious
that the extension avoids most search space so that the
computation complexity drops drastically to a low level.

In the same manner, the seed Z̃(2) = (8, 5, 3) is extended
to achieve the maximum alignment as

Ã : 9 5 6 2 1 3 4 3 4 7 4 −
| | | | | | | |

B̃ : 9 5 − 2 1 − − 3 4 7 3 4
(23)

Fig. 2. Graph example of the gapped extension.

The last matched pair is found at the 11th matched
position rather than the 12th position in (23). That is
because the 8th tag and the 9th tag in B have the
same time stamp; then the order for them should be
irrelevant. The final score for the alignment based on Z̃(2)

is S(Z̃(2)) = 26+17−12−2×2 = 27. S(Z̃(1)) > S(Z̃(2)).
Thus in this case, (22) presents the best alignment between
A and B.

6. INDUSTRIAL CASE STUDY

To illustrate the fast sequence alignment algorithm, in-
dustrial case studies are presented. Historical alarm data
with 1858 unique alarms and 3 priority levels was extracted
from an operating industrial chemical plant. With chatter-
ing alarms removed, 699 alarm floods were extracted and
reserved in a sequence database B. The average length
of alarm floods is 89.65. 10 alarm floods Ai(i = 1, ..., 10)
of different lengths as shown in Table 6 are prepared to
query the database B. Using the set based pre-matching
approach, some relevant object alarm floods are kept for
further sequence alignment while others are discarded. The
number of object sequences kept for each query alarm
flood Ai is listed as the third column in Table 6. Then,
both of the modified Smith-Waterman algorithm (Cheng
et al., 2013) and the proposed fast sequence alignment
algorithm are applied to query the sequence database. The
priority based scoring strategy in Table 3 is adopted by
both approaches. The simulation platform has a 3.3GHz
CPU, 4G RAM and 64bit operation system. Simulation
results are shown in Fig. 3. S̄(A,B) indicates the averaged
best alignment score between A and object sequences in
B; C̄(A,B) denotes the averaged number of matched pairs;
t̄(A,B) denotes the averaged computation time.

By comparing the values of S̄(A,B) and C̄(A,B), it is
obvious that the proposed method achieves much bet-
ter results than the modified Smith-Waterman algorithm.
The reason is that the common alarm indexing approach
adopted by the proposed method excludes many irrele-
vant alarms. Hence more identical alarms can be found.
Comparing the average computation time, the merit of
the proposed method is obvious. Table 6 presents the
total query time for each query alarm flood Ai using
the two approaches. Compared with the modified Smith-

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 652

1 2 3 4 5 6 7 8 9 10
0

50

100

150

S̄
(A

,B
)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

C̄
(A

,B
)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Index of query alarm flood

t̄(
A
,B

)(
se
c
)

Modified Smith−Waterman algorithm
Fast sequence alignment algorithm

Fig. 3. Comparison for ten query alarm floods using two
approaches.

Waterman algorithm, the proposed method is 18 to 350
times faster.

Table 6. Results of querying B for Ai(i =
1, ..., 10). Length is referred to as the sequence
length of each query alarm flood. N denotes
the number of relevant object sequences found
from B using the set based pre-matching. T1,
T2 indicate the total computation time of the
proposed algorithm and the modified Smith-

Waterman algorithm respectively.

Flood ID Length N T1 (sec) T2 (sec)
1 2272 630 62.8673 7725.8088
2 1866 625 15.8472 5585.8118
3 1178 681 36.1924 3235.4337
4 973 573 12.4679 2717.1148
5 732 554 39.4404 1813.6680
6 589 558 15.6735 1386.0295
7 388 541 16.6796 874.8470
8 282 502 21.6731 586.8778
9 185 55 2.1984 179.4622
10 111 164 7.7631 140.8826

7. CONCLUDING REMARKS

To find root causes and assist the prediction of alarm
floods, the sequence alignment algorithms have been used
to discover useful information from alarm data. In view
of the low computational efficiency of existing algorithms,
a fast sequence alignment method is developed; it accel-
erates the computation using a seed-and-extend strate-
gy. Specialized for alarm floods, the priority and time
information are adopted. Accordingly, the new method
is more sensitive to alarms of higher priorities and has
the ability to forget orders of alarms occurring almost
simultaneously. Meanwhile, the set based matching avoids
unnecessary computation by excluding all irrelevant alarm
floods and alarm tags. Industrial case studies show that
the proposed method is much faster than the modified
Smith-Waterman algorithm. For industrial applications,
the proposed method can help in identifying alarm floods

caused by common faults. Thereby, operators will be able
to make early decisions and prevent further incidents based
on the similar alarm sequences.

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., &
Lipman, D. J. (1990). Basic local alignment search tool.
Journal of Molecular Biology, 215, 403-410.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J.,
Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped
BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research, 25,
3389-3402.

Ahmed, K., Izadi, I., Chen, T., Joe, D., & Burton, T.
(2013). Similarity analysis of industrial alarm flood
data. IEEE Transactions on Automation Science and
Engineering, 10, 452-457.

Cheng, Y., Izadi, I., & Chen, T. (2013). Pattern matching
of alarm flood sequences by a modified Smith-Waterman
algorithm. Chemical Engineering Research and Design,
91, 1085-1094.

EEMUA (Engineering Equipment and Materials Users’
Association) (2007). Alarm Systems: A Guide to De-
sign, Management and Procurement, Second Edition.
London: EEMUA Publication 191.

Hollifield, B.R., Habibi, E. & ,Pinto, J.(2011). Alarm Man-
agement: A Comprehensive Guide. Research Traingle
Park, NC: ISA.

ISA (2009).Management of Alarm Systems for the Process
Industries. ANSI/ISA-18.2-2009, 2nd ed. The Interna-
tional Society of Automation, Research Triangle Park.

Kondaveeti, S. R., Izadi, I., Shah, S. L., Shook, D. S.,
Kadali, R., & Chen, T. (2013). Quantification of alarm
chatter based on run length distributions. Chemical
Engineering Research and Design, 91, 2550-2558.

Needleman, S. B., & Wunsch, C. D. (1970). A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molec-
ular Biology, 48, 443-453.

Rothenberg, D.H. (2009). Alarm Management for Process
Control: A Best-Practice Guide for Design, Implemen-
tation, and Use of Industrial Alarm Systems. NewYork:
Momentum Press.

Smith, T. F., & Waterman, M. S. (1981). Identification of
common molecular subsequences. Journal of Molecular
Biology, 147, 195-197.

Wang, J., & Chen, T. (2013). An online method for
detection and reduction of chattering alarms due to
oscillation. Computers and Chemical Engineering, 54,
140-150.

Wang, J., & Chen, T. (2014). An online method to re-
move chattering and repeating alarms based on alarm
durations and intervals. Computers and Chemical Engi-
neering, 67, 43-52.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 653

